Geant4 User's Guide for
Application Developers

Version: geant4 9.6.0

Publication date 30th November, 2012

Geant4 Collaboration

Geant4 User's Guide for Application Developers
by Geant4 Collaboration

Version: geant4 9.6.0

Publication date 30th November, 2012

Table of Contents

O [gL oo (01T o o H PSP SPPPTTRN 1
1.1. SCOPE Of thiS MEBNUELcoevuiieiiii ettt e e e e e s 1
1.2. HOW 1O USE thiS MANUALuniiiii e 1

2. Getting Started with Geant4 - Running a Simple EXampleoooiiiiiiiiii e 2
2.1. How to Define the main() Prograimcoeuueioiiiieeee ettt 2

211 A Sample mai N() MENOcooouiiiii e 2
2.1.2. GARUNMEINAGESevueeeieiiiee ettt ettt e e e et et e et et e r et e e e e r e e e e aes 2
2.1.3. User Initialization and ACHON ClaSSESviiiiiiieiiiiiie ettt 4
2.1.4. G4UImanager and Ul CommandSubMISSIONuiiiiiiiiiiiiiee e 4
2.1.5. GACOUL BNG GACEIT ...ttt ettt et e et e et e e et e e e e s 5
2.2. How t0 Define @ DEteCtOr GEOMELTY ... cceeueieeieiii ettt ettt e e et e e ettt eeee e e e ena e eaees 5
2.2.1. BBSIC COMCEPLS ... eeeeiiie ettt ettt ettt ettt e e et ettt e et et e et et e et et e e e eaa e e e nnans 5
2.2.2. Create a SIMPIE VOIUME ...covuiiiiii et 6
2.2.3. CNOOSE @ SOHM ...eeveeeiiii et ettt 6
224, Create aLogiCal VOIUMEooiiiiiiiii e 6
2.2.5. Plate @ VOIUIME ...ttt ettt e et e e e 7
2.2.6. Create @ PhySICal VOIUMEcouiiiiiii et 7
2.2.7. Coordinate Systems and ROELIONScc.uuuieiiiiiieiiii et 7
2.3. How to Specify Materials in the DELECIONuiiiiiiii it 7
2.3.1. General CONSIAEIAIIONSceuvuueeiitteeeeti ettt e e et e et et e e e e et aeeeete s e e eeba e e eeeneaeeeen 7
2.3.2. Define @ SIMPIe MEaETaluiiiiiii e 8
2.3.3. DEfINE @ MOIECUIE ... et 8
2.3.4. Define a Mixture by Fractional IMaSsSoceuuiiiiiiiiieiiii e 8
2.3.5. Define a Material from the Geant4 Material Databasec.vuvveveviiieiiiiinieccie e, 9
2.3.6. Define a Material from the Base Malerialovoiiiiiiiiiiiiiici e 9
2.3.7. Print Material INfOrMELIONiiiiiiiiei e 9
2.3.8. Access to Geantd material databaseuuieeiiiiiiei e 9
2.4, HOW 10 SPECITY PaTiCIES ... it 10
2.4.1. Particle DEfINITIONiiiiitiee ittt et e e et e e e et e eeees 10
2.4.2. RANGE CULS ...ouiiieieii ittt ettt ettt 12
2.5. HOW tO SPECify PhYSICS PIrOCESSEScvviiiiiiiiee ettt ettt e s 13
2.5. 1. PRYSICS PrOCESSESciitiieetiti ettt ettt e et e ettt e et r e e e et eeebe s 13
2.5.2. MANAGING PrOCESSEStuiieiiii ettt ettt e et e et e e e 13
2.5.3. SpeCifying PhYSICS PrOCESSES ... oottt e 14
2.6. How to Generate a Primary EVENTooiiiiiiiii et 14
2.6.1. Generating Primary BEVENLSiiiiiiiiiiiii e 14
2.6.2. GAVPIIMAIYGENEIBIONeieeeieteeti ettt et et ettt et e e et e et et e e e et e e e eba s 16
2.7. How to Make an EXeCutaldle Programiiieiiiiiiiii ettt 17
2.7.1. Building ExampleB1 USINg CMEKEccouuiiiiiiiieiiiiie e 17
2.7.2. Building ExampleB1 using GeantdMakeuviiiiiiiiiiiiiiieieei e 24
2.8. HOW tO Set Up an INTEraCtive SESSIONuiieiiieieiii ettt ettt e e e e enanns 26
2.8. 1 INEFOUUCTION ...ttt ettt et e et e e e e e e 26
2.8.2. A Short Description of Available INterfacesccovvviiiiiiiiiie e 26
2.8.3. How to Select Interface in Your APPliCatioNSoovvevuiieiiiiiiieiiii e 29
2.9. HOW 10 EXECULE @ PrOgramcocviiiiiii et 30
29,1 INEFOAUCTION ...ttt ettt e et e et et e e e 30
2.9.2. 'Hard-coded' BatCh MOGEcoviiiieiiiii et 30
2.9.3. Batch Mode With MaCro Fileiiiiiiiie e 31
2.9.4. Interactive Mode Driven by Command LiNESveviiiiieiiiiiieiiiii e 32
2.9.5, GENEIAl CASE ... iiiit ettt 33
2.10. How to Visuaize the Detector and EVENLScoouvuiiiiiiiiieieii e e 35
P2 L0 5 O [L oo (8 (o R PP SPPPTTR 35
2.10.2. ViSUAIZBLION DITVELSeiieieiiie ettt e e e 35
2.10.3. How to Incorporate Visualization Driversinto an Executablecccooooeviiiieiinnnnnn. 35
2.10.4. Writing the mai n() Method to Include Visualizationcooceevviieiiiiinieiiiiineeeens 36

Geant4 User's Guide for
Application Developers

2.10.5. Sample VisUualiZation SESSIONScviuuieiiiieiiiiee i ee e e e e e e e e e e e e eaens 37
2.10.6. For More Information on Geant4 Visualizationcccooiieiiiiinieiiiiineeece e 37

3. TOOIKIt FUNDBMENTAIS ...ttt e e et r e et n e e e et n e e e et neeeataaeeeeeen 38
3.1. Class Categories and DOMAINSoiiuniiiiiieei e e e e e e e e e e e e et e e e eeaa e eanaeeeen 38
3.1.1. What iS @ Class CaBlEJOIY?cvuuuiiiiieiiiee et e e e e e e e e e e e e et e e et e e et e eanaeees 38
3.1.2. Class CategorieS iN GEANAccuuieiiiieiiie e e et e e e e e e e e et e e et e e eaaaeeas 38

G € o o= U Lol O = s 39
3.2.1. SIgNatUre Of GEANA ClASSEScvuueiiiieiii e et e e e e e e e e e e e e e et e e e aanas 40
3.2.2. The HEPRandom module in CLHEPooiiiiiiiiiii e 40
3.2.3. The HEPNUMENICS MOGUIEuuiiiiiii et e et e e 43
3.2.4. General ManagemeNt ClASSESuiiuueiiiieeie e e e ee e e e e e e e e e e e et e e e et e e eaneeeeas 44

GG IS £ (= 1 o U 0 N 45
G N =T = T o U T SRR 45

TG 72 1 o101 g0 Yo 10 [= - 46
GG I @ 11 101U g Yo U | g - - PN 46
3.3.4. INrOAUCE NEW UNITS .vuiieiieii et et e et e et e e e et s e e e et r e e e et e e e eabnaeeenees 47
3.3.5. Print the list Of UNITSoiieiiiiiiii e e eeaens 47

13 B (1 | PP 47
3.4.1. BasiC CONCEPL OF RUN ...cvuiiiiii e e e e e e e e e e aaens 47
3.4.2. Geantd as @ State MACHINEuiiiii e e ees 49
3.4.3. User's hook fOr Stat€ ChaNGgEuiviiiiiii e e e eeas 49
3.4.4. Customizing the RUN ManaQErccouuiiiiiiiiiii e e e e e e e e e 50

TSI = | PP 52
3.5.1. REPresentation Of @ EVENTciiuiiiii e e 52
3.5.2. SITUCLUIE OF @N BVENT ..ottt e e e e 52
3.5.3. Mandates of GAEVENTMANAGETccvuuieiieiiii e e e e e e e e e e e e e aan s 53
3.5.4. Stacking MECNANISM .. .cuuiii e e e e e e e aeas 53

3.6. BEvent Generator INtEITACEccuu it 53
3.6.1. StruCture of @ Primary EVENTuiiiiii i e e e e e et e e e e e e eaen 53
3.6.2. Interface to @ Primary gENEIOrcvuueiuiieiiii e e e e e e e e e e e e e e e e eeas 54
3.6.3. Event overlap using multiple generatorsooovvieiiiiiiiii i 56

3.7. Event BiasiNg TEChNIGUESu.iiiiieiiiiii e e et e e e e e e e e e e et e e et e et e e aaeeaens 56
3.7.1. Scoring, Geometrical Importance Sampling and Weight Rouletteccoeveviineinnnnns 56
3.7.2. PhySICS Baset BiaSiNgccuuiiiiiieiiieiii et e e e e e e e e e e e e e e e 62
3.7.3. Adioint/Reverse Monte CarlOceiuuiiiii e e 64

4. Detector DEfinition @and RESPONSEciutiiiiee e e e e e e e e e e e e e e e et e e et e e et e e et eeannaees 70
T 1= o 0= 1 Y PP 70
g I [oo [0 1o o TP 70
S o o PR 70
G T oo [o= Y 0] U - 90
I A = 01V o= Y o 11 43T, 92
4.1.5. Touchables: Uniquely Identifying aVolumec.cooiiiiiiiiiii e, 101
4.1.6. Creating an Assembly Of VOIUMEScovuiiiiicii e e 103
4.1.7. Reflecting Hierarchies of VOIUMESiiiiiiiiii e 105
4.1.8. The GEOMELTY NaVIGAIOrciitieiii it e e e e e e e e e e e e e et eeanas 106
4.1.9. A SImple GEOMELTY EQItOrcovviiiii e 112
4.1.10. Converting Geometries from GEaNt3.21c.ueviuieiiiiieiiieeii e e e e e e 114
4.1.11. Detecting Overlapping VOIUMESuiiiuniiiiiieiie e e e e e e aaaas 115
4.1.12. DYNAMIC GEOMELTY SELUPSvvvueiiinieitieeeiieeie e et e et e e st e e et e et e e st e e st e e eaaaesanaees 119
4.1.13. Importing XML Models USINg GDMLcooiiiiiiiiiiii e 120
4.1.14. Importing ASCI TeXt MOAEISuiiiiiiii e e 120
4.1.15. Saving geometry tree objectsin binary formatcccoooiiiiiiii e, 121

Y - (= - PSR 121
4.2.1. General CONSIEIELIONSeeiieii et e et e e et e e e e et e e e e aen s 121
4.2.2. INtroduction t0 the ClIaSSESccuuuuieiiiiiie e e et e e e e e e eee 121
4.2.3. Recipes for Building Elements and MaterialScoocvuiiiiiiiiiiiiiiie e 122
S I 0 T= T I o =SSP 125

4.3, Electromagnetic FIEldcoouiiiiiii e 125

Geant4 User's Guide for
Application Developers

4.3.1. An Overview of Propagation in aFieldc.cooiiiiiiiii e, 125
4.3.2. PraCliCal ASPECES .uuuiiii it ei ettt e 127
TG TS o1 T I = (o P 131

S T PSP 132
o T USRS 132
A.4.2. SENSITIVE JELECLONiiiiiiii e e e e e e et e et e e e et e e eaeanas 134
T = = o (010 W0 (= o) 0 1= 1 Y/ PPN 135
S 1Y - g 7= o[S PP 136
4.4.5. GAMultiFunctional Detector and GAVPIiMItIVESCOrerccevvuiieviiiiiieeiiiiieeeeiineeeenenns 137
4.4.6. Concrete classes of GAVPIIMITIVESCOIEYuviiiiiiieeiiii e e e e e et e e e et eeeee 139
4.4.7. GAVIDFilter and itS derived ClaSSeSviiviiiiieiiii e 141
4.4.8. Scoring for EVENt BiaSiNgcvuuiiiiieiiie e e e e e e e 141

TSI B o = 1 Lo o T 142
3N I I o PP 142
4.5.2. DIgItiZer MOGUIEceeiii e e e e e 143

4.6. ODJECE PEISISEENCY ..vuiiiiiiiiiiieii et e e e e e e e e e e e e e e et e e e et e e et e e e eaas 144
4.6.1. PerSistenCy iN GEAMIAeiienieeiieee e e e e e e e e e e e et e e e e e eaens 144
4.6.2. Using Reflex for persistency of Geant4 0bjectscocovviiiiiiiiii e, 144

A.7. Parallel GOOMELTTES .. .cieeei ettt et e e e e et e e e et e e e et e e e e et e e e eaen s 144
A7.0. A parallel WOTTA ... 144
4.7.2. Defining aparallel WOrldooouiii e 145
4.7.3. Detector sensitivity inaparallel worldcooooiiiiiiiii 146

4.8. Command-based SCOMNGuuuiiiiieii e e e e e e e e e e et e et eeaneees 147
S I [oo B 1o o PSP 147
4.8.2. DEfiNING @ SCOMNG MESN ...t e e e e e e e e et e e e e ean s 147
4.8.3. DIAWING SCOMES ..vuueiiuneiiteeiieett e ettt eeaaeeat e e st e e et s eeat e e st e e et aeetneetneestaeennaaetnaees 148
4.8.4. Writing SCOreSt0 @ fil@ ..iiuniiii i e 148

5. Tracking and PhYSICSiiiiiii i e e e e e e e e e e e e et e e e e aaas 150
L300 B o (1 o P 150
LI 2 7S T 0 = o (=P 150
5.1.2. Accessto Track and Step INformationcceeuiiiiiiiiiiieiie e 151
5.1.3. Handling of Secondary PartiClescc.oviiiiiiiiii e 153

oI A B L o 1o~ PP 153
5.1.5. VErbOSE OULPULSciviiiiiiiieii e e e e e e e e e e e et e e e eaaaas 153
5.1.6. Trajectory and Trajectory POINtoiiiiiiiiiiiiii e e e e 153

A o 01V oo 00> PP 154
5.2.1. Electromagnetic INtEraCtionSccuiiiiiiiiii i e e e e 157
5.2.2. HAdronic INLEraCHIONSeiieiiieiiiii ettt e et e e e s 168
5.2.3. PartiCcle DECAY PrOCESSuuuiiiiiiii et e et e et e e e e e e e e e e et e et e et e e et e e eeenas 174
5.2.4. Gammarnuclear and Lepto-nuClear PrOCESSEScccvuiviiiiiiiieiiiiecie e e e e e 176
5.2.5. Optical PROtON PrOCESSES ...vuuiiviiiiiiieiiece e e et e e e e e e e e et e e et e et e e aaeeaens 177
5.2.6. ParameEteriZationuuuieiiiiii ettt 185
5.2.7. Transportation PrOCESSccuuiiiiiiiiii et e e e e e e e e e e e e e e et 191

B.3. PatiCIES ..ot e a e aaa 191
5.3.1. BaSIC COMCEPLS ..ovuuiiiiiiiii i e et e e e e e e e e e e e e e e et e e et e e et e e e aa e eeaaneasanees 191
5.3.2. DEfinition of @ partiCleooveiiiii i 192
5.3.3. DYNAMIC PATICI .ovvn i e 195

5.4. Production Threshold versus Tracking CUtcoouiiiiiiieiiiicii e 195
5.4.1. General CONSIAEIAIONSiiieiiieieiiie ettt e e e e et e e et e e e et e e e e aaa s 195
5.4.2. Set production threshold (Set Cut Methods)cccovvviiiiiiiiii e, 196
NG I AN o o) YA o U | 196
5.4.4. Why produce secondaries below threshold?c.coiviiiiiii i, 196
5.4.5. Cuts in StOppiNg range or iN ENEIGY?uueeeuneeiiieeii e ettt e e e e e e e e e e e et e e eenas 197
L T 4]0 0= Y PP 197
5.4.7. SPECIal traCkiNg CULSiiieiiiiieeie e e e e e e e e e e e e e e e e e e et e e eaneeeaes 197

I O 1= o= gl = (=" oo P 198
5.5.1. GENEraAl CONCEPLS .vuiiiiieii et et et e e e e e e e et e e e e e e e et e e et e e e et e e an e e et e eeannas 198
R B 1= - U = (=" o o 199

Geant4 User's Guide for
Application Developers

5.5.3. Assigning Production CUtSt0 @ REJIONcccuuiiiiiiiiiiieiiii e e e e 199

S = 1)V o 1= o TP 199
5.6.1. GENEraAl CONCEPLS .uuiiiiiiiiiieii e e et et e e e e e e e e et e e et e et e e et e et e e an e e et e eeannas 199
5.6.2. Material-CULS COUPIE .. .ovuiiiiiieii et e e et e e e e e e et e e ea e e eaaeas 200
5.6.3. File /O for the PhySICS Tableccvuiiiiicii e 200
5.6.4. Building the PhySICS Tableooviiiii e e 200

A U L= g I 11 SRS 200
B.7.1. GENEraAl CONCEPLS 1.vuiiiiiiii i e e et et e e e e e e e e e e et e et e e et e e e e an e e et e eeannas 200
5.7.2. Processes co-working with GAUSErLIimitSc.oeeviiiiiiiiiiii e 201

o T o Q= (| (o] oo =1 o 201
TSI 017 oSO PT 201
R I - 1= o (0] VK - (= P 202

R R I - 1= v (0] VA = (= = (o 203
R I R I o T PPN 203
5.8.5. Managing the track propagationccceuuieiiiieeiin e e e e e e e e e e 205
5.8.6. LIMItiNG the StED .uvuiiiiiii e e 206

LU = o (o L PP 207
6.1. Mandatory User Actions and INitialiZationscccuiiiiiiieiiieeiin e 207
6.1.1. Building Physics List from SCratChcccuiiiiiiiiiii e 207
6.1.2. REFEIENCE PhYSICS LISES .uuiiviiiiiieiiicc et e e e e e e et e e e eaas 207
6.1.3. Building Physics List USING FACLOIYcvviiiiiiiiiii e e e 207
6.1.4. Building Physics List from PhySICS BUIlAErSovvviiiiiiciie e 208

6.2. OPLioNal USEr ACHIONS ...uuuiiiiciiii e e et e e e e e e e e et e e e e et e e et e e et e aat e eatnaeranaees 209
6.2.1. USAZE Of USEr ACHONS ...cvviiiiiii i e et e e e e e e e e e e et e e e eaa s 209
6.2.2. Killing Tracks in User Actions and Energy Conservationcccoecevveevuieeeinieninnennnn. 212

6.3, USEr INFOrMELION ClaSSES ... ciivviieiiiiii ettt e et e e e et e e e et e e e e aan e 212
6.3.1. GAVUSErEVENtINFOIMELIIONiiiiiiiieeeiii et et e et e e e e e e eaan e eees 212
6.3.2. GAVUSErTracklNfOrMELioNcccuuiiiiiiii e 213
6.3.3. G4V UserPrimaryV ertexInformation and G4V UserPrimaryTracklnformation 213

6.3.4. GAVUSErRegiONINFOIMALioNiiiiieii e e e e e e e e 213

7. Communication aNd CONIIOLiiiiiiiee e e et e et e e e e et e e e e et e e e e eran e 215
7.1 BUIHE-IN COMMENAS ..ttt e e e e ettt e e e et r e e e et aeaeeaaneeeenan s 215
7.2. User Interface - Defining New COMMANAScoouiiiiiiiiin e e e e e e e e e 215
7.2, L AU MBSO ettt ettt e e e e e et 215
7.2.2. GAUlcommand and itS derived ClasseSovviviiiieiiii e 216
7.2.3. AN EXAMPIE MESSENGES .uuiiiieiiii e et e et e et e e e e e e e e e et e e et e e et eeat e e st e eetnaeeanaees 220
7.2.4. How to control the output of GACOUL/GACEITuueeiieiiii e e e e e e 222

Y S U= T4 (o P 224
8.1. INtroduction tO VISUBIIZAHONiiiiiiiieieiii et e e e e e e e e e e e e eenns 224
8.1.1. What Can be VISUBIIZEAoiiiiiiieiii e 224
8.1.2. You have a Choice of Visualization DIVEN'Sc.iiiiiiiiiiiiiiiiieeeeiii e 224
8.1.3. Choose the Driver that MeetS YOour NEBUSveviiiiiieiiiiiiie e 225
8.1.4. Controlling ViSUBlIZAtIONcccuuiiiiiieeiie e e e e e e 226
8.1.5. Visualization DELAIISoeiiiiiieeiii e 226

8.2. Adding Visualization to Your EXeCULabIecc.uiiiiiiiiii e 227
8.2.1. Installing VisualiZation DIiVEIScouuiiiii e e e e e 227
8.2.2. How to Realize Visualization Driversin an Executableccoiveviiiiiiiiiiinieceinnnn. 228
8.2.3. VISUAlI ZaLiON MANAGENcevvieiiiieiie e e e e e e e e e e e e e e et e e et e e eeaaas 228
8.2.4. How to Write the mai n() FUNCHONcoouiiiiiii e 229

8.3. The VISUAliZation DIIVEN'Scuuiiieiiii it e e e et e e e e ra s 230
8.3.1. Availability of drivers on the supported SyStemSccciviiiiiiiiii e, 231

S 2 @ o= o[PPN 231
ST G T | SRR 232
R @01 0] 1Y o1 (o PR PTIN 232
8.3.5. Openinventor EXtENded VIBWEScciiiiiiiii e e e e e 233
8.3.6. HEPREPFIIE ...t aaaa 235
8.3.7. HEPREPXIML .ttt 236
B.3.8. DAWVN .ottt ettt ettt e e et e aear e aaats 237

Vi

Geant4 User's Guide for
Application Developers

8.3.9. Remote Visualization with the DAWN-Network DriVerccooovvuiiiiviiiiniiiiiiieeeennn,
B.3.10. WVRML ittt
e T B o (Y o= PPN
8.3, 12, GIVIOCIEIN .ttt
8.3.13. Visualization of detector gEOMELIY trEEvvviiiiii i e e e
S I I T Y R I = = PP
S ST 4, I I (= TSP
8.4. Controlling Visualization from Commandsc.ccuuieiiiiiiiiieiiiieecee e e
8.4.1. Scene, scene handler, and VIEWEYiveiiiiiiiieiiiiie et
8.4.2. Create a scene handler and aviewer: / vi s/ open commandccccceveeeiieiinnennnnn.
8.4.3. Create an empty scene: / vi s/ scene/ creat e commandc.cceveviveiiineeinnnnnn,
8.4.4. Visualization of aphysica volume: / vi s/ dr awVol unme commandcceeeee.
8.4.5. Visualization of alogical volume: / vi s/ speci fy commandcooevvvveinnnnnnn.
8.4.6. Visualization of tragjectories; / vi s/ scene/ add/ traj ectori es command............
8.4.7. Visualization of hits: / vi s/ scene/ add/ hits commandcccuiivriiiiineeeennnn.
8.4.8. Visualization Of SCOMred Dalauuuieiiiiiiieiiiiiie et
8.4.9. HepRep AttribUtes fOr HitSiive e
8.4.10. Basic cameraworkings: / vi s/ vi ewer/ commands.........cccoceuiieiiiieiiiiiiiineenieeen,
8.4.11. Declare the end of visualization for flushing: / vi s/ vi ewer/ f | ush command
8.4.12. End of Event Action and End of Run Action: / vi s/ vi ewer / endOf Event Ac-
tionand/vis/viewer/endO RUNACt T ON COMMANGSoovvvvinieiiiiiiieeeeiiie e
8.4.13. HepRep ALtributes fOr Traf@CIONES ...uuuvie i e e
8.4.14. How to save a visualized views to POSISCript fileScoveviiiiiiiiiiee e,
B.4.15. CUIING ..ot et
B.4.16. CUL VIBW ..eiiiniiiieei e et e e e e e e e e e e e e e et e e et e et e e et e e et e eeannas
8.5. Controlling Visualization from Compiled Codecoovvviiiiiiiiiii e
8.5. 1. GAVVISMBNAGES ...uieiiii ettt ettt e et e e et e e et e a et a e
8.5.2. Visualization of detector COMPONENESeiuiiiiii e e e e aens
8.5.3. Visualization Of tral@CIOMESivvuiiii e e e e e e aaa s
8.5.4. Enhanced trajeCtory drawingcouuieiiiiiiiii e e e e e e e e e e e
8.5.5. HepRep Attributes for TraJeCtorieScvvvciii e
8.5.6. ViIsualization Of NItSuiiiiiiiiiiii e
8.5.7. HepRep AttribUtes fOr HitSoiue i
8.5.8. ViISUAIZatioN Of tEXEiviiiiiiiiiiii e e
8.5.9. Visualization of polylines and tracking StEPScovvveiiiiiiii e,
8.5.10. Visualization USEr ACHIONuuiiiiiiiiieiiiiie ettt e et e e
8.5.11. Standalone ViSUAlIZAHIONoeveuuiiiiiiiie e
8.6. VisualiZation AHIIULEScooveiiieii e et
3G VA= T o] 1 PSP
S G T2 o o 11 | PP
8.6.3. FOICING @ttriDULESiiiiiiii e e e e e e e e e e e e e e eees
8.6.4. Other @ITDULES .. .eevtiieiiiii et e e et eeaaa e e e enens
8.6.5. Constructors Of GAVISALIDULESiiiiiiieieiii e
8.6.6. How to assign G4VisAttributesto alogical volumeccooeviiiiiiiiiii e,
8.6.7. Additional User-Defined AtrDULESveiiiiiiieiiiii e
8.7. Enhanced TraJ€CtOry DIaWINGociuuieiiiieii eaanas
8.7.1. Default ConfigUIaionccuuieiiieiiii e e e e e e e et e e
8.7.2. Trajectory Drawing MOGEIScouviiiiiiic e e
8.7.3. Controlling from COmMMENAScovuiiiiiiei e e e
8.7.4. Controlling from Compiled COUEccovuieiiiiiii e
8.7.5. Drawing By TiME ...t
LRI I 1= o o) VA T (= 1 oo PP
8.8.1. Controlling from COmMMENAScovuiiiiiiei e e e e
8.8.2. EXample COMMANGSuuiiiiii i e e e e e e e e aaaas
TG T o T =T S
8.9. POlylings, Markers @ant TEXEc.ueiiiiiiii e e e e e e e e e e e e e e e e e e et e e aaneeaenas
B.9.1. POIYIINES ..eeiii e
B.0.2. IMAIKENS .. ittt

vii

Geant4 User's Guide for
Application Developers

ST N I S PP
8.10. MAKING @ IMOVIE .. ciiiiiii et e e e e e e e e e e e e e et e e et e e et e e et e e et eeannaaes
S0 0 5 PSP
S35 0 52 PR
8.10.3. DAWNFILEi ittt et e et e e et e e e et e e e eateneeeenes
8104, RAY T TACEI X oottt

9. Analysis ..

1S 000 72 (o o N
9.1.1. inlib, eXlib, QALOOISciii i
9.1.2. gAto0lS COdE IS PUrE NEBETccvniiiiieii e
LSRG T 723 (o o) 3] (===
LS 7 (oo S g T = | PPN

9.2, ANAlYSIS MANAGEr ClASSES ...uivueiiieeii ettt et et e e e e e e e e e e e e e e et e et e e et e e aneeaens
S N B o 1T (0o | - o
0.2.2. ANAYSIS IMESSENGES ..uuiiiiteiii et et et et e et e e e e et e et e et e e et e e et e e et e e aa e aanas
S 220 T N1 (1 o] =
9.2.4. Coexistence of Several ManagEr'Sccuueiinieiiiieeie e e e e e e e e e e e e
9.2.5. Supported Features and LimitationsSc.vviiiiiiiiieiii e

10. Examples

050 1 oo [0 1o PP
10.2. BASIC EXAMPIES . .ovuiiii i e e e e e e r e aaa
10.2.1. BasiC EXamples SUMMEIYccouniiiiieiiie e e e e e e e e e e eanas
10.2.2. BasiC EXAMPIES MACIOSuuciiiiiii e e et e e e e e e e e e e e e e e eaae e

0 e T e 14 o= = 1
10.2.4. EXAMPIE B2 ...t
10.2.5. EXAMPIE B3 oo
10.2.6. EXAMPIE B4ceiiii et

10.3. NOVICE EXBMPIES . .ovniiiiiieii et e e e e e e e e e e e e et e e et e e et e e et e e eanaeetnaes
10.3.1. NOVIiCe EXamMPIe SUMMAIYiiieiiiiiieiie e e e e e e e e e eaa s

O T e 114 o] L= N[PP

O T e 10 4o L= N[0 2P
O B e 104 o) L= N[0 P
10.3.5. EXAMPIE NOJooenii e e e
10.3.6. EXAMPIE NOS ...ouiiiiie it e e e e et e s e e e e e e ettt e s e e e e e e e ar e e e
10.3.7. EXAMPIE NOB ...ovviiiiieecieeeie et e s e e et e s e e e e e ettt e s e e e e e e aaar e e e e e
10.3.8. EXAMPIE NOT ..ooviiiiiie e e s e e e et e s e e e e e e et e s e e e e e e aaata e e aeeees

10.4. EXtended EXAMPIEScovniiii e aa
10.4.1. Extended EXamPle SUMIMEIYcoouieiiieii e e e e e e e e e e et e e e eaeeeens

10.5. AdvanCed EXAMPIEScouviiiicii e
FAQ. Frequentry ASKEO QUESLIONSiiuiieiieeii e et e e et e et e e e e e et e e et e e et e e st s e et eean e eatneesanaaetnas

FAQ.L.
FAQ.2.
FAQ.3.
FAQA4.
FAQ..
FAQ.6.
FAQ.7.

Appendix

LS = 1 = o) o
RUN TimME ProbleMS ... e e e e e e e e e e e eees
LT 0] 001 1 YRS RPRP
LG o I 10 IR = oL
01V o 0o U £ PN
Y ES T = T2 1 o

1. Tips for Program Compilationcoeuuiiiiiiiiiiie e e e e e e e e e eeen
L1 UNIXILINUX = G e e e e e e e e e e e e s e e e et e e et e e ean e ean s
1.2, WINAOWS - MS ViSUal Ch oottt r et a e e e eenes
I I Y - o @ RS 1) Qo & RSP
2 o 1= (o | = o 11101 P PN
2 1 USSP
22 2N Lo - P
2.3. 0PN SCIENLISE LA .ovvniiii e e
N 1 P
I T 1 o)==

viii

Geant4 User's Guide for
Application Developers

3. CLHEP FouNdation Librarycccuuiiiiieiie e e e e e e e e e e e e e et e e e e e eanas 320
4, C++ Standard Template Libraryc..ooiiiiiiiii e 321
5. Geant4Config.cmake CMake Config Fileuoiiiiiii e 321
5.1. Usage of Geant4CoNfig.CMaKEcuuiiinieiieeiii e e e e e e e e e e e e e anes 321

5.2. Building an Application against aBuild of Geant4coccoieviiiiiiiie e, 325

6. GNUMake System: Makefiles and Environment Variablesccoveviiieiiiiiiii e, 325
6.1, GEANtAMBKE SYSIEIM L..uiieeeiieeiiei e e e e e e e e e e et e r e e e e e e e e e e e e 325

6.2. ENVIrONMENt VaNTDIES ... i e e e e 326

6.3. Linking External Libraries with GEaNtdcc.viviiiiiiiiiiiiie e 330

7. Step-by-Step INStAllation GUIAEScouuiiiiii e e e e e e e 332
7.1. Building on MS Vistal CH ..uuiiiiiiiii e 332

8. Development and DEDUG TOOIScvuuiiiiici e e e e e e e eees 332
<300 L U ¢ T 332

8.2, WINUOWS ...ttt e et e ettt e e e et e e e et e e e e aen s 333

LS 10 To T 1= g = ot 333
L0 O 1 0 7 = o OSSP 333

9.2, USING GEANAPYiieeiiieeieie e et e ettt et e e et e et e e e e e e eea e e e e e e e e aes ittt aaaeaeaaeaes 334

9.3, SItEMOUUIES ...t e r e e eaaen 335

S e 1 o)== 336

10. Geantd Material Daf@bhasecvvvuuuuniiieeeeiieee et e e e e et e e e e e e e e e e e e e e e e 337
10.1. PUrE MEEITAIS ..ottt e e e et e e et e e e et e e e e eaa s 337

10.2. NIST COMPOUNGScveteiiiietiie e e e e e e e e e e e e e e e e e et e e e et e e et e e et s eeaneeenaas 338
ORI o oV - SO 349

(3] o] oo ir="o] /R 350

Chapter 1. Introduction

1.1. Scope of this manual

The User's Guide for Application Developersis the first manual the reader should consult when learning about
Geant4 or developing a Geant4-based detector simulation program. This manual is designed to:

« introduce the first-time user to the Geant4 object-oriented detector simulation toolkit,

* provide adescription of the available tools and how to use them, and

« supply the practical information required to develop and run simul ation applications which may beused in real
experiments.

Thismanua isintended to be an overview of the toolkit, rather than an exhaustive treatment of it. Related physics
discussions are not included unless required for the description of a particular tool. Detailed discussions of the
physicsincluded in Geant4 can befound in the Physics Reference Manual. Details of the design and functionality
of the Geant4 classes can be found in the User's Guide for Toolkit Developers, and a complete list of all Geant4
classesisgiveninthe Software Reference Manual.

Geant4 isacompletely new detector simulation toolkit written in the C++ language. Thereader isassumed to have
a basic knowledge of object-oriented programming using C++. No knowledge of earlier FORTRAN versions of
Geant isrequired. Although Geant4 isafairly complicated software system, only arelatively small part of it needs
to be understood in order to begin devel oping detector simulation applications.

1.2. How to use this manual

A very basic introduction to Geant4 is presented in Chapter 2, " Getting Started with Geant4 - Running a
Simple Examplée". It is a recipe for writing and running a simple Geant4 application program. New users of
Geant4 should read this chapter first. It is strongly recommended that this chapter be read in conjunction with
a Geant4 system installed and running on your computer. It is helpful to run the provided examples as they are
discussed in the manual. To install the Geant4 system on your computer, please refer to the Installation Guide
for Setting up Geant4 in Y our Computing Environment.

Chapter 3, " Toolkit Fundamentals" discusses general Geant4 issues such as class categories and the physical
units system. It goes on to discuss runs and events, which are the basic units of a simulation.

Chapter 4," Detector Definition and Response” describeshow to construct adetector from customized materials
and geometric shapes, and embed it in electromagnetic fields. It also describes how to make the detector sensitive
to particles passing through it and how to store this information.

How particles are propagated through a material is treated in Chapter 5, " Tracking and Physics". The Geant4
"philosophy" of particle tracking is presented along with summaries of the physics processes provided by the
toolkit. The definition and implementation of Geant4 particles is discussed and a list of particle properties is
provided.

Chapter 6, " User Actions" isadescription of the "user hooks" by which the simulation code may be customized
to perform special tasks.

Chapter 7," Communication and Control" providesasummary of the commands availableto the user to control
the execution of thesimulation. After Chapter 2, Chapters 6 and 7 are of formeost importanceto the new application
developer.

The display of detector geometry, tracks and events may be incorporated into a simulation application by using
the tools described in Chapter 8, " Visualization" .

Chapter 9, " Examples' provides a set of basic, novice, extended and advanced simulation codes which may be
compiled and run "asis" from the Geant4 source code. These examples may be used as educational tools or as
base code from which more complex applications are devel oped.

http://cern.ch/geant4/support/userdocuments.shtml
http://cern.ch/geant4/support/userdocuments.shtml
http://geant4.cern.ch/bin/SRM/G4GenDoc.csh?flag=1
http://cern.ch/geant4/support/userdocuments.shtml
http://cern.ch/geant4/support/userdocuments.shtml

Chapter 2. Getting Started with Geant4 -
Running a Simple Example

2.1. How to Define the main() Program
2.1.1. A Sample mai n() Method

The contents of nai n() will vary according to the needs of a given simulation application and therefore must
be supplied by the user. The Geant4 toolkit does not provide amai n() method, but a sample is provided here
as aguide to the beginning user. Example 2.1 is the simplest example of mai n() required to build a simulation
program.

Example 2.1. Simplest example of mai n()

#i ncl ude "4RunManager . hh"
#i ncl ude " AUl manager . hh"

#i ncl ude "ExX4Det ect or Construction01. hh"
#i ncl ude "Ex&4Physi csLi st 00. hh"
#i ncl ude "ExGAPri maryGener at or Acti on01. hh"

int main()
{

/1 construct the default run nmanager
GARunManager * runManager = new GARunManager ;

/l set mandatory initialization classes
runManager - >Set User I ni ti al i zati on(new ExG4Det ect or Constructi on01) ;
runManager - >Set User I ni ti al i zati on(new ExGAPhysi csLi st 00) ;

/1 set mandatory user action class
runManager - >Set User Act i on(new ExGAPri mar yGener at or Acti on01) ;

// initialize G4 kernel
runManager->lnitialize();

/1 get the pointer to the U nmnager and set verbosities
G4Ul manager* U = AUl manager: : Get Ul poi nter();

Ul - >Appl yCommand("/ run/ ver bose 1");

Ul - >Appl yCommand("/ event / ver bose 1");

Ul - >Appl yCommand("/t r acki ng/ ver bose 1");

/1 start a run
int nunber Of Event = 3;
runManager - >BeamOn(nunber O Event) ;

/1 job term nation
del ete runManager ;
return O;

}

Themai n() methodisimplemented by two toolkit classes, G4ARunManager and G4UImanager, and three classes,
ExG4Detector Construction01, ExG4PhysicsList00 and ExG4PrimaryGenerator Action01, which are derived from
toolkit classes. Each of these are explained in the following sections.

2.1.2. G4ARunManager

Thefirst thing mai n() must do is create an instance of the G4ARunManager class. Thisisthe only manager class
in the Geant4 kernel which should be explicitly constructed in the user's mai n() . It controls the flow of the
program and manages the event loop(s) within a run. When G4RunManager is created, the other major manager
classes are also created. They are deleted automatically when G4ARunManager is deleted. The run manager isalso
responsible for managing initialization procedures, including methods in the user initialization classes. Through
these the run manager must be given all the information necessary to build and run the simulation, including

Getting Started with Geant4
- Running a Simple Example

1. how the detector should be constructed,

2. al the particles and all the physics processes to be simulated,
3. how the primary particle(s) in an event should be produced and
4. any additional requirements of the simulation.

In the sasmple mai n() thelines

runManager - >Set User I ni ti al i zati on(new ExG4Det ect or Const ructi on01) ;
runManager - >Set User I ni ti al i zati on(new ExG4Physi csLi st 00) ;

create objects which specify the detector geometry and physics processes, respectively, and pass their pointersto
the run manager. ExG4Detector Construction01 is an example of a user initiaization class which is derived from
G4VUser Detector Construction. Thisis where the user describes the entire detector setup, including

* itsgeometry,

* the materials used in its construction,
 adefinition of its sensitive regions and

* the readout schemes of the sensitive regions.

Similarly ExG4PhysicsListOO0 is derived from G4VUserPhysicsList and requires the user to define

» the particles to be used in the simulation,
« al the physics processes to be simulated.

User can also override the default implementation for
« therange cuts for these particles and

The next instructionin mai n()

runManager - >Set User Act i on(new ExGAPri mar yGener at or Acti on01) ;

creates an instance of a particle generator and passes its pointer to the run manager.
ExG4PrimaryGeneratorAction01l is an example of a user action class which is derived from
G4VUserPrimaryGenerator Action. In this class the user must describe theinitia state of the primary event. This
class has a public virtual method named Gener at ePri mari es() which will be invoked at the beginning of
each event. Details will be given in Section 2.6. Note that Geant4 does not provide any default behavior for gen-
erating a primary event.

The next instruction

runManager->lnitialize();

performs the detector construction, creates the physics processes, calculates cross sections and otherwise sets up
the run. The final run manager method in mai n()

int nunber Of Event = 3;
runManager - >beamOn(nunber O Event) ;

begins a run of three sequentially processed events. The beantn() method may be invoked any number of
timeswithin mai n() with each invocation representing a separate run. Once a run has begun neither the detector
setup nor the physics processes may be changed. They may be changed between runs, however, as described in
Section 3.4.4. More information on G4RunManager in general isfound in Section 3.4.

As mentioned above, other manager classes are created when the run manager is created. One of theseis the user
interface manager, G4UImanager. In mai n() apointer to the interface manager must be obtained

Getting Started with Geant4
- Running a Simple Example

GAUl manager* U = AUl manager: : get Ul pointer();

in order for the user to issue commandsto the program. In the present exampletheappl! yConmand() methodis
called three times to direct the program to print out information at the run, event and tracking levels of simulation.
A wide range of commands is available which allows the user detailed control of the simulation. A list of these
commands can be found in Section 7.1.

2.1.3. User Initialization and Action Classes

2.1.3.1. Mandatory User Classes

There are three classes which must be defined by the user. Two of them are user initialization classes, and
the other is a user action class. They must be derived from the abstract base classes provided by Geant4:
G4VUserDetector Construction, G4VUserPhysicsList and G4VUser PrimaryGenerator Action. Geant4 does not
provide default behavior for these classes. GARunManager checks for the existence of these mandatory classes
whenthel nitial i ze() and BeanOn() methods are invoked.

As mentioned in the previous section, G4VUser Detector Construction requires the user to define the detector and
G4VUserPhysicsList requires the user to define the physics. Detector definition will be discussed in Sections

Section 2.2 and Section 2.3. Physics definition will be discussed in Sections Section 2.4 and Section 2.5. The user
action G4VUser PrimaryGenerator Action requires that the initial event state be defined. Primary event generation
will be discussed in Section 2.7.

2.1.3.2. Optional User Action Classes
Geant4 provides five user hook classes:

» G4UserRunAction

» G4UserEventAction

» G4UserSackingAction
» G4UserTrackingAction
» G4User SeppingAction

Thereare several virtual methodsin each of these classes which allow the specification of additional procedures at
al levelsof the simulation application. Details of the user initialization and action classesare provided in Chapter 6.

2.1.4. G4UImanager and Ul CommandSubmission

Geant4 provides a category named intercoms. G4UImanager is the manager class of this category. Using the
functionalities of this category, you can invoke set methods of class objects of which you do not know the pointer.
In Example 2.2, the verbosities of various Geant4 manager classes are set. Detailed mechanism description and
usage of intercoms will be given in the next chapter, with alist of available commands. Command submission
can be done all through the application.

Example2.2. An exampleof mai n() using interactive terminal and visualization. Code
modified from the previous example are shown in blue.

#i ncl ude " GARunManager . hh"
#i ncl ude " AU manager . hh"

#i f def G4Ul _USE
#i ncl ude " 4Vi sExecuti ve. hh"
#endi f

#i ncl ude "ExG4Det ect or Const ruction01. hh"
#i ncl ude "ExGAPhysi csLi st 00. hh"
#i ncl ude "ExGAPri maryGener at or Acti onO1. hh"

int main()

Getting Started with Geant4
- Running a Simple Example

/1 construct the default run nmanager
GARunManager * runManager = new GARunManager ;

/1 set mandatory initialization classes
runManager - >Set User I ni ti al i zati on(new ExG4Det ect or Constructi on01) ;
runManager - >Set User I ni ti al i zati on(new ExG4Physi csLi st 00) ;

/] set mandatory user action class
runManager - >Set User Act i on(new EXGAPri mar yGener at or Acti on01) ;

/] initialize & kernel
runManager->lnitialize();

/] Get the pointer to the User Interface nmanager
G4Ul manager * U manager = GAUl nanager: : Get Ul poi nter () ;

if (argc == 1) {
/1l interactive node : define U session
#i f def GAUl _USE
AUl Executive* ui = new AUl Executive(argc, argv);
Ul manager - >Appl yComrand("/ control / execute init.mc");
ui ->SessionStart();
del ete ui;
#endi f

el se {
/| batch node
GAString command = "/control /execute "
GAString fil eName = argv[1];
U manager - >Appl yCommand(conmand+f i | eNane) ;

/1 job term nation
del et e runManager;
return 0;

}
2.1.5. G4cout and G4cerr

Although not yet included in the above examples, output streamswill be needed. G4cout and G4cerr areiostream
objects defined by Geant4. The usage of these objectsis exactly the same asthe ordinary cout and cerr, except that
the output streams will be handled by G4Ulmanager. Thus, output strings may be displayed on another window
or stored in afile. Manipulation of these output streams will be described in Section 7.2.4. These objects should
be used instead of the ordinary cout and cerr.

2.2. How to Define a Detector Geometry

2.2.1. Basic Concepts

A detector geometry in Geant4 is made of a number of volumes. The largest volumeis called the World volume.
It must contain, with some margin, al other volumesin the detector geometry. The other volumes are created and
placed inside previous volumes, included in the World volume. The most simple (and efficient) shape to describe
the World is a box.

Each volume is created by describing its shape and its physical characteristics, and then placing it inside a con-
taining volume.

When avolume is placed within another volume, we call the former volume the daughter volume and the latter
the mother volume. The coordinate system used to specify where the daughter volume is placed, is the coordinate
system of the mother volume.

To describe a volume's shape, we use the concept of a solid. A solid is a geometrical object that has a shape and
specific values for each of that shape's dimensions. A cube with aside of 10 centimeters and a cylinder of radius
30 cm and length 75 cm are examples of solids.

Getting Started with Geant4
- Running a Simple Example

To describe avolume's full properties, we use alogical volume. It includes the geometrical properties of the solid,
and adds physical characteristics: the material of the volume; whether it contains any sensitive detector elements;
the magnetic field; etc.

We have yet to describe how to position the volume. To do thisyou create a physical volume, which places a copy
of thelogical volumeinside alarger, containing, volume.

2.2.2. Create a Simple Volume

What do you need to do to create a volume?

* Createasolid.
» Create alogical volume, using this solid, and adding other attributes.

2.2.3. Choose a Solid

To create asimple box, you only need to define its name and its extent along each of the Cartesian axes.

Example 2.3. Creating a box.

G4doubl e world_hx = 3.0*m
GAdoubl e worl d_hy = 1.0*m
G4doubl e world_hz = 1.0*m

G4Box* wor | dBox
= new ABox("World", world_hx, world_hy, world_hz);

This creates a box named "World" with the extent from -3.0 meters to +3.0 meters along the X axis, from -1.0 to
1.0 metersin Y, and from -1.0 to 1.0 metersin Z. Note that the G4Box constructor takes as arguments the halfs
of thetotal box size.

Itisalso very simpleto create a cylinder. To do this, you can use the G4Tubs class.

Example2.4. Creating a cylinder.

G4doubl e i nner Radi us
G4doubl e out er Radi us
(Adoubl e hz = 25. *cm
G4doubl e start Angl e = 0. *deg;

G4doubl e spanni ngAngl e = 360. *deg;

0.*cm
60. *cm

GATubs* tracker Tube
= new GATubs(" Tracker",
i nner Radi us,
out er Radi us,
hz,
start Angl e,
spanni ngAngl e) ;

This creates afull cylinder, named "Tracker", of radius 60 centimeters and length 50 cm (the hz parameter repre-
sentsthe half length in Z).

2.2.4. Create a Logical Volume

To create alogical volume, you must start with a solid and a material. So, using the box created above, you can
create asimple logical volume filled with argon gas (see Section 2.3) by entering:

GALogi cal Vol ume* wor | dLog
= new (ALogi cal Vol une(wor| dBox, Ar, "World");

Thislogical volume is named "World".

Similarly we create alogical volume with the cylindrical solid filled with aluminium

Getting Started with Geant4
- Running a Simple Example

G4Logi cal Vol une* trackerLog
= new (ALogi cal Vol une(tracker Tube, A, "Tracker");

and named "Tracker"

2.2.5. Place a Volume
How do you place avolume? Y ou start with alogical volume, and then you decide the aready existing volume
inside of which to placeit. Then you decide whereto placeits center within that volume, and how to rotateit. Once

you have made these decisions, you can create a physical volume, which is the placed instance of the volume,
and embodies all of these atributes.

2.2.6. Create a Physical Volume

Y ou create aphysical volume starting with your logical volume. A physical volumeissimply a placed instance of
the logical volume. Thisinstance must be placed inside a mother logical volume. For simplicity it is unrotated:

Example 2.5. A simple physical volume.

G4doubl e pos_x = -1.0*neter;
G4doubl e pos_y = 0.0*neter;
G4doubl e pos_z = 0.0*neter;

G4VPhysi cal Vol ume* tracker Phys
= new GAPVP| acenent (0, /1 no rotation
GAThr eeVect or (pos_x, pos_y, pos_z),
/] translation position

tracker Log, /] its logical volune
"Tracker", /1 its nane

wor | dLog, // its mother (logical) volunme
fal se, /1 no bool ean operations

0); /] its copy nunber

This places the logical volume t r acker Log at the origin of the mother volume wor | dLog, shifted by one
meter along X and unrotated. The resulting physical volumeis named "Tracker" and has a copy humber of 0.

An exception exists to the rule that a physical volume must be placed inside a mother volume. That exception is
for the World volume, which is the largest volume created, and which contains al other volumes. This volume

obviously cannot be contained in any other. Instead, it must be created as a G4PVPlacement with a null mother
pointer. It also must be unrotated, and it must be placed at the origin of the global coordinate system.

Generally, it is best to choose a simple solid as the World volume, the G4Box solid type is used in al basic
examples.

2.2.7. Coordinate Systems and Rotations

In Geant4, the rotation matrix associated to a placed physical volume represents the rotation of the reference
system of this volume with respect to its mother.

A rotation matrix is normally constructed as in CLHEP, by instantiating the identity matrix and then applying a
rotation to it. Thisis also demonstrated in Example B3.

2.3. How to Specify Materials in the Detector

2.3.1. General Considerations

In nature, general materials (chemical compounds, mixtures) are made of elements, and elements are made of
isotopes. Therefore, these are the three main classes designed in Geant4. Each of these classes has a table as a
static data member, which is for keeping track of the instances created of the respective classes.

Getting Started with Geant4
- Running a Simple Example

The G4Element class describes the properties of the atoms:

» atomic number,

» number of nucleons,

e atomic mass,

* shell energy,

» aswell as quantities such as cross sections per atom, etc.

The G4Material class describes the macroscopic properties of matter:

* density,

* dState,

* temperature,

* pressure,

» aswell as macroscopic quantities like radiation length, mean free path, dE/dx, etc.

The G4Material classisthe onewhichisvisibleto therest of thetoolkit, and is used by the tracking, the geometry,
and the physics. It contains al the information relative to the eventual elements and isotopes of which it is made,
at the same time hiding the implementation details.

2.3.2. Define a Simple Material
In the example below, liquid argon is created, by specifying its name, density, mass per mole, and atomic number.

Example 2.6. Creating liquid argon.

G4doubl e z, a, density;
density = 1.390*g/cnB;
a = 39.95*g/ nol e;

GAMaterial* | Ar = new G4AMateri al (name="1i qui dArgon", z=18., a, density);

The pointer to the material, 1Ar, will be used to specify the matter of which a given logical volume is made:

G4Logi cal Vol une* nyLbox = new (ALogi cal Vol une(aBox, | Ar, "Lbox", 0, 0, 0) ;

2.3.3. Define a Molecule

In the example below, the water, H20, is built from its components, by specifying the number of atoms in the
molecule.

Example 2.7. Creating water by defining its molecular components.

G4doubl e z, a, density;
GAString nanme, synbol ;
G4i nt nconponents, natomns;

a = 1.01*g/ nol e;
G4AEl enent* el H = new GAEl ement (nane="Hydr ogen", synbol ="H' , z= 1., a);

a = 16.00*g/ nol e;
GAEl enent* el O = new GAEl ement (nane="Oxygen" ,synbol="0" , z= 8., a);

density = 1.000*g/ cnB;
GAMateri al * H20 = new GAMat eri al (nanme="Wat er", densi ty, nconponent s=2) ;

H2O >AddEl enent (el H, nat ons=2) ;
H2O >AddEl enent (el O, nat ons=1);

2.3.4. Define a Mixture by Fractional Mass

In the example below, air is built from nitrogen and oxygen, by giving the fractional mass of each component.

Getting Started with Geant4
- Running a Simple Example

Example 2.8. Creating air by defining the fractional mass of its components.

G4doubl e z, a, fractionmass, density;
GAString name, synbol ;
G4i nt nconponent s;

a = 14.01*g/ nol e;
GAEl enent* el N = new GAEl enent (name="Ni trogen", synbol ="N' , z= 7., a);

a = 16.00*g/ nol e;
G4AEl enent* el O = new GAEl ement (nane="Oxygen" ,synbol="0" , z= 8., a);

density = 1.290*ng/ cnB;
GAMaterial* Air = new GAMateri al (name="Air ", density, nconponent s=2);

Ai r- >AddEl ement (el N, fracti onmass=70*per Cent);
Ai r - >AddEl enent (el O, fracti onmass=30*per Cent) ;

2.3.5. Define a Material from the Geant4 Material Database
In the example below, air and water are accessed via the Geant4 material database.

Example 2.9. Defining air and water from the internal Geant4 database.

GANi st Manager* man = (AN st Manager: : | nst ance() ;

GMateri al * H0
GAMaterial* Air

man- >Fi ndOr Bui | dMvat eri al ("G4_WATER') ;
man- >Fi ndOr Bui | dMaterial ("G4_AIR");

2.3.6. Define a Material from the Base Material

Itispossibleto build new material on base of an existing "base" material. Thisfeatureisuseful for electromagnetic
physicsallowing to peak up for the derived material all correction dataand precomputed tables of stopping powers
and cross sections of the base material. In the example below, two methods how to create water with unusual
density are shown.

Example 2.10. Defining water with user defined density on base of G4 WATER.

G4doubl e density;

density = 1. 05*ng/ cnB;
GAMaterial * waterl = new GAMaterial ("Water _1. 05", density, "G4_WATER') ;

density = 1.03*ng/ cnB;
GAN st Manager* man = GAN st Manager: : | nst ance();
GAMaterial * water2 = man->Bui | dvat eri al Wt hNewDensity("Water_1.03","A_WATER', densi ty);

2.3.7. Print Material Information
Example 2.11. Printing information about materials.

GHAcout << H2Q, \\ print a given materi al
Gdcout << *(GAMaterial::GetMaterial Table()); \\ print the list of materials

In Geant4 examples you all possible ways to build a material.

2.3.8. Access to Geant4 material database

Example 2.12. Geant4 material database may be accessed via Ul commands.

/material/nist/printEl erent Fe \\ print elenent by nane
/material/nist/printEl emrentZ 13 \\ print elenent by atom c nunber
/material/nist/listMaterials type \\ print materials type = [sinple | conpound | hep | all]

Getting Started with Geant4
- Running a Simple Example

/ mat erial / g4/ print El ement el mMNane \\ print instantiated el enent by nane
/material/g4/printMterial mat Nane \\ print instantiated naterial by nane

In Geant4 examples you all possible ways to build a material.

2.4. How to Specify Particles

AVUser Physi csLi st isone of the mandatory user base classes described in Section 2.1. Within this class
all particles and physics processes to be used in your simulation must be defined. The range cut-off parameter
should also be defined in this class.

The user must create a class derived from G4Vuser Physi csLi st and implement the following pure virtual
methods:

ConstructParticle(); /] construction of particles
Const ruct Process(); /] construct processes and register themto particles

The user may also want to override the default implementation of the following virtual method:

SetCuts(); /] setting a range cut value for all particles

This section provides some simple examples of the Const ruct Parti cl e() and Set Cut s() methods. For
information on Const r uct Process() methods, please see Section 2.5.

2.4.1. Particle Definition

Geant4 provides various types of particlesfor usein simulations:

« ordinary particles, such as electrons, protons, and gammas

* resonant particles with very short lifetimes, such as vector mesons and delta baryons
* nuclei, such as deuteron, alpha, and heavy ions (including hyper-nuclei)

 quarks, di-quarks, and gluon

Each particle is represented by its own class, which is derived from G4Par ti cl eDef i ni ti on. (Exception:
G4lons represents all heavy nuclei. Please see Section 5.3.) Particles are organized into six major categories:

* lepton,

* meson,

* baryon,

* boson,
 shortlived and
e jon,

each of which isdefined in a corresponding sub-directory under geant 4/ sour ce/ parti cl es. Thereisaso
a corresponding granular library for each particle category.

2.4.1.1. The AParticl eDefinition Class

HAParticl eDefinition has properties which characterize individual particles, such as, name, mass,
charge, spin, and so on. Most of these properties are "read-only” and can not be changed directly.
AParticl ePropertyTabl e isusedto retrieve (load) particle property of APar ti cl eDefinitionin-
to (from) G4Par ti cl ePr opert yDat a.

2.4.1.2. How to Access a Particle

Each particle class type represents an individual particle type, and each class has a single object. This object can
be accessed by using the static method of each class. There are some exceptionsto thisrule; please see Section 5.3
for details.

10

Getting Started with Geant4
- Running a Simple Example

For example, the class GAEl ect r on represents the electron and the member AEl ect r on: : t hel nst ance
points its only object. The pointer to this object is available through the dsatic methods
(AEl ectron: : El ectronDefinition().G4El ectron::Definition().

More than 100 types of particles are provided by default, to be used in various physics processes. In normal
applications, users will not need to define their own particles.

The unique object for each particle class is created when its static method to get the pointer is called at the first
time. Because particles are dynamic objects and should be instantiated before initialization of physics processes,
you must explicitly invoke static methods of all particle classes required by your program at the initialization step.
(NOTE: The particle object was static and created automatically before 8.0 release)

2.4.1.3. Dictionary of Particles

The (AParti cl eTabl e classis provided as a dictionary of particles. Various utility methods are provided,
such as:

Fi ndParticl e(G4Stri ng nane); /1 find the particle by name
Fi ndParticl e(G4i nt PDGencodi ng) /1 find the particle by PDG encodi ng .

HAParticl eTabl e is defined as a singleton object, and the static method
HAParticl eTabl e:: GetParticl eTabl e() providesits pointer.

Asfor heavy ions (including hyper-nucle), objects are created dynamically by requests from users and processes.
TheG4Par ti cl eTabl e class provides methods to create ions, such as:

GHAParticlebDefinition* Getlon(G4int at onmi cNunber ,
4i nt at oni cMass,
G4doubl e exci tati onEnergy);

Particles are registered automatically during construction. The user has no control over particle registration.

2.4.1.4. Constructing Particles

ConstructParticl e() isapurevirtua method, in which the static member functions for all the particles
you require should be called. This ensures that objects of these particles are created.

WARNING: You must define "All PARTICLE TYPES" which are used in your application, except for heavy
ions. "All PARTICLE TYPES' means not only primary particles, but also al other particles which may appear
as secondaries generated by physics processes you use. Beginning with Geant4 version 8.0, you should keep this
rule strictly because all particle definitions are revised to "non-static" objects.

For example, suppose you need a proton and a geantino, which isavirtual particle used for simulation and which
does not interact with materials. The Const r uct Part i cl e() method isimplemented as below:

Example 2.13. Construct a proton and a geantino.

voi d MyPhysi csLi st:: Construct Particle()

G4Proton: : ProtonDefinition();
GAGeant i no: : Geant i noDefinition();

}

Dueto thelarge number of pre-defined particlesin Geant4, itiscumbersometo list all the particles by this method.
If you want al the particles in a Geant4 particle category, there are six utility classes, corresponding to each of
the particle categories, which perform this function:

e (AABosonConstruct or

11

Getting Started with Geant4
- Running a Simple Example

e (ALept onConstruct or

e AMesonConstruct or

e (ABari onConstructor

e (4l onConstruct or

e AShort!livedConstructor.

An example of thisis shown in ExXNO5Physi csLi st listed below.

Example 2.14. Construct all leptons.

voi d ExNO5Physi csLi st:: Construct Lept ons()

/] Construct all |eptons

GALept onConst ruct or pConstructor;

pConstructor. Construct Particle();
}

2.4.2. Range Cuts

To avoid infrared divergence, some el ectromagnetic processes require a threshold below which no secondary will
be generated. Because of this requirement, gammas, electrons and positrons require production threshold. This
threshold should be defined asadistance, or range cut-off, which isinternally converted to an energy for individual
materials. The range threshold should be defined in the initialization phase using the Set Cut s() method of
AVUser Physi csLi st . Section 5.5 discusses threshold and tracking cutsin detail.

2.4.2.1. Setting the cuts

Production threshold values should be defined in Set Cuts() which is a virtua method of the
AVUser Physi csLi st . Construction of particles, materials, and processes should precede the invocation of
Set Cut s() . ARunManager takes care of this sequence in usual applications.

This range cut value is converted threshold energies for each material and for each particle type (i.e. electron,
positron and gamma) so that the particle with threshold energy stops (or is absorbed) after traveling the range cut
distance. In addition, from the 9.3 release ,this range cut value is applied to the proton as production thresholds
of nuclei for hadron elastic processes. In this case, the range cut value does not means the distance of traveling.
Threshold energies are calculated by a simple formula from the cut in range.

Note that the upper limit of the threshold energy is defined as 10 GeV. If you want to set higher threshold energy,
you can change the limit by using "/cuts/setMaxCutEnergy" command before setting the range cut.

Theideaof a"unique cut valuein range" isone of theimportant features of Geant4 and is used to handle cut values
in a coherent manner. For most applications, users need to determine only one cut value in range, and apply this
value to gammas, electrons and positrons alike. (and proton too)

The default implemetation of Set Cut s() method providesadef aul t Cut Val ue member asthe uniquerange
cut-off value for al particle types. The def aul t Cut Val ue is set to 1.0 mm by default. User can change this
value by Set Def aul t Cut Val ue() The"/run/setCut" command may be used to change the default cut value
interactively.

WARNING: DO NOT change cut valuesinside the event loop. Cut values may however be changed between runs.

It is possible to set different range cut values for gammas, electrons and positrons by using Set Cut Val ue()

methods (or using " /run/setCutForAGivenParticle' command). However, user must be careful with physicsoutputs
because Geant4 processes (especially energy loss) are designed to conform to the "unique cut value in range"
scheme.

Beginning with Geant4 version 5.1, it is now possible to set production thresholds for each geometrical region.
This new functionality is described in Section 5.5.

12

Getting Started with Geant4
- Running a Simple Example

2.5. How to Specify Physics Processes

2.5.1. Physics Processes

Physics processes describe how particles interact with materials. Geant4 provides seven mgjor categories of
processes:

* electromagnetic,

* hadronic,

e transportation,

* decay,

* optical,

« photolepton_hadron, and
 parameterisation.

All physics processes are derived from the G4VProcess base class. Its virtual methods

* At Rest Dol t,
» Al ongSt epDol t, and
* Post St epDol t

and the corresponding methods

» At Rest Get Physi cal I nteracti onLengt h,
» Al ongSt epGet Physi cal I nt eracti onLengt h, and
» Post St epGet Physi cal I nt eracti onLength

describe the behavior of a physics process when they are implemented in a derived class. The details of these
methods are described in Section 5.2.

The following are specialized base classes to be used for simple processes:

G4VAtRestProcess
Processes with only At Rest Dol t

G4VContinuousProcess
Processes with only Al ongSt epDol t

GA4VDiscreteProcess
processes with only Post St epDol t

Another 4 virtual classes, such as G4VContinuousDiscreteProcess, are provided for complex processes.

2.5.2. Managing Processes

The G4ProcessManager class contains a list of processes that a particle can undertake. It has information on the
order of invocation of the processes, aswell aswhich kind of Dol t method isvalid for each processinthelist. A
G4ProcessManager object corresponds to each particle and is attached to the G4ParticleDefiniton class.

In order to validate processes, they should be registered with the particle's G4ProcessManager. Process order-
ing information is included by using the AddPr ocess() and Set ProcessOr deri ng() methods. For reg-
istration of simple processes, the AddAt Rest Process(), AddCont i nuousProcess() and AddDi s-
cret eProcess() methods may be used.

G4ProcessManager is able to turn some processes on or off during a run by using the Act i vat ePr ocess()
and | nAct i vat ePr ocess() methods. These methods are valid only after process registration is complete, so
they must not be used in the Prelnit phase.

The G4VUserPhysicsList class creates and attaches G4ProcessManager objects to all particle classes defined in
theConstruct Parti cl e() method.

13

Getting Started with Geant4
- Running a Simple Example

2.5.3. Specifying Physics Processes

G4VUserPhysicsList isthe base class for a"mandatory user class' (see Section 2.1), in which all physics process-
es and al particles required in a simulation must be registered. The user must create a class derived from
G4VUserPhysicsList and implement the pure virtual method Const ruct Process() .

For example, if just the GAGeantino particle class is required, only the transportation process need be registered.
The Const ruct Process() method would then be implemented as follows:

Example 2.15. Register processesfor a geantino.

voi d MyPhysi csLi st:: Construct Process()

/1 Define transportation process
AddTransportation();

}

Here, the AddTr ansport ati on() method is provided in the G4VUserPhysicsList class to register the
GA4Transportation classwith al particle classes. The GATransportation class (and/or related classes) describesthe
particle motion in space and time. It is the mandatory process for tracking particles.

Inthe Const ruct Process() method, physics processes should be created and registered with each particle's
instance of G4ProcessManager .

An example of processregistration is given in the G4VUserPhysicsList::AddTr anspor t ati on() method.

Registration in G4ProcessManager isacomplex procedure for other processes and particles because the relations
between processes are crucial for some processes. |n order to ease registration procedures, G4PhysicsListHel per
isprovided. Users do not care about type of processes (ie. AtRest and/or Discrete and/or Continuous) or ordering
parameters.

An example of electromagnetic process registration for the gammais shown below

Example 2.16. Register processesfor a gamma.

voi d MyPhysi csLi st:: Construct Process()

/] Define transportati on process
AddTr ansportation();

/] el ectromagnetic processes
Construct EM) ;

}
voi d MyPhysi csLi st:: Construct EM)

/] Get pointer to GAPhysi csLi st Hel per
GAPhysi csLi st Hel per* ph = GAPhysi csLi st Hel per: : Get Physi csLi st Hel per () ;

/] Get pointer to gamma
GAParticleDefinition* particle = GAGanma: : GammaDef i ni tion();

/Il Construct and register processes for ganma

ph- >Regi st er Process(new GAPhot oEl ectricEffect(), particle);
ph- >Regi st er Process(new G4Conpt onScattering(), particle);
ph- >Regi st er Process(new GAGammaConversion(), particle);

}

2.6. How to Generate a Primary Event

2.6.1. Generating Primary Events

G4Vuser PrimaryGenerator Action is one of the mandatory classes available for deriving your own concrete class.
In your concrete class, you haveto specify how aprimary event should be generated. Actual generation of primary

14

Getting Started with Geant4
- Running a Simple Example

particleswill be done by concrete classes of G4VPrimaryGenerator, explained in the following sub-section. Y our
G4VUser PrimaryGenerator Action concrete class just arranges the way primary particles are generated.

Example 2.17. An example of a G4VUserPrimaryGenerator Action concrete class using

G4ParticleGun. For the usage of G4ParticleGun refer to the next subsection.
ExG4PrimaryGeneratorAction01.hh

#i f ndef ExGAPri maryGener at or Acti on01_h
#define ExGAPri maryGeneratorAction01_h 1

#i ncl ude "G4VUser Pri mar yGener at or Acti on. hh"
#i ncl ude " GAThr eeVect or. hh"

#i ncl ude "gl obal s. hh"

class GAParticl eCGun;
cl ass AEvent;

cl ass ExGAPri maryGener at or Acti on01 : public G4AVUser Pri maryGener at or Acti on

{
public:
ExGAPr i mar yGener at or Act i on01(
const (AString& particleName = "geantino",
G4doubl e energy = 1. *MeV,
GAThr eeVect or position= G4ThreeVector (0,0, 0),
GAThr eeVect or nmonent unDi rection = GAThreeVector (0,0,1));
~ExGAPri mar yGener at or Acti on01() ;
/1 met hods
virtual void GeneratePrinaries(&GEvent*);
private:
/| data nenbers
GHAParticleG@n* fParticleCGun; //pointer a to G4 service class
i
#endi f

ExG4PrimaryGeneratorAction0l.cc

#i ncl ude "ExGAPri maryGener at or Acti onO1. hh"

#i ncl ude "&AEvent. hh"

#i ncl ude "GAParticl eGun. hh"

#i ncl ude "GAParticl eTabl e. hh"

#i ncl ude "GAParticl eDefinition. hh"

/l....0000000>00........ 0000000000. 000000M000. 00000000M000.

ExGAPri mar yGener at or Acti on01: : EXGAPri mar yGener at or Acti on01(
const (AString& particl eNane,
G4doubl e energy,
GAThr eeVect or posi tion,
GAThr eeVect or nonent unDi rect i on)
G4VUser Pri mar yGener at or Acti on(),
fParticl eGn(0)

G4int nof Particles = 1;
fParticleGn = new AParticl eGun(nofParticles);

/] default particle kinematic
G4Particl eTabl e* particleTable = GAParticl eTabl e:: Get Parti cl eTabl e();
GAParticl eDefinition* particle

= particleTabl e->Fi ndParticl e(particl eNang) ;
fParticleGn->SetParticleDefinition(particle);
fParticl eGun->Set Particl eEnergy(energy);
fParticleGn->SetParticlePosition(position);
fParticl eGn->Set Particl eMonent unDi recti on(nonent unDi recti on);

ExGAPri mar yGener at or Acti on01: : ~ExGAPr i mar yGener at or Act i on01()
{

15

Getting Started with Geant4
- Running a Simple Example

delete fParticl eQun;
}

/]....000000000........ 0000000000. 0000000000. 00000000000.
voi d ExGAPri maryGener at or Acti on01: : Gener at ePri mari es(G4Event * anEvent)
/l this function is called at the begi ning of event

fParticl eGn->Cenerat ePri maryVertex(anEvent);

}

/l....0000000M00........ 00000000000. 00000000000. 0000000M000.

2.6.1.1. Selection of the generator

In the constructor of your G4VUser PrimaryGenerator Action, you should instantiate the primary generator(s). If
necessary, you need to set some initial conditions for the generator(s).

In Example 2.17, G4ParticleGun is constructed to use as the actual primary particle generator. Methods of
G4ParticleGun are described in the following section. Please note that the primary generator object(s) you con-
struct in your G4VUser PrimaryGenerator Action concrete class must be deleted in your destructor.

2.6.1.2. Generation of an event

G4VUserPrimaryGenerator Action has a pure virtual method named gener at ePri mar i es() . Thismethod is
invoked at the beginning of each event. In this method, you have to invoke the G4VPrimaryGenerator concrete
classyou instantiated viathe gener at ePr i mar yVert ex() method.

Y ou can invoke more than one generator and/or invoke one generator more than once. Mixing up several generators
can produce a more complicated primary event.

2.6.2. G4VPrimaryGenerator

Geant4 provides three G4VPrimaryGenerator concrete classes. Among these G4ParticleGun and
GA4General ParticleSource will be discussed here. The third one is GAHEPEVtI nterface, which will be discussed
in Section 3.6.

2.6.2.1. G4ParticleGun

G4ParticleGun is a generator provided by Geant4. This class generates primary particle(s) with a given momen-
tum and position. It does not provide any sort of randomizing. The constructor of G4ParticleGun takes an integer
which causes the generation of one or more primaries of exactly same kinematics. It is arather frequent user re-
guirement to generate a primary with randomized energy, momentum, and/or position. Such randomization can be
achieved by invoking various set methods provided by G4ParticleGun. Theinvocation of these methods should be
implementedinthegener at ePri mari es() method of your concrete G4VUser PrimaryGener ator Action class
before invoking gener at ePri mar yVer t ex() of G4ParticleGun. Geant4 provides various random number
generation methods with various distributions (see Section 3.2).

2.6.2.2. Public methods of G4ParticleGun

Thefollowing methods are provided by G4ParticleGun, and al of them can beinvoked fromthegener at ePri -
mar i es() method in your concrete G4VUser PrimaryGenerator Action class.

e void SetParticleDefinition(&ParticleDefinition*)
e void SetParticl eMonentum{ GAParti cl eMonment um

e void SetParticl evonentunDirecti on(G4Thr eeVect or)
e void SetParticl eEnergy(Gidoubl e)

e void SetParticleTi ne(G4doubl e)

e void SetParticl ePosition(&ThreeVector)

e void SetParticl ePol ari zati on(G4Thr eeVect or)

16

Getting Started with Geant4
- Running a Simple Example

e void Set NunberOf Particl es(&Gdint)

2.6.2.3. G4GeneralParticleSource

For many applications G4Par t i cl eGun is a suitable particle generator. However if you want to generate pri-
mary particlesin more sophisticated manner, you can utilize G4Gener al Parti cl eSour ce - Geant4 General
Particle Source module (GPS).

Using thistool, you can control the following characteristics of primary particles:

 Spectrum: linear, exponential, power-law, Gaussian, blackbody, or piece-wise fits to data.
» Angular distribution: unidirectional, isotropic, cosine-law, beam or arbitrary (user defined).
 Spatia sampling: on simple 2D or 3D surfaces such as discs, spheres, and boxes.

* Multiple sources: multiple independent sources can be used in the same run.

Details of information on the General Source Particle Module can be found in the documents Geant4 General
Particle Source.

2.7. How to Make an Executable Program

The code for the user examples in Geant4 is placed in the subdirectory exanpl es of the main Geant4 source
package. If Geant4 was installed with the CMake option GEANT4_| NSTALL_ EXAMPLES set, then the example
codewill have beeninstalledtotheshar e/ Geant 4- X. Y. Z/ exanpl es (where X. Y. Z isthe Geant4 version
number) subdirectory under the installation prefix. In the following sections, a quick overview will be given on
how to build a concrete example, "ExampleB1", which is part of the Geant4 distribution, using CMake and the
older Geant4Make system.

2.7.1. Building ExampleB1 Using CMake

Geant4 installs afile named Geant 4Conf i g. cnmake located in:

+- CMAKE_I NSTALL_PREFI X/ (where you installed Geant4)
+- lib/
+- Geant4-9.6.0/
+- Geant 4Confi g. cnake

which is designed for use with the CMake scripting language fi nd_package command. The example
presented below will cover basic usage of Geant 4Confi g. crmake, and you may find details on more ad-
vanced usage in Section 5.1. Building a Geant4 application using CMake thus involves writing a CMake script
CMakeli sts. txt usingfi nd_package and other CMake commandsto locate Geant4 and describe the build
of your application against it. Whilst it requires abit of effort to write the script, CMake provides avery powerful
and flexible tool, especialy if you are working on multiple platforms. It is therefore the method we recommend
for building Geant4 applications.

Moving to the concrete example of the ExampleB1 application, its sources are arranged in the following directory
structure:

+ B

+- CMakeli sts. txt
+- exanpl eB1. cc
+- exanpl eBl.in

+- exanpl eBl. out

+- include/

| +- BlDetectorConstruction. hh

| BlEvent Act i on. hh

| B1Pri mar yGener at or Acti on. hh
| B1RunActi on. hh

| B1St eppi ngAct i on. hh

+ c/

| BlDet ect or Constructi on. cc

| BlEvent Acti on. cc

=

45
B
45
B
S
B
45

17

http://reat.space.qinetiq.com/gps/
http://reat.space.qinetiq.com/gps/
http://cmake.org/cmake/help/v2.8.10/cmake.html#command:find_package

Getting Started with Geant4
- Running a Simple Example

| +- B1Pri maryGCeneratorAction.cc
| +- BlRunAction.cc
| +- B1Steppi ngAction. cc
+- init.mac

+- init_vis.mc
+- runl. mac

+- run2. mac

+- Vvis.nmac

Here, exanpl eB1. cc containsnai n() for the application, withi ncl ude/ andsr ¢/ containing theimple-
mentation class headers and sources respectively. The . mac files are scripts containing Geant4 Ul commands
for use at run time. This arrangement of source files is not mandatory when building with CMake, apart from the
location of the CVakeLi st s. t xt fileintheroot directory of the application.

The text file CvakelLi st s. t xt isthe CMake script containing commands which describe how to build the
exampleB1 application:

(1)
crmake_m ni mum requi red(VERSI ON 2. 6 FATAL_ERROR)
proj ect (Bl1)

(2)
opti on(WTH GEANT4_U VIS "Build exanple with Geant4 U and Vis drivers" ON)
i f (W TH_GEANT4_UI VI S)
find_package(Geant4 REQU RED ui _all vis_all)
el se()
find_package(Geant 4 REQUI RED)
endi f ()

(3)
i ncl ude(${ Geant 4_USE_FI LE})
i ncl ude_directories(${PRQUECT_SOURCE_DI R}/ i ncl ude)

(4)
file(G.OB sources ${ PROJECT_SOURCE DI R}/ src/*. cc)
file(G.OB headers ${PROIECT_SOURCE_DI R}/ i ncl ude/ *. hh)

(5)
add_execut abl e(exanpl eB1 exanpl eBl. cc ${sources} ${headers})
target _link_libraries(exanpl eBl ${Geant4_LI BRARI ES})

(6)

set (EXAMPLEB1_SCRI PTS
exanpl eBl.in
exanpl eBl. out
init.mc
init_vis.mc
runl. mac
run2. mac
Vi s. mac

)

foreach(_script ${ EXAMPLEB1_SCRI PTS})
configure_file(
${ PRQOUECT_SOURCE DI R}/ ${ script}
${ PRQJECT_BI NARY_DI R}/ ${ _scri pt}
COPYONLY

endf or each()
(7)
instal | (TARGETS exanpl eB1 DESTI NATI ON bi n)

For clarity, the above listing has stripped out the main comments (CMake comments begin with a"#") you'll find
in the actual file to highlight each distinct task:

1. Basic Configuration

The crake_mi ni num requi red command simply ensureswe're using a suitable version of CMake.
The project command setsthe name of the project and enables and configures C and C++ compilers.

18

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:cmake_minimum_required
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:project

Getting Started with Geant4
- Running a Simple Example

2. Find and Configure Geant4

The aforementioned fi nd_package command is used to locate and configure Geant4 (we'll see how
to specify the location later when we run CMake), the REQUI RED argument being supplied so that CMake
will fail with an error if it cannot find Geant4. The opti on command specifies a boolean variable which
defaultsto ON , and which can be set when running CMake viaa - D command line argument, or toggled
in the CMake GUI interfaces. We wrap the calls to fi nd_package ina conditional block on the
option value. Thisalows usto configure the use of Geant4 Ul and Visualization drivers by exampleB1 viathe
ui _all vis_all "component" argumentsto fi nd_package . These components and their usage
is described in detail in Section 5.1.

3. Configure the Project to Use Geant4 and B1 Headers

To automatically configure the header path, compiler flags and compiler definitions needed for linking to
Geant4, weusethe i ncl ude command toloadaCMake script supplied by Geant4. The CMake variable
named Geant 4_USE_FI LE isset to the path to this module when Geant4 islocated by fi nd_package
.Weusethe include_directories commandtoaddtheB1 header directory tothe compiler's header
search path. The CMakevariable PRQIECT_SOURCE DI R pointsto thetop level directory of the project
and is set by the earlier call tothe proj ect command.

4. List the Sources to Build the Application
Use the globbing functionality of the fi |l e command to prepare lists of the B1 source and header files.

Note however that CMake globbing isonly used here as a convenience. The expansion of the glob only happens
when CMake isrun, so if you later add or remove files, the generated build scripts will not know a change has
taken place. Kitware strongly recommend listing sourcesexplicitly as CM ake automatically makesthe build de-
pend onthe CVakeLi st s. t xt file. Thismeansthat if you explicitly list the sourcesin CVakelLi st s. t xt ,
any changes you make will be automatically picked when you rebuild. Thisis most useful when you are work-
ing on a project with sources under version control and multiple contributors.

5. Define and Link the Executable

The add_executabl e command definesthe build of an application, outputting an executable named
by its first argument, with the sources following. Note that we add the headers to the list of sources so that
they will appear in IDEs like X code.

After adding the executable, weusethe target |ink |ibraries commandtolinkitwiththeGeant4
libraries. The Geant 4_LI BRARI ES variableissetby fi nd_package when Geantdislocated, andis
alist of al the libraries needed to link against to use Geant4.

6. Copy any Runtime Scripts to the Build Directory

Because we want to support out of source builds so that we won't mix CMake generated files with our actual
sources, we copy any scripts used by the B1 application to the build directory. Weuse f oreach toloop
over the list of scriptswe constructed, and confi gure_fil e toperformthe actua copy.

Here, theCMakevariable PRQIECT_BI NARY_DI R issetbytheearlier call tothe proj ect command
and pointsto the directory where we run CMake to configure the build.

7. If Required, Install the Executable

Usethe install command to create aninstall target that will install the executable to abi n directory
under the CMAKE | NSTALL_PREFI X set for your application (NB: Thisis not necessarily the same asthe
prefix for your Geant4 install!).

If you don't intend your application to be installable, i.e. you only want to use it locally when built, you can
leave this out.

This sequence of commands is the most basic needed to compile and link an application with Geant4. The
CGeant 4Conf i g. cmake is highly flexible, and you can find documentation on more advanced usage in Sec-

19

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:find_package
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:option
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:if
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:find_package
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:if
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:find_package
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:include
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:find_package
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:include_directories
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#variable:PROJECT_SOURCE_DIR
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:project
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:file
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_executable
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:target_link_libraries
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:find_package
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:foreach
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:configure_file
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#variable:PROJECT_BINARY_DIR
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:project
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:install

Getting Started with Geant4
- Running a Simple Example

tion 5.1. The flexihility of CMake itself also allows you to easily extendable the very basic CVakeLi st s. t xt

presented aboveinvolved use cases such asusing other third party packages(via fi nd_package) or platform
specific configuration. If any of the above is still unclear, we recommend you study the Kitware CMake Tutorial
for an in depth introduction to writing CMake scripts. Please also ask any questions on our HyperNews Forum.

With the CMake script in place, using it to build an application is a two step process. First CMake is run to
generate buildscripts to describe the build. By default, these will be Makefiles on Unix platforms, and Visual
Studio solutions on Windows, but you can generate scripts for other tools like Xcode and Eclipse if you wish.
Second, the buildscripts are run by the chosen build tool to compile and link the application.

A key concept with CMake is that we generate the buildscripts and run the build in a separate directory, the so-
called build directory, from the directory in which the sources reside, the so-called source directory. Thisisthe
exact same technique you'll have used when when building Geant4 itself. Whilst this may seem awkward to begin
with, it is a very useful technique to employ. It prevents mixing of CMake generated files with those of your
application, and allows you to have multiple builds against a single source without having to clean up, reconfigure
and rebuild.

WEell illustrate this configure and build process on Linux/Mac using Makefiles, and on Windows using Visual
Studio. The example script and Geant4's Geant 4Conf i g. cnake script are vanilla CMake, so you should be
able to use other Generators (such as Xcode and Eclipse) without issue.

2.7.1.1. Building ExampleB1 with CMake on Unix with Makefiles

WEe'll assume, for illustration only, that you've copied the exampleB1 sources into a directory under your home
area so that we have

+- /[hone/ you/ B1/

+- CMakeLi sts. txt
- exanpl eB1. cc
- include/

+
+
+- src/
+

Here, our sourcedirectoryis/ honme/ you/ B1, inother wordsthedirectory holding the CMakelLi st s. t xt file.

Let's also assume that you have aready installed Geant4 in your home area under, for illustration only, / home/
you/ geant 4-install.

Our first stepisto create abuild directory in which build the example. We will create this alongside our B1 source
directory asfollows:

$ cd $HOME
$ nkdir Bl-build

We now changetothisbuild directory and run CM ake to generate the M akefil es needed to build the B1 application.
We pass CMake two arguments:

$ cd $HOVE Bl- buil d
$ cmake - DCeant4_Dl R=/ horme/ you/ geant 4-instal |l /lib64/ Geant4-9.6.0 $HOVE/ Bl

Here, the first argument points CMake to our install of Geant4. Specifically, it is the directory holding the
Geant 4Confi g. cnake file that Geant4 installs to help CMake find and use Geant4. Y ou should of course
adapt the value of this variable to the location of your actual Geant4 install.

The second argument is the path to the source directory of the application we want to build. Here it's just the B1
directory as discussed earlier. Y ou should of course adapt the value of that variable to where you copied the B1
source directory.

CMake will now run to configure the build and generate Makefiles. On Linux, you will see the output

20

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:find_package
http://www.cmake.org/cmake/help/cmake_tutorial.html
http://hypernews.slac.stanford.edu/HyperNews/geant4/cindex
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#section_Generators

Getting Started with Geant4
- Running a Simple Example

$ crmake - DGeant 4_Dl R=/ hone/ you/ geant 4-install/lib64/ Geant4-9.6.0 $HOVE/ B1
-- The C conpiler identification is G\U

The CXX conpiler identification is GNU

Check for working C conpiler: /usr/bin/gcc

Check for working C conpiler: /usr/bin/gcc -- works

Detecting C conpiler ABI info
Detecting C conpiler ABI info -
Check for working CXX conpiler
Check for working CXX conpiler
Det ecting CXX conpiler ABI info
Detecting CXX conpiler ABI info -
Configuring done

Generating done

Build files have been witten to

done
/usr/bin/c++
[usr/bin/c++ -- works

done
/ hone/ you/ B1- bui | d

On Mac OS X, you will see dightly different output, but the last three lines should be identical.

If you now list the contents of you build directory, you can see the files generated:

$1s

CMakeCache. t xt exanpl eBl.in init_vis.mac run2.nac
CMvekeFi | es exanpl eBl. out Makefile vis. mac
cmake_install.cnake init.mac runl. mac

Notethe Makef i | e and that all the scripts for running the exampleB1 application we're about to build have been
copied across. With the Makefile available, we can now build by simply running make:

$ make -jN

CMake generated M akefiles support parallel builds, so can set N suitable for the number of cores on your machine
(e.g. onadua core processor, you could set N to 2). When make runs, you should see the output

$ nake
Scanni ng dependenci es of target exanpleBl
[1699 Buil di ng CXX obj ect

[3394 Building
ction.cc.o

[509 Building
[669 Building
[83% Building

CXX

CXX
CXX
CXX

obj ect

obj ect
obj ect
obj ect

CMakeFi | es/ exanpl eBl
CMVakeFi | es/ exanpl eBl

CMVakeFi | es/ exanpl eBl
CMakeFi | es/ exanpl eBl
CMVakeFi | es/ exanpl eBl

di r/ exanpl eBl1. cc. o
di r/src/B1Pri maryGenerator A

dir/src/BlEvent Action. cc.o
dir/src/BlRunAction.cc.o
di r/ src/ BlDet ect or Const r uct

ion.cc.o

[1009 Building
.0

Li nki ng CXX execut abl e exanpl eBl
[1009 Built target exanpleBl

CXX obj ect CMakeFi | es/ exanpl eBl. di r/ src/ B1St eppi ngActi on. cc

CMake Unix Makefiles are quite terse, but you can make them more verbose by adding the VERBOSE argument
to make:

$ make VERBOSE=1

If you now list the contents of your build directory you will see the exampleB1 application executable has been
created:

$1s

CwvakeCache. t xt exanpl eBl init.mc runl. mac
CMakeFi | es exanpl eBl.in init_vis.mac run2.nac
cmake_instal |l . crmake exanpl eBl.out Makefile Vi s. mac

Y ou can now run the application in place:

21

Getting Started with Geant4
- Running a Simple Example

$./exanpl eBl
+++ (ASt ackManager uses (ASnart TrackStack. +++

L R R R

Geant 4 version Nanme: geant4-09-06-ref-00 (30- Novenber - 2012)
Copyright : Geant4 Collaboration
Reference : NIM A 506 (2003), 250-303
WAW : http://cern.ch/ geant4

L T R

<<< Reference Physics List QBBC

Checki ng overlaps for volume Envelope ... K
Checki ng overlaps for volune Shapel ... K
Checki ng overlaps for volume Shape2 ... X!

WARNI NG (AQ nelastic is deprecated and will be renoved in GEANT4 version 10.0.
Adding tracking cuts for neutron TineCut(ns)= 10000 Ki nEnergyCut(MeV)= 0
Vi sual i zati on Manager instantiating with verbosity "warnings (3)"...

Vi sual i zati on Manager initialising...

Regi stering graphics systens...

further output and behaviour will depend onwhat Ul and Visualization driversyour Geant4 install supports. If you
recall theuseof theui _all vis_all inthefi nd_package command, this resultsin all available Ul and
Visualization drivers being activated in your application. If you didn't want any Ul or Visualization, you could
rerun CMake as:

$ cmake - DW TH_GEANT4_Ul VI S=OFF - DGeant 4_DI R=/ hone/ you/ geant 4-instal | /1 i b64/ Geant 4-9. 6. 0 $HOVE/ Bl

This would switch the opt i on we set up to false, and result in f i nd_package not activating any Ul or Vi-
sualization for the application. Y ou can easily adapt this pattern to provide options for your application such as
additional components or features.

Once the build is configured, you can edit code for the application in its source directory. Y ou only need to rerun
mak e in the corresponding build directory to pick up and compile the changes. However, note that due to the use
of CMake globbing to create the source file list, if you add or remove files, you need to rerun CMake to pick up
the changes! Thisis another reason why Kitware recommend listing the sources explicitly.

2.7.1.2. Building ExampleB1 with CMake on Windows with Visual
Studio

WEe'll assume, for illustration only, that you've copied the exampleB1 sources into a directory

C:\ User s\ Ben\ Docunent s\ exanpl es\ basi c\ Bl

If you browsethe contents of thisdirectory you can seethat it containstheCMakeLi st s. t xt file. Soour source
directoryisC: \ User s\ Ben\ Docunent s\ exanpl es\ basi c\ B1, in other words the directory holding the
CMvakelLi st s. t xt file

Let's now use the CMake GUI to configure the build and generate a Visual Studio solution for it, and then use
Visual Studio to build the application from this solution. This processinvolves several steps, which we break down
as follows, and which can also be viewed as a slide show .

o Step 1:

Open the CMake (cmake-gui) executable, and click on the Browse Source... button in the top right hand corner
of the window.

* Step2:
Use the file browser popup to locate the B1 source directory, and click OK.

o Step 3:

22

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_01_locate_source_directory.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_02_click_on_browse_source.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_03_select_b1_source_directory.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_04_create_b1_build_directory.png

Getting Started with Geant4
- Running a Simple Example

Now we create the build directory in which to create the Visua Studio project files and hold the build products.
Thisdirectory should not be the same as, or inside, the source directory. Therefore, let's create this build direc-
tory alongside our source directory.

Click on the Browse Build... button in the top right hand side of the CMake GUI window. Use the file browser
popup to browse back to C: \ User s\ Ben\ Docunent s\ exanpl es\ basi ¢, and click on the Make New
Folder button. Rename the created folder to B1-build, and click on the OK button. The two text entries at
the top of the GUI should now contain C. / User s/ Ben/ Docunent s/ exanpl es/ basi ¢/ Bl and C. /
User s/ Ben/ Docunent s/ exanpl es/ basi ¢/ B1- bui | d respectively (Note: CMake always represents
Windows paths with forward slashes).

Step 4:

Before we can configure the project, we need to tell CMake where to find Geant4. To do this, click on the Add
Entry button in the top right corner of the CMake GUI.

Step 5:
In the Add Cache Entry window that pops up, set the Name of the entry to Geant4 DIR. Set the Type to PATH.
Step 6:

In the Add Cache Entry window, click the browse button on the right hand side of the Value to pop up the
Browse For Folder window. Browse to find your install of Geant4, and select the folder which contains the
Geant 4Confi g. cmake file. Thisis generaly located inthe | i b/ Geant 4- X. Y. Z (where X. Y. Z isthe
Geant4 version number) folder inside the directory in which you installed Geant4.

Step 7:
With Geant4_DIR set, click on the Configure button in the bottom left hand corner of the GUI.
Step 8:

In the pop up window, select Visual Studio 10 (or 9if you have that version installed) and ensure the Use default
native compilers radio button is ticked. Click on the Finish button. CMake will run to check that your system
can perform the build and that Geant4 can be found. It will output information on its status and any errorsin
the logging window at the bottom of the GUI.

Step 9:

After asuccessful configuration, you will see Configuring donein the logging window at the bottom, and some
red highlighted entriesin the main window, including onefor CMake. The red color does not always mean there
has been an error, but denotes that CMake needs to rerun to resolve options it has found in the build. Simply
reclick the Configure button to rerun CMake.

Step 10:

After afurther successful configuration, you will see Configuring done in the logging window &t the bottom,
and there should be no red colored entries in the main window. Now click on the Generate button to create
the Visual Studio solution.

Step 11:

After generation, you should see Configuring done, Generating done in the logging window at the bottom of
the GUI. CMake has run successfully, and a Visual Studio solution has been created. Y ou can now exit the
CMake GUI.

Step 12:

Now start up Visual Studio and choose Open Project. This guide is somewhat specific to Visua Studio 2010
Express, but the solution files should appear with the same names in both 2008 and 2010. Browse to your build

23

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_05_add_cache_entry.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_06_name_cache_entry.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_07_select_geant4_dir.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_08_click_on_configure.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_09_choose_generator.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_10_first_reconfigure.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_11_good_conf_generate.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_12_end_of_cmake.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_13_open_project.png

Getting Started with Geant4
- Running a Simple Example

directory and open the B1.sln Microsoft Visual Studio Solution file. It may take some time for Visual Studio
to fully open the project and parse all the sources.

o Step 13:
In the Solution Explorer, you can click on the exampleBL1 to view the sources for the project.
» Step 14:
To build the project, right click on ALL_BUILD in the Solution Explorer and click Build in the dialog box.
o Step 15:
Visual Studio will perform the build, and report on progressin Output.
* Step 16

Whilst you can run the built application in Visua Studio, it can be tricky to set up all the paths correctly (see
below). It's therefore easiest to open a cmd.exe window and cd to the build directory (the directory where the
Visual Studio solution was generated). Y ou can then run the built application directly from the command line.
Note that because Visua Studio supports multiple configurations and builds in Debug mode by default, the
application islocated at Debug\exampleB1.exe.

. Step 17:

On execution, the exampleB1 application should pop up aUl window, and avisualization window if your install
of Geant4 was installed with OpenGL visualization.

As noted above, you can also run the application through the Visual Studio debugger, although we have seen
issues with setting the directory to run incorrectly. The executable locates the macro files by assuming they arein
the current working directory, so the executable must be run from a directory containing the macros.

One key CMake related item to note goes back to our listing of the headers for the application in the call to
add_execut abl e. Whilst CMake will naturally ignore these for configuring compilation of the application, it
will add them to the Visual Studio Solution. If you do not list them, they will not be editable in the Solution.

2.7.2. Building ExampleB1 using Geant4Make

GeantdMake is the Geant4 GNU Make toolchain formerly used to build the toolkit and applications. If you have
written Geant4 Applications which used a GNUmakefile and a "bi nmake. gnk" file, then GeantdMake is the
system used behind the scenesto build your application. So whilst we now refer to thisold system as" Geant4M ake"
the concepts should be familiar. This system, is still supplied so that your applications using Geant4Make will
continueto build using the new CMake build and install of Geant4. However, due to incompatibilities between the
way Geant4Make expects Geant4 to be installed and the standard install hierarchy now used, we do not support
GeantdMake on Windows platforms. We encourage users to migrate to CMake to build their applications on
Windows. Please also note that GeantdMake is deprecated and will not be supported in Geant4 10.0 and later.

The Geant4Make GNUmake system is controlled by series of GNUmake modules which are installed under:

+- CMAKE_I NSTALL_PREFI X/ (where you installed Geant4)
+- share/
+- geant 4make/

+- geant 4nake. sh

+- geant 4make. csh

+- config/
+- bi nneke. gnk
+- L

The system is designed to form a self-contained GNUMake system which is configured primarily by environment
variables (though you may manually replace these with variables in your GNUmakefile if you prefer). Y ou may

24

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_14_project_showing_sources.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_15_build_all_build.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_16_successful_build.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_17_open_cmd_and_and_cd.png
http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/buildingwindowsapps/step_18_running_app.png

Getting Started with Geant4
- Running a Simple Example

find more detailed documentation on this structure in Section 6. Building a Geant4 application using Geant4Make
therefore involves configuring your environment followed by writing a GNUmakefile using the Geant4Make
variables and GNUMake modules.

To configure your environment, simply source the relevant configuration script CMAKE_| NSTALL_PREFI X/
shar e/ Geant 4- 9. 6. 0/ geant 4nake/ geant 4nmake. (c) sh for your shell. Here, you should replace
CMAKE | NSTALL_PREFI X with the actua directory you installed Geant4 under. Whilst both scripts can be
sourced interactively, if you are using the C shell and need to source the script inside another script, you must
use the command:

cd CMAKE_I NSTALL_PREFI X/ shar e/ Geant 4- 9. 6. 0/ geant 4nmake ; source geant 4neke. csh

or aternatively

source CMAKE | NSTALL_PREFI X/ shar e/ Geant 4- 9. 6. 0/ geant 4nake/ geant 4make. csh CMAKE_| NSTALL_PREFI X/ shar e/ Geant 4- 9. 6.

In both cases, you should replace CMAKE | NSTALL _PREFI X with the actua directory you installed Geant4
under. Both of these commands work around a limitation in the C shell which prevents the script locating itself.

Please also note that due to limitations of Geant4Make, you should not rely on the environment variables
it sets for paths into Geant4 itself. In particular, note that the G4I NSTALL variable is not equivalent to
CMAKE_INSTALL_PREFIX.

Once you have configured your environment, you can start building your application. Geant4Make enforces a
specific organization and naming of your sourcesin order to ssimplify the build. Going back to our concrete appli-
cation "ExampleB1", the sources are arranged just like before (so we have omitted some for clarity):

~

GNUnekefil e
exanpl eBl. cc
i ncl ude/
. headers.hh ...
src/
. sources.ccC ...

+— + + + P

As before, exanpl eBl. cc contains nai n() for the application, with i ncl ude/ and src/ containing the
implementation class headers and sources respectively. You rmust organise your sources in this structure with
these filename extensions to use Geant4Make as it will expect this structure when it tries to build the application.

With this structure in place, the GNUmakefile for exampleB1 isvery simple:

nanme : = exanpl eBl
GATARGET : = $(nane)
GHAEXLIB : = true

. PHONY: all
all: lib bin

i ncl ude $(G4l NSTALL)/ confi g/ bi nmake. gk

Here, nane is set to the application to be built, and it must match the name of the file containing the mai n()
program without the . cc extension. The rest of the variables are structural to prepare the build, and finaly the
core Geant4Make module isincluded. The G4 NSTALL variableis set in the environment by the geant 4nake
shell scriptsto point to the root of the Geant4Make directory structure.

With this structurein place, ssimply run mak e in the same directory as the GNUmakefile to build your application:

$ make

25

Getting Started with Geant4
- Running a Simple Example

If you need extra detail on the build, you append CPPVERBOSE=1 to the make command to see a detailed log
of the commands executed.

The application executable will be output to $(GAWORKDI R) / bi n/ $(GASYSTEM / exanpl eBl, where
$(GASYSTEM is the system and compiler combination you are running on, e.g. Linux-g++. By default,
$(AWORKDI R) isset by thegeant 4make scriptsto $(HOVE) / geant 4_wor kdi r, and aso prepends this
directory to your PATH. Y ou can therefore run the application directly onceit's built:

$ exanpl eBl

If you prefer to keep your application builds separate, then you can set GAWORKDI Rinthe GNUnakef i | e before
including bi nmake. grnk. In this case you would have to run the executable by supplying the full path.

Further documentation of the usage of Geant4M ake and syntax and extensionsfor the GNUMakef i | e isdescribed
in Section 6

Please note that the Geant4Make toolchain is provided purely for conveniance and backwards compatibility. We
encourage you to use and migrate your applications to the new CMake system. Geant4Make will no longer be
supported in Geant4 10.0 and later.

2.8. How to Set Up an Interactive Session
2.8.1. Introduction

2.8.1.1. Roles of the "intercoms" category

The "intercoms" category provides an expandable command interpreter. It is the key mechanism of Geant4 to re-
alize secure user interactions across categories without being annoyed by dependencies among categories. Geant4
commands can be used in an interactive session, a batch mode with amacro file, or adirect C++ call.

2.8.1.2. User Interfaces to drive the simulation

Geant4 can be controllled by a seriese of Geant4 Ul commands. The "intercoms" category provides the abstract
class G4Ulsession that processes interactive commands. The concrete implementations of (graphical) user inter-
face are provided in the "interfaces" category. The strategy realize to adopt various user interface tools, and al-
lows Geant4 to utilize the state-of-the-art GUI tools such as Matif, Qt, and Java etc. The following interfacesis
currently available;

1. Command-line terminal (dumb terminal and tcsh-like terminal)
2. Xm, Qt, Win32, variations of the above terminal by using a Matif, Qt, Windows widgets
3. GAG, afully graphical user interface and its network extension GainServer of the client/server type.

Implementation of the user sesssions (1 and 2) is included in the sour ce/ i nt er f aces/ basi c directory.
As for GAG, the front-end class is included in the sour ce/ i nt er f aces/ GAG directory, while its partner
GUI package MOMO.jar isavailable under theenvi r onnent s/ MOMOdirectory. MOMO . jar, Javaarchivefile,
contains not only GAG, but also GGE and other helper packages. Supplementary information is available from
the author's web page (see URL below).

GAG, GainServer's client GUI Gain: http://www-geant4.kek.jp/~yoshidah/
2.8.2. A Short Description of Available Interfaces

2.8.2.1. G4Ulterminal

This interface opens a session on a command-line terminal. G4UIterminal runs on all supported platforms. There
are two kinds of shells, G4UIcsh and G4Ultcsh. G4Ultcsh supports tesh-like readline features (cursor and com-

26

http://www-geant4.kek.jp/~yoshidah/

Getting Started with Geant4
- Running a Simple Example

mand completion) and works on Linux on Mac, while G4UIcsh is aplain standard input (cin) shell that works on
all platforms. The following built-in commands are available in G4UIterminal;

cd, pwd
change, display the current command directory.

Is,Ic
list commands and subdirectoriesin the current directory.

history
show previous commands.

ThistorylD
reissue previous command.

2command
show current parameter values of the command.

help command
show command help.

exit
terminate the session.

G4Ultcsh supports user-friendly key bindings a-la-tcsh. G4UItcsh runs on Linux and Mac. The following key-
bindings are supported;

A
move cursor to the top

"B
backward cursor ([LEFT] cursor)

AC (except Windows terminal)
abort arun (soft abort) during event processing. A program will be terminated while accepting a user com-
mand.

D
delete/exit/show matched list

"E
move cursor to the end

R
forward cursor ([RIGHT] cursor)

K
clear after the cursor

N
next command ([DOWN] cursor)

AP
previous command ([UP] cursor)

TAB
command completion

DEL
backspace

27

Getting Started with Geant4
- Running a Simple Example

BS
backspace

The example below shows how to set a user's prompt.

GAUl tcsh* tcsh = new AUl tcsh();
tcsh-> Set Pronpt ("%>");

The following strings are supported as substitutions in a prompt string.

%s
current application status

%/
current working directory

%h
history number

Command history inauser'ssessionissavedinafile $(HOVE) / . g4_hi st that isautomatically read at the next
session, so that command history is available across sessions.

2.8.2.2. G4UIXm, G4UIQt and G4UIWIin32 classes

These interfaces are versions of G4UIterminal implemented over libraries Motif, Qt and WIN32 respectively.
G4UlIXmusesthe Motif XmCommand widget, G4UIQt the Qt dial og widget, and G4UIWin32 the Windows " edit"
component to do the command capturing. These interfaces are useful if working in conjunction with visualization
driversthat use the Xt library, Qt library or the WIN32 one.

A command box isat disposal for entering or recalling Geant4 commands. Command completion by typing"TAB"
key is available in the command box. The shell commands "exit, cont, help, Is, cd..." are aso supported. A menu
bar can be customized through the AddMenu and AddButton method. Ex:

/gui/addMenu
test Test

/gui/addButton
test Init /run/initialize

/gui/addButton
test "Set gun" "/control/execute gun.g4m”

/gui/addButton
test "Run one event" "/run/beamOn 1"

G4UIXm runs on Unix/Linux with Motif. G4UIQt run everywhere with Qt. G4UIWin32 runs on Windows.

2.8.2.3. G4UIGAG and G4UlGainServer classes

They arefront-end classes of Geant4 which make connectionswith their respective graphical user interfaces, GAG
(Geant4 Adaptive GUI) via pipe, and Gain (Geant4 adaptive interface for network) via sockets. While GAG must
run on the same system (Windows or Unixen) asaGeant4 application, Gain can run on aremote system (Windows,
Linux, etc.) in which JRE (Java Runtime Environment) is installed. A Geant4 application is invoked on a Unix
(Linux) system and behaves as a network server. It opens a port, waiting the connection from the Gain. Gain has
capability to connect to multiple Geant4 "servers' on Unixen systems at different hosts.

Client GUIs, GAG and Gain have almost similar look-and-fedl. So, GAG's functionalities are briefly explained
here. Please refer to the URL previously mentioned for details.

Using GAG, user can select acommand, set its parameters and executeit. It is adaptive, in the sensethat it reflects
the internal states of Geant4 that is a state machine. So, GAG always provides users with the Geant4 commands

28

Getting Started with Geant4
- Running a Simple Example

which may be added, deleted, enabled or disabled during a session. GAG does nothing by itself but to play an
intermediate between user and an executable simulation program via pipes. Geant4's front-end class GA4UIGAG
must be instantiated to communicate with GAG. GAG runs on Linux and Windows. MOMO.jar can be run by
a command;

% ava -jar $GAI NSTALL/ envi r onment s/ MOMO MOMD, | ar
GAG hasfollowing functions.

GAG Menu:
The menus are to choose and run a Geant4 executable file, to kill or exit a Geant4 process and to exit GAG.
Upon the normal exit or an unexpected death of the Geant4 process, GAG window are automatically reset
to run another Geant4 executable.

Geant4 Command tree:
Upon the establishment of the pipe connection with the Geant4 process, GAG displays the command menu,
using expandable tree browser whose look and feel issimilar to afile browser. Disabled commands are shown
in opaque. GAG doesn't display commands that are just below the root of the command hierarchy. Direct
type-in field isavailable for such input. Guidance of command categories and commands are displayed upon
focusing. GAG has a command history function. User can re-execute a command with old parameters, edit
the history, or save the history to create a macro file.

Command Parameter panel:
GAG's parameter panel is the user-friendliest part. It displays parameter name, its guidance, its type(s) (inte-
ger, double, Boolean or string), omittable, default value(s), expression(s) of itsrange and candidate list(s) (for
example, of units). Range check is done by intercoms and the error message from it is shown in the pop-up
dialog box. When a parameter component has a candidate list, alist box is automatically displayed . When a
file is requested by a command, the file chooser is available.

Logging:
Log can be redirected to the terminal (xterm or cygwin window) from which GAG is invoked. It can be
interrupted aswill, in the middle of along session of execution. Log can be saved to afile independent of the
above redirection . GAG displays warning or error messages from Geant4 in a pop-up warning widget.

2.8.3. How to Select Interface in Your Applications

To choose an interface (AUl xxx wherexxx = term nal, Xm Wn32, Q, GAG i nServer)
in your programs, there are two ways.

» Cdling G4Ulxxx directly :

#i ncl ude " AU xxx. hh"

AUl sessi on* sessi on = new AUl XxX;
session-> SessionStart();

del et e session;
Note : For using atcsh session, G4Ulterminal isinstantiated like:
G4Ul sessi on* session = new AUl term nal (new G4Ul t csh);

If the user wants to deactivate the default signal handler (soft abort) raised by "Ctr-C", the false flag can be set
in the second argument of the G4UIterminal constructor like;

G4Ul sessi on* session = new (AU term nal (new AUl tcsh, fal se).
» Using G4UIExecutive Thisis more convenient way for choosing a session type, that can select a session at run-
time according to arule described below.

29

Getting Started with Geant4
- Running a Simple Example

#i ncl ude "&4Ul Executi ve. hh"

G4Ul Executi ve* ui = new G4Ul Executive(argc, argv);
ui - >SessionStart();

del ete ui;

GA4Ul Executive has several ways to choose a session type. A session is selected in the following rule. Note that
session types are identified by a case-insensitive characters ("qt", "xm", "win32", "gag", "tcsh", "csh").

1. Check the argument of the constructor of GA4UIExecutive. You can specify a session like new
AUl Executive(argc, argv, "qt");

2. Check environment variables, G4Ul _USE_XX (XX= QI, XM WN32, GAG TCSH). Select asession
if the corresponding environment variable is defined. Variables are checked in the order of QT, XM, WIN32,
GAG, TCSH if multiple variables are set.

3. Check ~/ . g4sesi on. You can specify the default session type and a session type by each application in that
file. The below shows asample of . g4sessi on.

tcsh # default session
exanpl eNO3 Q@ # (application nane / session type)

nyapp tcsh
hoge csh

4. Guess the best session type according to build session libraries. The order of the selection is Qt, tcsh, Xm.

In any cases, GAUIExecutive checks if a specified session is build or not. If not, it goes the next step. A terminal
session with csh is the fallback session. If none of specified session is available, then it will be selected.

2.9. How to Execute a Program
2.9.1. Introduction

A Geant4 application can be run either in

 “purely hard-coded” batch mode

* batch mode, but reading a macro of commands
* interactive mode, driven by command lines

* interactive mode viaa Graphical User Interface

The last mode will be covered in Section 2.8. The first three modes are explained here.

2.9.2. 'Hard-coded' Batch Mode

Below is a modified main program of the basic example B1 to represent an application which will run in batch
mode.

Example 2.18. An example of the mai n() routine for an application which will run in
batch mode.

int main()

{
/] Construct the default run manager
GARunManager * runManager = new G4ARunManager ;

/] Set mandatory initialization classes
runManager - >Set User I ni ti al i zati on(new BlDet ect or Const ructi on);
runManager - >Set User I ni ti al i zati on(new QGSP_BI C_EMY) ;

30

Getting Started with Geant4
- Running a Simple Example

runManager - >Set User Act i on(new B1Pri mar yGener at or Act i on) ;

/] Set user action classes

runManager - >Set User Act i on(new B1St eppi ngActi on());
runManager - >Set User Act i on(new B1Event Action());
runManager - >Set User Act i on(new B1RunAction());

/1] Initialize G4 kernel
runManager->lnitialize();

/] start a run
int nunber O Event = 1000;
runManager - >BeanOn(nunber Of Event) ;

/1 job term nation
del et e runManager;
return O;

}

Even the number of eventsin the runis “frozen™. To change this number you must at least recompile mai n() .

2.9.3. Batch Mode with Macro File

Below is a modified main program of the basic example B1 to represent an application which will run in batch
mode, but reading afile of commands.

Example 2.19. An example of the mai n() routine for an application which will run in
batch mode, but reading a file of commands.

int main(int argc, char** argv)

{
/1 Construct the default run manager
GARunManager * runManager = new GARunManager;

/] Set mandatory initialization classes

runManager - >Set User I ni ti al i zati on(new BlDet ect or Const ructi on);
runManager - >Set User I niti al i zati on(new QGSP_BI C_EMWY) ;
runManager - >Set User Act i on(new B1Pri mar yCGener at or Acti on) ;

/] Set user action classes

runManager - >Set User Act i on(new B1St eppi ngActi on());
runManager - >Set User Act i on(new BlEvent Action());
runManager - >Set User Act i on(new B1RunAction());

/1 Initialize G4 kernel
runManager->lnitialize();

//read a macro file of commands

GAUl manager* U = G4Ul manager: : Get Ul poi nter();
GAString command = "/control /execute ";
GAString fileName = argv[1];

Ul - >Appl yCommand(comrand+f i | eNane) ;

/] job term nation

del et e runManager;

return O;

}

This example will be executed with the command:

> exanpl eB1 runl. mac

where exanpl eBl isthe name of the executable and r unl. mac isamacro of commands located in the current
directory, which could look like:

Example 2.20. A typical command macro.

#
Macro file for nmyProgram

31

Getting Started with Geant4
- Running a Simple Example

#

set verbose level for this run
#

/run/verbose 2

/ event/ver bose 0

/tracki ng/ verbose 1

#

Set the initial kinematic and run 100 events
electron 1 GeV to the direction (1.,0.,0.)

#

/gun/particle e-

/gun/energy 1 GeV

/ run/ beanOn 100

Indeed, you can re-execute your program with different run conditions without recompiling anything.
Digression: many G4 category of classes have a verbose flag which controlsthe level of 'verbosity'.
Usually ver bose=0 means silent. For instance

* /run/verbose isfor the RunManager

* /event/verbose isforthe Event Manager

» /tracki ng/ ver bose isfor the Tr acki ngManager
* _.€fC...

2.9.4. Interactive Mode Driven by Command Lines

Below is an example of the main program for an application which will run interactively, waiting for command
lines entered from the keyboard.

Example 2.21. An example of the mai n() routine for an application which will run
interactively, waiting for commands from the keyboard.

int main(int argc,char** argv)

{
/] Construct the default run nmanager
GARunManager * runManager = new GARunManager;

/] Set mandatory initialization classes

runManager - >Set User I ni ti al i zati on(new BlDet ect or Const ructi on);
runManager - >Set User I ni ti al i zati on(new QGSP_BI C_EMY) ;
runManager - >Set User Act i on(new B1Pri mar yGener at or Act i on) ;

/] Set user action classes

runManager - >Set User Act i on(new B1St eppi ngActi on());
runManager - >Set User Act i on(new B1Event Action());
runManager - >Set User Act i on(new B1RunAction());

/] Initialize G4 kernel
runManager->lnitialize();

/] Define U terminal for interactive node
(AUl sessi on * session = new G4Ul t erm nal ;
sessi on->SessionStart () ;

del ete session;

/] job term nation

del et e runManager ;

return O;

}

This example will be executed with the command:

> exanpl eBl
where exanpl eB1 isthe name of the executable.

The G4 kernel will prompt:

32

Getting Started with Geant4
- Running a Simple Example

1dl e>
and you can start your session. An example session could be:

Run 5 events:

I dl e> /run/ beann 5

Switch on tracking/verbose and run one more event:

I dl e> /tracking/verbose 1
Idl e> /run/beantn 1

Change primary particle type an run more events:

Idle> /gun/particle mu+
Idl e> /gun/energy 10 GeV

I dl e> /run/beanDn 1

Idl e> /gun/particle proton
I dl e> /gun/energy 100 MeV
I dl e> /run/beanOn 3

ldle> exit

For the meaning of the machine state| dl e, see Section 3.4.2.

This mode is useful for running a few events in debug mode and visualizing them. How to include visualization
will be shown in the next, general case, example.

2.9.5. General Case

All basic examplesin the $G41 NSTALL/ exanpl es/ basi c directory have the following mai n() structure.
The application can be run either in batch or interactive mode.

Example 2.22. Thetypical mai n() routinefrom the examplesdirectory.

int main(int argc,char** argv)

{
/] Construct the default run manager
GARunManager * runManager = new GARunManager;

/] Set mandatory initialization classes

runManager - >Set User I ni ti al i zati on(new BlDet ect or Const ructi on);
runManager - >Set User I ni ti al i zati on(new QGSP_BI C_EMY) ;
runManager - >Set User Act i on(new B1Pri mar yGener at or Act i on) ;

/] Set user action classes

runManager - >Set User Act i on(new B1St eppi ngAction());
runManager - >Set User Act i on(new B1Event Action());
runManager - >Set User Act i on(new B1RunAction());

[/ Initialize G4 kernel
runManager->lnitialize();

#

fdef GAVI S_USE

[/ Initialize visualization

GAVi sManager * vi sManager = new (AVi sExecuti ve;

/| GAVi sExecutive can take a verbosity argunment - see /vis/verbose gui dance.
/| GAVi sManager* vi sManager = new (AVi sExecutive("Quiet");

vi sManager->Initialize();

#endi f

/] Get the pointer to the User Interface manager
G4Ul manager * U manager = GAUl nanager: : Get Ul poi nter () ;

if (argc!=1) {
/] batch node
GAString conmand = "/control /execute ";

33

Getting Started with Geant4
- Running a Simple Example

GAString fil eName = argv[1];
U manager - >Appl yCommand(conmand+f i | eNane) ;

el se {
// interactive npde : define U session
#i f def AUl _USE
AUl Executi ve* ui = new GAUl Executive(argc, argv)
#i f def GAVI S_USE
Ul manager - >Appl yCommrand("/ control / execute init_vis. mc")

#el se
Ul manager - >Appl yComrand("/ control / execute init.mc")
#endi f
ui ->SessionStart ()
del ete ui;
#endi f
}

/1 Job term nation

/] Free the store: user actions, physics_list and detector_description are
/1 owned and del eted by the run manager, so they should not be del eted

// in the nain() program!

#i f def G4VI S_USE

del et e vi sManager;
#endi f

del et e runManager;

}

Notice that both user interface and visualization systems are under the control of the precompiler variables
AUl _USEnad (AVI S_USE. Noticeal so that, in interactive mode, few intializations have been put in the macros
init_vis.mac,orinit_vis.nmac,whichisexecuted before the session start.

Example 2.23. Thei ni t. mac macro:

Macro file for the initialization phase of exanple Bl
when running in interactive nbde w thout visualization
#

Set sone default verbose

/control/verbose 2

/control /saveH story

/run/verbose 2

Thei nit _vi s. mac macro hasjust added alinewith acall tovi s. nmac:

Macro file for the initialization phase of exanple Bl
when running in interactive node with visualization
#

Set sone default verbose

#

/control /verbose 2

/control /saveH story

/run/verbose 2

#

Visualization setting

/control /execute vis.nmac

Thevi s. mac macro defines aminimal setting for drawing volumes and trajectories accumulated for all events
of agiven run:

Macro file for the visualization setting in the initialization phase
of the Bl exanple when running in interactive node
#

#

Use this open statement to create an OpenGL vi ew.
/vi s/ open OGL 600x600- 0+0

#

Draw geonetry:

[vi s/ dr awNol une

#

Specify view angle

/vi s/ viewer/set/vi ewpoi nt Thet aPhi 90. 180

#

Getting Started with Geant4
- Running a Simple Example

Draw snpoth trajectories at end of event, showi ng trajectory points
as markers 2 pixels wde

/vis/scene/add/trajectories snooth

#

To superinpose all of the events froma given run

/vi s/ scene/ endCf Event Acti on accunul at e

#

Re-establish auto refreshing and verbosity:
/vis/viewer/set/autoRefresh true

[vi s/ verbose warni ngs

#

For file-based drivers, use this to create an enpty detector view
#/ vi s/ viewer/flush

Also, this example demonstrates that you can read and execute a macro from another macro or interactively:

Idl e> /control /execute nySubMacro. nac

2.10. How to Visualize the Detector and Events
2.10.1. Introduction

This section briefly explains how to perform Geant4 Visualization. The description here is based on the sample
program exanpl es/ basi ¢/ B1. More details are given in Chapter 8 "Visualization".

2.10.2. Visualization Drivers

The Geant4 visualization system was developed in response to a diverse set of requirements:

1. Quick response to study geometries, trajectories and hits

2. High-quality output for publications

3. Flexible camera control to debug complex geometries

4. Toolsto show volume overlap errorsin detector geometries

5. Interactive picking to get more information on visualized objects

No one graphics system is ideal for all of these requirements, and many of the large software frameworks into
which Geant4 has been incorporated already have their own visualization systems, so Geant4 visualization was
designed around an abstract interface that supports a diverse family of graphics systems. Some of these graphics
systems use a graphics library compiled with Geant4, such as OpenGL, Qt or Openlnventor, while othersinvolve
a separate application, such as HepRApp or DAWN.

You need not use all visualization drivers. You can select those suitable to your purposes. In the following, for
simplicity, we assume that the Geant4 libraries are built with the OpenGL driver.

If you build Geant4 using the standard ./Configure -build procedure, you include OpenGL by answering "y" to the
question, "Enable building of the X11 OpenGL visualization driver?'. Other Configure questions handle setup of
other optional visuaization drivers, and you can ignore the details below about enironment variables. Configure
handles all of thisfor you.

In order to use the the OpenGL drivers, you need the OpenGL library, which is installed in many platforms by
default. When you run . / Conf i gur e, answer yes to OpenGL. It sets appropriate AVI S_. . . variables. (If
you wish to "do-it-yourself", see Section 8.2.1.) The makefiles then set appropriate C-pre-processor flagsto select
appropriate code at compilation time.

2.10.3. How to Incorporate Visualization Drivers into an
Executable
Most Geant4 examples already incorporate visualization drivers. If you want to include visualization in your own

Geant4 application, you need to instantiate and initialize a subclass of G4Vi sManager that implements the pure
virtual function Regi st er Gr aphi csSystens().

35

Getting Started with Geant4
- Running a Simple Example

The provided class G4Vi sExecut i ve can handle all of thiswork for you. G4Vi sExecut i ve issensitive to
the AVI S . .. variables mentioned above (that you either set by hand or that are set for you by ./Configure -
build). See any of the Geant4 examples for how to use G4Vi sExecut i ve.

If you really want to write your own subclass, rather than use &4Vi sExecut i ve, you may do so. You will see
how to do this by looking at G4Vi sExecut i ve. i cc. This subclass must be compiled in the user's domain to
force the loading of appropriate librariesin theright order. A typical extract is:

Regi st er G aphi csSyst em (new G4ADAWNFI LE) ;

#i fdef AVI S_USE_OPENGLX
Regi st er Gr aphi csSyst em (new GAQpenGLl medi at eX) ;
Regi st er G aphi csSyst em (new G4OpenCGLSt or edX) ;
#endi f

If youwishtouse G4Vi sExecut i ve but register an additional graphics system, XXX say, you may do so either
before or after initializing:

vi sManager - >Regi st er G aphi csSyt en{ new XXX) ;
vi sManager->Initialize();

An example of atypical mai n() functionis given below.

2.10.4. Writing the mai n() Method to Include Visualization

Now we explain how to write avisualization manager and thermai n() function for Geant4 visualization. In order
that your Geant4 executable is able to perform visualization, you must instantiate and initialize your Visualiza-
tion Manager inthe mai n() function. The typical mai n() function available for visualization is written in the
following style:

Example 2.24. Thetypical mai n() routine availablefor visualization.

[]----- C++ source codes: nmin() function for visualization
#i fdef AVI S_USE

#i ncl ude " 4Vi sExecuti ve. hh"

#endi f

// Instantiation and initialization of the Visualization Manager
#i f def GAVI S_USE
/1 visualization manager
G4Vi sManager * vi sManager = new (AVi sExecuti ve;
/| CGAVi sExecutive can take a verbosity argument - see /vis/verbose guidance.
/| GAVi sManager* vi sManager = new (AVi sExecutive("Qiet");
vi sManager->lnitialize();
#endi f

/1 Job term nation
#i f def G4AVI S_USE
del et e vi sManager ;

#endi f
return O
}
[]----- end of C++

36

Getting Started with Geant4
- Running a Simple Example

In the instantiation, initialization, and deletion of the Visualization Manager, the use of the macro &4VI S_USE
isrecommended. Thisis set unlessthe environment variable G4Vl S_NONE is set. Thisallows one easily to build
an executable without visualization, if required, without changing the code (but remember you have to force re-
compilation whenever you change the environment). Note that it is your responsibility to delete the instantiated
Visualization Manager by yourself. A complete description of asamplemai n() function isdescribed in exam
pl es/ basi ¢/ B1/ exanpl eBl1. cc.

2.10.5. Sample Visualization Sessions
Most Geant4 examplesinclude avis.mac. Run that macro to see atypical visualization. Read the commentsin the

macro to learn alittle bit about some visualization commands. The vis.mac also includes commented-out optional
visualization commands. By uncommenting some of these, you can see additional visualization features.

2.10.6. For More Information on Geant4 Visualization

See the Chapter 8 "Visudization" part of this user guide.

37

Chapter 3. Toolkit Fundamentals

3.1. Class Categories and Domains

3.1.1. What is a class category?

In the design of alarge software system such as Geant4, it is essential to partition it into smaller logical units. This
makes the design well organized and easier to develop. Once the logical units are defined independent to each
other as much as possible, they can be developed in parallel without serious interference.

In object-oriented analysis and design methodology by Grady Booch [Booch1994], class categories are used to
create logical units. They are defined as "clusters of classes that are themselves cohesive, but are loosely coupled
relative to other clusters." This means that a class category contains classes which have a close relationship (for
example, the "has-a" relation). However, relationships between classes which belong to different class categories
are weak, i.e, only limitted classes of these have "uses' relations. The class categories and their relations are
presented by a class category diagram. The class category diagram designed for Geant4 is shown in the figure
below. Each box in the figure represents a class category, and a "uses' relation by astraight line. The circle at an
end of a straight line means the class category which has this circle uses the other category.

/E\
N\

T s
=

Figure 3.1. Geant4 class categories

Thefileorganization of the Geant4 codesfollowsbasically the structure of thisclass cateogory. ThisUser'sManual
is also organized according to class categories.

In the devel opment and maintenance of Geant4, one software team will be assigned to a class category. Thisteam
will have aresponsihility to develop and maintain all classes belonging to the class category.

3.1.2. Class categories in Geant4

Thefollowing is a brief summary of the role of each class category in Geant4.

38

Toolkit Fundamentals

. Run and Event

These are categories related to the generation of events, interfaces to event generators, and any secondary
particles produced. Their roles are principally to provide particlesto be tracked to the Tracking Management.
. Tracking and Track

These are categories related to propagating a particle by analyzing the factorslimiting the step and applying the
relevant physics processes. The important aspect of the design was that a generalized Geant4 physics process
(or interaction) could perform actions, along atracking step, either localized in space, or intime, or distributed
in space and time (and all the possible combinations that could be built from these cases).

. Geometry and Magnetic Field

These categories manage the geometrical definition of a detector (solid modeling) and the computation of
distances to solids (also in a magnetic field). The Geant4 geometry solid modeler is based on the ISO STEP
standard and it is fully compliant with it, in order to allow in future the exchange of geometrical information
with CAD systems. A key feature of the Geant4 geometry is that the volume definitions are independent of the
solid representation. By this abstract interface for the G4 solids, the tracking component works identically for
various representations. The treatment of the propagation in the presence of fields has been provided within
specified accuracy. An OO design alows usto exchange different numerical algorithms and/or different fields
(not only B-field), without affecting any other component of the toolkit.

. Particle Definition and M atter

These two categories manage the the definition of materials and particles.
. Physics

This category manages al physics processes participating in the interactions of particlesin matter. The abstract
interface of physics processesallows multipleimplementations of physicsmodel s per interaction or per channel.
Models can be selected by energy range, particle type, material, etc. Data encapsulation and polymorphism
make it possibleto give transparent access to the cross sections (independently of the choice of reading from an
ascii file, or of interpolating from atabulated set, or of computing analytically from aformula). Electromagnetic
and hadronic physics were handled in a uniform way in such a design, opening up the physicsto the users.

. Hitsand Digitization

These two categories manage the creation of hits and their use for the digitization phase. The basic design and
implementation of the Hits and Digi had been realized, and also severa prototypes, test cases and scenarios
had been developed before the alpha-release. Volumes (not necessarily the ones used by the tracking) are
aggregated in sensitive detectors, while hits collections represent the logical read out of the detector. Different
ways of creating and managing hits collections had been delivered and tested, notably for both single hits and
calorimetry hits types. In al cases, hits collections had been successfully stored into and retrieved from an
Object Data Base Management System.

. Visualization

This manages the visualization of solids, trajectories and hits, and interacts with underlying graphical libraries
(the Visualization class category). The basic and most frequently used graphics functionality had been imple-
mented aready by the alpha-release. The OO design of the visualization component allowed us to develop
several drivers independently, such as for OpenGL, Qt and Openinventor (for X11 and Windows), DAWN,
Postscript (via DAWN) and VRML.

. Interfaces

This category handles the production of the graphical user interface (GUI) and the interactions with external
software (OODBM S, reconstruction etc.).

3.2. Global Usage Classes

The"global" category in Geant4 collectsall classes, types, structuresand constantswhich are considered of general
use within the Geant4 toolkit. This category also definesthe interface with third-party softwarelibraries (CLHEP,
STL, etc.) and system-related types, by defining, where appropriate, t ypedef s according to the Geant4 code
conventions.

39

Toolkit Fundamentals

3.2.1. Signature of Geant4 classes

In order to keep an homogeneous naming style, and according to the Geant4 coding style conventions, each
class part of the Geant4 kernel has its name beginning with the prefix G4, e.g., G4VHit, G4GeometryManager,
G4ProcessVector, etc. Instead of the raw C types, G4 types are used within the Geant4 code. For the basic numeric
types(i nt, float, doubl e,etc), different compilersand different platforms provide different value ranges.
In order to assure portahility, the use of Gdint, G4float, G4double, G4bool, globally defined, is preferable. G4
types implement the right generic type for a given architecture.

3.2.1.1. Basic types
The basic types in Geant4 are considered to be the following:

o Gdint,
» Gdlong,

» GAfloat,

» G4double,
* G4boal,

* G4complex,
» G4Sring.

which currently consist of smplet ypedef sto respective types defined in the CLHEP, STL or system libraries.
Most definitions of these basic types come with the inclusion of asingle header file, gl obal s. hh. Thisfilealso
provides inclusion of required system headers, as well as some global utility functions needed and used within
the Geant4 kernel.

3.2.1.2. Typedefs to CLHEP classes and their usage

Thefollowing classesaret ypedef sto the corresponding classes of the CLHEP (Computing Library for High
Ener gy Physics) distribution. For more detailed documentation please refer to the CLHEP reference guide and
the CLHEP user manual .

» G4ThreeVector, G4RotationMatrix, G4LorentzVector and G4LorentzRotation

Vector classes: defining 3-component (X,y,z) vector entities, rotation of such objects as 3x3 matrices, 4-com-
ponent (x,y,z,t) vector entities and their rotation as 4x4 matrices.
* G4Plane3D, G4Transform3D, G4Normal 3D, G4Point3D, and G4Vector3D

Geometrical classes. defining geometrical entities and transformationsin 3D space.

3.2.2. The HEPRandom module in CLHEP

The HEPRandom module, originaly part of the Geant4 kernel, and now distributed as a module of CLHEP,
has been designed and devel oped starting from the Random class of MC++, the original CLHEP's HepRandom
modul e and the Rogue Wave approach in the M ath.h++ package. For detailed documentation on the HEPRandom
classes seethe CLHEP reference guide and the CLHEP user manual .

Information written in this manual is extracted from the original manifesto distributed with the HEPRandom
package.

The HEPRandom module consists of classes implementing different random ““engines' and different random
“distributions”. A distribution associated to an engine constitutes arandom ““generator". A distribution class can
collect different algorithms and different calling sequences for each method to define distribution parameters or
range-intervals. An engine implements the basic algorithm for pseudo-random numbers generation.

There are 3 different ways of shooting random values:

1. Using the static generator defined in the HepRandom class: random values are shot using static methods
shoot () defined for each distribution class. The static generator will use, as default engine, aHepJamesRan-

40

http://cern.ch/clhep/manual/RefGuide/
http://cern.ch/clhep/manual/UserGuide/
http://cern.ch/clhep/manual/RefGuide/
http://cern.ch/clhep/manual/UserGuide/
http://cern.ch/clhep/manual/UserGuide/Random/Random.html

Toolkit Fundamentals

dom object, and the user can set its properties or change it with a new instantiated engine object by using the
static methods defined in the HepRandom class.

. Skipping the static generator and specifying an engine object: random values are shot using static methods

shoot (* HepRandonEngi ne) defined for each distribution class. The user must instantiate an engine ob-
ject and give it as argument to the shoot method. The generator mechanism will then be by-passed by using the
basicf | at () method of the specified engine. The user must take care of the engine objects he/sheinstantiates.

. Skipping the static generator and instantiating a distribution object: random values are shot using fi re()

methods (NOT static) defined for each distribution class. The user must instantiate a distribution object giving
as argument to the constructor an engine by pointer or by reference. By doing so, the engine will be associated
to the distribution object and the generator mechanism will be by-passed by using the basic f | at () method
of that engine.

In this guide, we'll only focus on the static generator (point 1.), since the static interface of HEPRandom is the
only one used within the Geant4 toolkit.

3.2.2.1. HEPRandom engines

The class HepRandomEngine is the abstract class defining the interface for each random engine. It implements
the get Seed() and get Seeds() methods which return the “initial seed' value and the initial array of seeds
(if any) respectively. Many concrete random engines can be defined and added to the structure, smply making
them inheriting from HepRandomEngine. Severa different engines are currently implemented in HepRandom, we
describe here five of them:

HepJamesRandom

It implements the algorithm described in **F.James, Comp. Phys. Comm. 60 (1990) 329" for pseudo-random
number generation. Thisisthe default random engine for the static generator; it will be invoked by each distri-
bution class unless the user sets a different one.

DRand48Engine

Random engine using the dr and48() and srand48() system functions from C standard library to imple-
ment thef | at () basic distribution and for setting seeds respectively. DRand48Engine uses the seed48()
function from C standard library to retrieve the current internal status of the generator, which is represented by
3 short values. DRand48Engine is the only engine defined in HEPRandom which intrinsically works in 32 bits
precision. Copies of an object of thiskind are not allowed.

RandEngine

Simple random engine using ther and() and srand() system functions from the C standard library to im-
plement thef | at () basic distribution and for setting seeds respectively. Please note that it's well known that
the spectral properties of r and() leave a great deal to be desired, therefore the usage of this engine is not
recommended if a good randomness quality or along period is required in your code. Copies of an object of
thiskind are not allowed.

RanluxEngine

The agorithm for RanluxEngine has been taken from the original implementation in FORTRAN77 by Fred
James, part of the MATHLIB HEP library. The initialisation is carried out using a Multiplicative Congruen-
tial generator using formula constants of L'Ecuyer as described in ~"F.James, Comp. Phys. Comm. 60 (1990)
329-344". The engine providesfive different luxury levelsfor quality of random generation. When instantiating
a RanluxEngine, the user can specify the luxury level to the constructor (if not, the default value 3 is taken).
For example:

Ranl uxEngi ne t heRanl uxEngi ne(seed, 4);

/] instantiates an engine with “seed' and the best |uxury-Ievel
... or

Ranl uxEngi ne t heRanl uxEngi ne;

/'l instantiates an engine with default seed value and | uxury-Ievel

The class providesaget Luxur y() method to get the engine luxury level.

41

Toolkit Fundamentals

The Set Seed() and Set Seeds() methodsto set theinitial seedsfor the engine, can be invoked specifying
the luxury level. For example:

/Il static interface
HepRandom : set TheSeed(seed, 4); // sets the seed to "seed' and luxury to 4
HepRandom : set TheSeed(seed) ; /] sets the seed to "seed' keeping

/1 the current |uxury |evel

» RanecuEngine

Thealgorithm for RanecuEngineistaken from the one originally written in FORTRAN77 aspart of theM ATH-
LIB HEP library. Theinitialisation is carried out using a Multiplicative Congruential generator using formula
constants of L'Ecuyer as described in ~"F.James, Comp. Phys. Comm. 60 (1990) 329-344". Handling of seeds
for this engine is sightly different than the other engines in HEPRandom. Seeds are taken from a seed table
given an index, the get Seed() method returns the current index of seed table. The set Seeds() method
will set seeds in the local SeedTabl e at a given position index (if the index number specified exceeds the
tablessize, [i ndex%si ze] istaken). For example:

/] static interface

const G4l ong* table_entry;

tabl e_entry = HepRandom : get TheSeeds();

/1 it returns a pointer “table_entry' to the |local SeedTable

// at the current “index' position. The coupl e of seeds

/| accessed represents the current “status' of the engine itself !

i nt i ndex=n;

G4l ong seeds|[2] ;

HepRandom : set TheSeeds(seeds, i ndex) ;

/] sets the new "index' for seeds and nodify the val ues inside

/1 the local SeedTable at the “index' position. |If the index

/1 is not specified, the current index in the table is considered.

Theset Seed() method resets the current “status' of the engine to the original seeds stored in the static table
of seedsin HepRandom, at the specified index.

Except for the RanecuEngine, for which the internal status is represented by just a couple of longs, al the other
engines have a much more complex representation of their internal status, which currently can be obtained only
throughthemethodssaveSt at us() ,rest oreSt at us() andshowsSt at us() , whichcanasobestatically
called from HepRandom. The status of the generator is needed for example to be able to reproduce a run or an
event in arun at agiven stage of the simulation.

RanecuEngine is probably the most suitable engine for this kind of operation, since its internal status can be
fetched/reset by simply using get Seeds() /set Seeds() (get TheSeeds() /set TheSeeds() forthesta
tic interface in HepRandom).

3.2.2.2. The static interface in the HepRandom class

HepRandom a singleton class and using a HepJamesRandom engine as default algorithm for pseudo-random num-
ber generation. HepRandom defines a static private data member, t heGener at or , and a set of static methods
to manipulate it. By means of t heGener at or , the user can change the underlying engine algorithm, get and
set the seeds, and use any kind of defined random distribution. The static methods set TheSeed() and get -

TheSeed() will set and get respectively the “initial' seed to the main engine used by the static generator. For
example:

HepRandom : set TheSeed(seed); // to change the current seed to 'seed'
int startSeed = HepRandom : get TheSeed(); // to get the current initial seed
HepRandom : saveEngi neSt at us() ; // to save the current engine status on file
HepRandom : rest or eEngi neStatus(); // to restore the current engine to a previous

/] saved configuration
HepRandom : showEngi neSt at us() ; /1 to display the current engine status to stdout

int index=n;

42

Toolkit Fundamentals

| ong seeds[2];

HepRandom : get TheTabl eSeeds(seeds, i ndex) ;
/1 fills “seeds' with the values stored in the gl obal
/| seedTable at position "index'

Only one random engine can be active at atime, the user can decide at any time to change it, define a new one
(if not done aready) and set it. For example:

RanecuEngi ne t heNewEngi ne;
HepRandom : set TheEngi ne(& heNewEngi ne) ;

or simply setting it to an old instantiated engine (the old engine status is kept and the new random sequence will
start exactly from the last one previously interrupted). For example:

HepRandom : set TheEngi ne(&vyQd dEngi ne) ;
Other static methods defined in this class are:

» voi d set TheSeeds(const G4l ong* seeds, G4int)
e const Al ong* get TheSeeds()

To set/get an array of seeds for the generator, in the case of a RanecuEngine this corresponds also to set/get
the current status of the engine.
* HepRandonEngi ne* get TheEngi ne()

To get apointer to the current engine used by the static generator.

3.2.2.3. HEPRandom distributions

A distribution-class can collect different algorithms and different calling sequences for each method to define
distribution parametersor range-intervals; it al so collects methodstofill arrays, of specified size, of random values,
according to the distribution. This class collects either static and not static methods. A set of distribution classes
are defined in HEPRandom. Here is the description of some of them:

* RandFlat

Classto shoot flat random values (integers or double) within a specified interval. The class provides also meth-
ods to shoot just random hits.
» RandExponential

Class to shoot exponential distributed random values, given a mean (default mean = 1)
* RandGauss

Class to shoot Gaussian distributed random values, given a mean (default = 0) or specifying also a deviation
(default = 1). Gaussian random numbers are generated two at the time, so every other time a number is shot,
the number returned is the one generated the time before.

» RandBreitWigner

Class to shoot numbers according to the Breit-Wigner distribution algorithms (plain or mean2).
* RandPoisson

Classto shoot numbers according to the Poisson distribution, given amean (default = 1) (Algorithm taken from
“W.H.Press et a., Numerical Recipesin C, Second Edition").

3.2.3. The HEPNumerics module

A set of classes implementing numerical agorithms has been developed in Geant4. Most of the algorithms and
methods have been implemented mainly based on recommendations given in the books:

» B.H. Flowers, “An introduction to Numerical Methods In C++", Claredon Press, Oxford 1995.
» M. Abramowitz, I. Stegun, ““Handbook of mathematical functions', DOVER Publications INC, New Y ork
1965 ; chapters 9, 10, and 22.

43

Toolkit Fundamentals

This set of classesincludes:
» GA4ChebyshevApproximation

Class creating the Chebyshev approximation for afunction pointed by fFunction data member. The Chebyshev
polynomial approximation provides an efficient evaluation of the minimax polynomial, which (among all poly-
nomials of the same degree) has the smallest maximum deviation from the true function.

» GA4Datalnterpolation

Class providing methods for data interpolations and extrapolations: Polynomial, Cubic Spline, ...
» G4GaussChebyshevQ
* G4GaussHermiteQ
» G4GaussJacohiQ
* GA4GaussLaguerreQ

Classes implementing the Gauss-Chebyshev, Gauss-Hermite, Gauss-Jacobi, Gauss-Laguerre and Gauss-Le-
gendre quadrature methods. Roots of orthogonal polynomials and corresponding weights are calculated based
on iteration method (by bisection Newton algorithm).

» Gdintegrator

Template class collecting integrator methods for generic functions (Legendre, Simpson, Adaptive Gauss, La-
guerre, Hermite, Jacobi).
» G4Smplelntegration

Class implementing simple numerical methods (Trapezoidal, MidPoint, Gauss, Simpson, Adaptive Gauss, for
integration of functions with signature: double f(double).

3.2.4. General management classes

The "global' category definesalso aset of "utility' classes generally used within the kernel of Geant4. These classes
include:

» G4Allocator

A classfor fast alocation of objectsto the heap through paging mechanism. It's meant to be used by associating
it to the object to be alocated and defining for it new and del et e operators via Mal | ocSi ngl e() and
Fr eeSi ngl e() methods of G4Allocator.

Note: AAl | ocat or assumes that objects being allocated have all the same size for the type they represent.
For this reason, classes which are handled by GAAI | ocat or should avoid to be used as base-classes for oth-
ers. Similarly, base-classes of sub-classes handled through G4Al | ocat or should not define their (eventualy
empty) virtual destructorsinlined; such measureis necessary in order also to prevent bad aliasing optimisations
by compilers which may potentially lead to crashes in the attempt to free allocated chunks of memory when
using the base-class pointer or not.

Thelist of alocatorsimplicitely defined and used in Geant4 is reported here:

- events (GAEvent): anEvent Al | ocat or

- tracks (GATrack): aTrackAl | ocator

- stacked tracks (GAStackedTrack): aStackedTrackAl | ocator

- primary particles (GAPrimaryParticle): aPrimaryParticleAll ocator

- primary vertices (GAPrimaryVertex): aPrimaryVertexAl | ocator

- decay products (GADecayProducts): aDecayProductsAll ocat or

- digits collections of an event (GADCof Thi sEvent): anDCoTHAl | ocat or

- digits collections (G4D gi Col | ection): aDCAl | ocat or

- hits collections of an event (G4HCof Thi sEvent): anHCoTHAI | ocat or

- hits collections (G4H tsCol |l ection): anHCAI | ocat or

- touchabl e histories (GATouchabl eH story): aTouchabl eH st oryAl | ocat or
- trajectories (ATrajectory): aTrajectoryAllocator

- trajectory points (GATraj ectoryPoint): aTrajectoryPointAllocator

- trajectory containers (&4TrajectoryContainer): aTrajectoryContainerAllocator
- navigation | evels (4Navi gationLevel): aNavi gati onLevel Al | ocat or

44

Toolkit Fundamentals

- navigation | evel nodes (G&4Navi gati onLevel Rep): aNavi gLevel RepAl | ocat or

- reference-counted handl es (G4Ref er enceCount edHandl e<X>): aRCHAI | ocat or

- counted objects (G4CountedObject<X>): aCount edbj ect Al | ocat or

- HEPEvt primary particles (GAHEPEvtParticle): aHEPEvtParticl eAll ocator

- electron occupancy objects(GAEl ectronCccupancy): aEl ectronCccupancyAl | ocat or
"rich" trajectories (G4RichTrajectory): aRi chTrajectoryAllocator
"rich" trajectory points (GARi chTraj ectoryPoint): aRi chTraj ectoryPointAl | ocat or
"snmoot h" trajectories (G4Snoot hTraj ectory): aSnoot hTraj ectoryAl | ocat or
"smoot h" trajectory points (G4Snpot hTraj ectoryPoi nt): aSnoot hTraj ect or yPoi nt Al | ocat or
"ray" trajectories (GARayTrajectory): (ARayTrajectoryAll ocator
"ray" trajectory points (G4RayTrajectoryPoint): GARayTraj ectoryPoi nt Al | ocat or

For each of these alocators, accessible from the global namespace, it is possible to monitor the allocation in
their memory pools or force them to release the allocated memory (for example at the end of arun):

/! Return the size of the total nmenory allocated for tracks
I
aTrackAl | ocat or. Get Al | ocat edSi ze() ;

/! Return allocated storage for tracks to the free store
I
aTrackAl | ocat or. Reset St or age() ;

G4ReferenceCountedHandle

Template class acting as asmart pointer and wrapping the type to be counted. It performsthe reference counting
during the life-time of the counted object.
GA4FastVector

Template class defining a vector of pointers, not performing boundary checking.
G4PhysicsVector

Defines a physics vector which has values of energy-loss, cross-section, and other physics values of a parti-
cle in matter in a given range of the energy, momentum, etc. This class serves as the base class for a vector
having various energy scale, for example like 'log' (G4PhysicsLogVector) 'linear' (G4PhysicsLinearVector),
'free’ (G4PhysicsFreeVector), etc.

GALPhysicsFreeVector

Implements a free vector for low energy physics cross-section data. A subdivision method is used to find the
energy|momentum hin.
G4PhysicsOrderedFreeVector

A physics ordered free vector inherits from G4PhysicsVector. It provides, in addition, a method for the user
to insert energy/value pairs in sequence. Methods to retrieve the max and min energies and values from the
vector are also provided.

GATimer

Utility class providing methods to measure elapsed user/system process time. Uses <sys/ti nmes. h> and
<uni st d. h>- POSIX.1.
G4UserLimits

Class collecting methods for get and set any kind of step limitation allowed in Geant4.
G4UnitsTable

Placehol der for the system of unitsin Geant4.

3.3. System of units

3.3.1. Basic units

Geant4 offers the user the possibility to choose and use the preferred units for any quantity. In fact, Geant4 takes
care of the units. Internally a consistent set on units based on the HepSyst emOf Uni t s is used:

45

Toolkit Fundamentals

mllinmeter (mm
nanosecond (ns)

Mega el ectron Vol t (MeV)

posi tron charge (epl us)
degree Kelvin (kel vi n)
the ampbunt of substance (nole)

| um nous intensity (candel a)
radi an (radi an)

st eradi an (st eradi an)

All other units are defined from the basic ones.

For instance:

millimeter = nm= 1;
meter = m= 1000*mm

nB = nFmm
Inthefile$CLHEP_BASE_DI R/ i ncl ude/ CLHEP/ Uni t s/ Syst enOf Uni t s. h from the CLHEP installa-
tion, one can find al untis definitions.

One can a so change the system of units to be used by the kernel.
3.3.2. Input your data
3.3.2.1. Avoid 'hard coded' data

The user must give the units for the data to introduce:

GAdoubl e Size = 15*km KineticEnergy = 90.3*GeV, density = 11*ng/cnB;

Geant4 assumes that these specifications for the units are respected, in order to assure indeipendence from the
units chosen in the client application.

If units are not specified in the client application, data are implicitly treated in internal Geant4 system units; this
practice is however strongly discouraged.

If the data set comes from an array or from an external file, it is strongly recommended to set the units as soon
as the data are read, before any treatment. For instance:

for (int j=0, j<jmax, j++) CrossSection[j] *= mllibarn;

nmy cal cul ations

3.3.2.2. Interactive commands
Some built-in commands from the User Interface (Ul) also require units to be specified.

For instance:

/ gun/ energy 15.2 keV
/gun/position 3 2 -7 neter

If units are not specified, or are not valid, the command is refused.

3.3.3. Output your data

Y ou can output your data with the wished units. To do so, it is sufficient to divide the data by the corresponding
unit:

46

Toolkit Fundamentals

Gdcout << Kineti cEnergy/keV << " keV';
GAcout << density/ (g/cnB) << " glcnB";

Of course, ZAcout << Ki neti cEner gy will print the energy in the internal units system.
There is another way to output the data. Let Geant4 choose the most appropriate units for the actual numerical

value of the data. It is sufficient to specify to which category the data belong to (Length, Time, Energy, etc.).
For example

Gdcout << G4Best Unit (StepSize, "Length");

St epSi ze will be printed in km, m, mm, fermi, etc. depending of its actual value.

3.3.4. Introduce new units

If wished to introduce new units, there are two methods:

» You can completethefile Syst enOf Units. h

#i ncl ude "SystenOf Units. h"

static const G4double inch = 2.54*cm

Using thismethod, it is not easy to define composed units. It is better to do the following:
* Instantiate an object of the class G4UnitDefinition

G4Uni tDefinition (nane, synbol, category, value)
For example: define afew units for speed

GAUnitDefinition ("km hour" , "km h", "Speed", km (3600*s));
G4UnitDefinition ("neter/ns", "mns", "Speed", nins);

The category "Speed" does not exist by default in G4UnitsTable, but it will be created automatically. The class
GA4UnitDefinition islocated in sour ce/ gl obal / managenent .

3.3.5. Print the list of units

You can print the list of units with the static function: G4Uni t Defi ni ti on: : Print Uni t sTabl e();

or with the interactive command: / uni t s/ | i st

3.4. Run

3.4.1. Basic concept of Run

In Geant4, Run isthe largest unit of simulation. A run consists of a sequence of events. Within arun, the detector
geometry, the set up of sensitive detectors, and the physics processes used in the simulation should be kept un-
changed. A runisrepresented by a G4Run class object. A run startswith BeanOn() method of G4RunManager.

3.4.1.1. Representation of arun

G4Run represents a run. It has a run identification number, which should be set by the user, and the number of
events simulated during the run. Please note that the run identification number is not used by the Geant4 kernel,
and thus can be arbitrarily assigned at the user's convenience.

47

Toolkit Fundamentals

G4Run has pointers to the tables G4VHitsCollection and G4VDigiCollection. These tables are associated in case
sensitive detectors and digitizer modules are simulated, respectively. The usage of these tables will be mentioned
in Section 4.4 and Section 4.5.

3.4.1.2. Manage the run procedures

G4RunManager manages the procedures of arun. In the constructor of G4RunManager, all of the manager classes
in Geant4 kernel, except for some static managers, are constructed. These managers are deleted in the destructor
of G4RunManager. G4RunManager must be a singleton, and the pointer to this singleton object can be obtained
by the get RunManager () static method.

As already mentioned in Section 2.1, al of the user initialization classes and user action classes defined by the
user should be assigned to G4RunManager before starting initialization of the Geant4 kernel. The assignments
of these user classesaredoneby Set User I niti al i zati on() and Set User Acti on() methods. All user
classes defined by the Geant4 kernel will be summarized in Chapter 6.

G4RunManager has several public methods, which are listed below.

Initialize()
All initializations required by the Geant4 kernel are triggered by this method. Initializations are:
» construction of the detector geometry and set up of sensitive detectors and/or digitizer modules,
* construction of particles and physics processes,
» calculation of cross-section tables.
This method is thus mandatory before proceeding to the first run. This method will be invoked automatically
for the second and later runs in case some of the initialized quantities need to be updated.

BeanOn((4i nt nunber O Event)
This method triggers the actual simulation of arun, that is, an event loop. It takes an integer argument which
represents the number of eventsto be simulated.

Get RunManager ()
This static method returns the pointer to the G4ARunManager singleton object.

Get Current Event ()
This method returns the pointer to the G4Event object which is currently being ssmulated. This method is
available only when an event is being processed. At this moment, the application state of Geant4, which is
explained in the following sub-section, is "EventProc". When Geant4 is in a state other than "EventProc”,
this method returns nul | . Please note that the return value of thismethod isconst G4Event * andthus
you cannot modify the contents of the object.

Set Nunber Of Event sToBeSt or ed(G4i nt nPr evi ous)
When simulating the "pile up" of morethan one event, it isessential to access morethan one event at the same
moment. By invoking this method, GARunManager keeps nPr evi ous G4Event abjects. This method
must be invoked before proceeding to BeantOn() .

Get Previ ousEvent (G4i nt i _t hPrevi ous)
The pointer to thei _t hPr evi ous GAEvent object can be obtained through this method. A pointer to a
const objectisreturned. Itisinevitablethati _t hPr evi ous events must have already been simulated in
the samerun for getting thei _t hPr evi ous event. Otherwise, this method returnsnul | .

Abort Run()
This method should be invoked whenever the processing of arun must be stopped. Itisvalid for GeomClosed
and EventProc states. Run processing will be safely aborted eveninthe midst of processing an event. However,
the last event of the aborted run will be incomplete and should not be used for further analysis.

3.4.1.3. G4UserRunAction

G4UserRunAction is one of the user action classes from which you can derive your own concrete class. This base
class has two virtual methods, as follows:

48

Toolkit Fundamentals

Begi nO RunActi on()
This method is invoked at the beginning of the BeantOn() method but after confirmation of the conditions
of the Geant4 kernel. Likely uses of this method include:
* setting arun identification number,
* booking histograms,
* setting run specific conditions of the sensitive detectors and/or digitizer modules (e.g., dead channels).

EndOf RunActi on()
This method isinvoked at the very end of the BeanOn() method. Typical use cases of this method are
* store/print histograms,
e manipulate run summaries.

3.4.2. Geant4 as a state machine

Geant4 is designed as a state machine. Some methods in Geant4 are available for only a certain state(s).
G4RunManager controlsthe state changes of the Geant4 application. States of Geant4 are represented by the enu-
meration G4ApplicationSate. It has six states through the life cycle of a Geant4 application.

G4Sate Prelnit state
A Geant4 application starts with this state. The application needs to beinitialized when it isin this state. The
application occasionally comes back to this state if geometry, physics processes, and/or cut-off have been
changed after processing arun.

G4Sate Init state
Theapplicationisinthisstatewhilethel ni ti al i ze() method of G4ARunManager isbeing invoked. Meth-
ods defined in any user initialization classes are invoked during this state.

G4Sate Idle state
The application is ready for starting a run.

G4Sate GeomClosed state
When BeanOn() is invoked, the application proceeds to this state to process a run. Geometry, physics
processes, and cut-off cannot be changed during run processing.

G4Sate EventProc state
A Geant4 application isin this state when aparticular event is being processed. Get Cur r ent Event () and
Get Pr evi ousEvent () methods of G4ARunManager are available only at this state.

G4Sate Quit state
When the destructor of G4RunManager is invoked, the application comesto this"dead end" state. Managers
of the Geant4 kernel are being deleted and thus the application cannot come back to any other state.

G4Sate Abort state
When a G4Exception occurs, the application comes to this "dead end" state and causes a core dump. The
user still has ahook to do some "saf€e" opperations, e.g. storing histograms, by implementing a user concrete
class of G4VSateDependent. The user also has a choice to suppress the occurence of G4Exception by a Ul
command /control/suppressAbortion. When abortion is suppressed, you will still get error messages issued
by G4Exception, and thereis NO guarantee of a correct result after the G4Exception error message.

G4StateManager belongs to the intercoms category.

3.4.3. User's hook for state change

In case the user wants to do something at the moment of state change of Geant4, the user can create a concrete
class of the G4VSateDependent base class. For example, the user can store histograms when G4Exception occurs
and Geant4 comes to the Abort state, but before the actual core dump.

49

Toolkit Fundamentals

The following is an example user code which stores histograms when Geant4 becomes to the Abort state. This
class object should be mabe in, for example main(), by the user code. This object will be automatically registered
to G4SateManager at its construction.

Example 3.1. Header file of UserHookFor AbortState
#i f ndef User HookFor Abort State_H
#defi ne User HookFor Abort State H 1
#i ncl ude "4VSt at eDependent . hh"
cl ass User HookFor Abort State : public GAVSt at eDependent
{
public:
User HookFor Abort St at e() ; /] constructor
~User HookFor Abort State(); // destructor
virtual 4bool Notify(AApplicationState requiredState);
b

Example 3.2. Sourcefile of User HookFor AbortState

#i ncl ude " User HookFor Abort St at e. hh"

User HookFor Abor t St at e: : User HookFor Abort State() {;}
User HookFor Abor t St at e: : ~User HookFor Abort State() {;}

G4bool User HookFor Abort St ate: : Noti f y(GA4Appl i cati onState requiredState)
if(requiredState! =Abort) return true;
/1 Do book keeping here

return true;

}

3.4.4. Customizing the Run Manager

3.4.4.1. Virtual Methods in the Run Manager

GARunManager is a concrete class with a complete set of functionalities for managing the Geant4 kernel. It
is the only manager class in the Geant4 kernel which must be constructed in the mai n() method of the user's
application. Thus, instead of constructingthe GARunManager provided by Geant4, you are freeto construct your
own RunManager . It is recommended, however, that your RunManager inherit GARunManager . For this
purpose, GARunManager has various virtual methods which provide al the functionaities required to handle
the Geant4 kernel. Hence, your customized run manager need only override the methods particular to your needs;
the remaining methods in GZARunManager base class can still be used. A summary of the available methodsiis
presented here:

public: virtual void Initialize();
main entry point of Geant4 kernel initialization

protected: virtual void InitializeGeonetry();
geometry construction

protected: virtual void InitializePhysics();
physics processes construction

public: virtual void Beamn(G4int n_event);
main entry point of the event loop

protected: virtual (bool ConfirnmBeantnCondition();
check the kernel conditions for the event loop

50

Toolkit Fundamentals

protected: virtual void Runlnitialization();
prepare arun

protected: virtual void DoEvent Loop(&int n_events);
manage an event loop

protected: virtual (AEvent* CenerateEvent(&int i_event);
generation of GAEvent object

protected: virtual void Anal yzeEvent (AEvent* anEvent);
storage/analysis of an event

protected: virtual void RunTerm nation();
terminate arun

public: virtual void DefineWrl dVol une(&G4VPhysi cal Vol une * worl dVol) ;
set the world volume to G4Navigator

public: virtual void AbortRun();
abort the run

3.4.4.2. Customizing the Event Loop

In ARunManager the event loop is handled by the virtual method DoEvent Loop() . This method isimple-
mented by af or loop consisting of the following steps:

1. construct a GAEvent object and assign to it primary vertex(es) and primary particles. This is done by the
virtual Gener at ePri mar yEvent () method.

2. send the GAEvent object to GAEvent Manager for the detector ssmulation. Hits and trajectories will be
associated with the G4AEvent object as a consequence.

3. perform bookkeeping for the current GAEvent object. Thisisdoneby thevirtual Anal yzeEvent () method.

DoEvent Loop() performsthe entire simulation of an event. However, it is often useful to split the above three
stepsinto isolated application programs. If, for example, you wish to examine the effects of changing discriminator
thresholds, ADC gate widths and/or trigger conditions on simulated events, much time can be saved by perform-
ing steps 1 and 2 in one program and step 3 in another. The first program need only generate the hit/trgjectory
information once and storeit, perhaps in a database. The second program could then retrieve the stored AEvent
objects and perform the digitization (analysis) using the above threshold, gate and trigger settings. These settings
could then be changed and the digitization program re-run without re-generating the G4Event s.

3.4.4.3. Changing the Detector Geometry

The detector geometry defined in your G4VUser Detector Construction concrete class can be changed during arun
break (between two runs). Two different cases are considered.

Thefirst isthe casein which you want to del ete the entire structure of your old geometry and build up acompletely
new set of volumes. For this case, you need to set the new world physical volume pointer to the RunManager.
Thus, you should proceed in the following way.

GARunManager * runManager = GARunManager : : Get RunManager () ;
runManager - >Def i neWor | dVol ume(newWor | dPhys) ;

Presumably this caseisrather rare. The second case is more frequent for the user.

The second case is the following. Suppose you want to move and/or rotate a particular piece of your detector
component. This case can easily happen for abeam test of your detector. It is obvious for this case that you need
not change the world volume. Rather, it should be said that your world volume (experimental hall for your beam
test) should be big enough for moving/rotating your test detector. For thiscase, you can still useall of your detector
geometries, and just use a Set method of a particular physical volume to update the transformation vector as you
want. Thus, you don't need to re-set your world volume pointer to RunManager.

51

Toolkit Fundamentals

If you want to change your geometry for every run, you canimplement itinthe Begi nOf RunAct i on() method
of G4UserRunAction class, which will be invoked at the beginning of each run, or, derive the Runl ni ti al -
i zat i on() method. Please note that, for both of the above mentioned cases, you need to let RunManager know
"the geometry needs to be closed again”. Thus, you need to invoke

runManager - >Geonet r yHasBeenModi fi ed() ;

before proceeding to the next run. An example of changing geometry is given in a Geant4 tutorial in Geant4
Training kit #2.

3.4.4.4. Switch physics processes

Inthel ni ti al i zePhysi cs() method, GAVUser Physi csLi st :: Const ruct isinvokedin order to de-
fine particles and physics processesin your application. Basically, you can not add nor remove any particlesduring
execution, because particles are static objects in Geant4 (see Section 2.4 and Section 5.3 for details). In addition,
it is very difficult to add and/or remove physics processes during execution, because registration procedures are
very complex, except for experts (see Section 2.5 and Section 5.2). Thisiswhy thei ni ti al i zePhysi cs()
method is assumed to be invoked at once in Geant4 kernel initialization.

However, you can switch on/off physics processes defined in your G4VUserPhysicsList concrete class and aso
change parameters in physics processes during the run break.

You can use Acti vat eProcess() and | nActi vat eProcess() methods of G4ProcessManager any-
where outside the event |oop to switch on/off some process. Y ou should be very careful to switch on/off processes
inside the event loop, though it is not prohibited to use these methods even in the EventProc state.

Itisalikely caseto change cut-off valuesin arun. Y ou can changedef aul t Cut Val ue in G4VUserPhysicsList
during the Idle state. In this case, all cross section tables need to be recal cul ated before the event loop. Y ou should
usethe Cut OF f HasBeenMbdi f i ed() method when you change cut-off values so that the Set Cut s method
of your PhysicsList concrete class will be invoked.

3.5. Bvent

3.5.1. Representation of an event

G4Event represents an event. An object of this class contains all inputs and outputs of the simulated event. This
class object is constructed in G4ARunManager and sent to G4EventManager. The event currently being processed
can be obtained viathe get Cur r ent Event () method of G4ARunManager.

3.5.2. Structure of an event
A G4Event object has four major types of information. Get methods for thisinformation are available in G4Event.

Primary vertexes and primary particles
Details are given in Section 3.6.

Trajectories
Trajectories are stored in G4TraectoryContainer class objects and the pointer to this container is stored in
G4Event. The contents of atrgjectory are given in Section 5.1.6.

Hits collections
Callections of hits generated by sensitive detectors are kept in G4HCofThisEvent class object and the pointer
to this container class object is stored in G4Event. See Section 4.4 for the details.

Digits collections
Collections of digits generated by digitizer modules are kept in GADCofThisEvent class object and the pointer
to this container class object is stored in G4Event. See Section 4.5 for the details.

52

Toolkit Fundamentals

3.5.3. Mandates of G4EventManager

G4EventManager isthe manager class to take care of one event. It isresponsible for:

» converting G4PrimaryVertex and G4PrimaryParticle objects associated with the current G4Event object to
GA4Track objects. All of GATrack objects representing the primary particles are sent to G4ackManager.

» Popone G4Track object from G4ackManager and send it to G4TrackingManager. The current G4Track object
is deleted by G4EventManager after the track is ssimulated by G4TrackingManager, if the track is marked as
"killed".

* In case the primary track is "suspended" or "postponed to next event" by G4TrackingManager, it is sent
back to the G4StackManager. Secondary G4Track objects returned by G4TrackingManager are also sent to
G4SackManager.

» When G4SackManager returnsNULL for the"pop" request, G4EventManager terminatesthe current processing
event.

 invokes the user-defined methods begi nOf Event Acti on() and endOf Event Acti on() from the
G4User EventAction class. See Section 6.3 for details.

3.5.4. Stacking mechanism

G4SackManager has three stacks, named urgent, waiting and postpone-to-next-event, which are objects of the
GA4TrackStack class. By default, all G4Track objects are stored in the urgent stack and handled in a"last in first
out" manner. In this case, the other two stacks are not used. However, tracks may be routed to the other two stacks
by the user-defined G4User SackingAction concrete class.

If the methods of G4User StackingAction have been overridden by the user, the postpone-to-next-event and waiting
stacks may contain tracks. At the beginning of an event, G4StackManager checks to see if any tracks left over
from the previous event are stored in the postpone-to-next-event stack. If so, it attempsto move them to the urgent
stack. But first the Pr epar eNewEvent () method of G4User SackingAction is called. Here tracks may be re-
classified by the user and sent to the urgent or waiting stacks, or deferred again to the postpone-to-next-event stack.
Asthe event is processed G4SackManager pops tracks from the urgent stack until it is empty. At this point the
NewSt age() method of G4User SackingAction is called. In this method tracks from the waiting stack may be
sent to the urgent stack, retained in the waiting stack or postponed to the next event.

Details of the user-defined methods of G4User SackingAction and how they affect track stack management are
givenin Section 6.3.

3.6. Event Generator Interface

3.6.1. Structure of a primary event

3.6.1.1. Primary vertex and primary particle

The G4Event class object should have aset of primary particleswhen it is sent to G4EventManager viapr oces-
sOneEvent () method. It isthe mandate of your G4VUser PrimaryGenerator Action concrete class to send pri-
mary particlesto the G4Event object.

The G4PrimaryParticle class represents a primary particle with which Geant4 starts simulating an event. This
class object has information on particle type and its three momenta. The positional and time information of pri-
mary particle(s) are stored in the G4PrimaryVertex class object and, thus, this class object can have one or more
G4PrimaryParticle class objects which share the same vertex. Primary vertexes and primary particles are associ-
ated with the G4Event object by aform of linked list.

A concrete class of G4VPrimaryGenerator, the G4PrimaryParticle object is constructed with either a pointer
to G4ParticleDefinition or an integer number which represents P.D.G. particle code. For the case of some arti-
ficial particles, e.g., geantino, optical photon, etc., or exotic nuclear fragments, which the P.D.G. particle code
does not cover, the G4PrimaryParticle should be constructed by G4ParticleDefinition pointer. On the other
hand, elementary particles with very short life time, e.g., weak bosons, or quarks/gluons, can be instantiated as

53

Toolkit Fundamentals

G4PrimaryParticle objects using the P.D.G. particle code. It should be noted that, even though primary parti-
cles with such a very short life time are defined, Geant4 will simulate only the particles which are defined as
G4ParticleDefinition class objects. Other primary particles will be simply ignored by G4EventManager. But it
may still be useful to construct such "intermediate” particles for recording the origin of the primary event.

3.6.1.2. Forced decay channel

The G4PrimaryParticle class object can have alist of its daughter particles. If the parent particle is an "interme-
diate" particle, which Geant4 does not have a corresponding G4ParticleDefinition, this parent particle isignored
and daughters are assumed to start from the vertex with which their parent is associated. For example, a Z boson
is associated with a vertex and it has positive and negative muons as its daughters, these muons will start from
that vertex.

There are some kinds of particles which should fly some reasonable distances and, thus, should be simulated by
Geant4, but you still want to follow the decay channel generated by an event generator. A typical case of these
particles is B meson. Even for the case of a primary particle which has a corresponding G4ParticleDefinition, it
can have daughter primary particles. Geant4 will trace the parent particle until it comesto decay, obeying multiple
scattering, ionization loss, rotation with the magnetic field, etc. according to its particle type. When the parent
comes to decay, instead of randomly choosing its decay channel, it follows the "pre-assigned” decay channel. To
conserve the energy and the momentum of the parent, daughters will be Lorentz transformed according to their
parent's frame.

3.6.2. Interface to a primary generator

3.6.2.1. G4HEPEVvtInterface

Unfortunately, amost al event generators presently in use, commonly are written in FORTRAN. For Geant4,
it was decided to not link with any FORTRAN program or library, even though the C++ language syntax itself
allows such alink. Linking to a FORTRAN package might be convenient in some cases, but we will lose many
advantages of object-oriented features of C++, such asrobustness. Instead, Geant4 providesan ASCI| fileinterface
for such event generators.

G4HEPEVtinterface is one of G4VPrimaryGenerator concrete class and thus it can be used in your
G4VUserPrimaryGenerator Action concrete class. G4AHEPEWtInterface reads an ASCII file produced by an
event generator and reproduces G4PrimaryParticle objects associated with a G4PrimaryVertex object. It re-
produces a full production chain of the event generator, starting with primary quarks, etc. In other words,
G4HEPEVtInterface converts information stored in the / HEPEVT/ common block to an object-oriented data
structure. Because the / HEPEVT/ common block is commonly used by almost all event generators written in
FORTRAN, G4HEPEVtInterface can interface to ailmost all event generators currently used in the HEP commu-
nity. The constructor of GAHEPEWtI nterface takes the file name. Example 3.3 shows an example how to use
G4HEPEVtinterface. Note that an event generator is not assumed to give a place of the primary particles, the
interaction point must be set before invoking GeneratePrimaryVertex() method.

Example 3.3. An example code for GAHEPEVt! nterface

#i f ndef ExNO4Pri maryGener at or Acti on_h
#defi ne ExNO4Pri maryGeneratorAction_h 1

#i ncl ude "&4VUser Pri mar yGener at or Acti on. hh"
#i ncl ude "gl obal s. hh"

cl ass GAVPri mar yGener at or;
cl ass HAEvent;

cl ass ExNO4Pri maryGener at or Acti on : public GAVUser Pri maryGener at or Acti on
{
public:
ExNO4Pr i mar yGener at or Acti on();
~ExNO4Pr i mar yGener at or Acti on() ;

public:
voi d GeneratePrimari es(4Event* anEvent);

Toolkit Fundamentals

private:
GAVPr i mar yGener at or * HEPEvt ;
=

#endi f

#i ncl ude " ExNO4Pri maryGener at or Acti on. hh"

#i ncl ude "&4Event. hh"
#i ncl ude "GAHEPEvt | nterface. hh"

ExNO4Pr i mar yGener at or Acti on: : EXNO4Pr i mar yGener at or Acti on()

HEPEvt = new GAHEPEvt | nterface("pythia_event.data");

}
ExNO4Pr i mar yGener at or Act i on: : ~ExNO4Pr i mar yGener at or Act i on()
{
del et e HEPEVt ;
}

voi d ExNO4Pri maryGener at or Acti on: : Gener at ePri mari es(G4Event * anEvent)

HEPEvt - >Set Parti cl ePositi on(G4ThreeVector (0.*cm 0. *cm 0. *cm)) ;
HEPEVt - >Gener at ePri mar yVert ex(anEvent) ;

}
3.6.2.2. Format of the ASCII file

An ASCII file, which will be fed by GAHEPEvtI nterface should have the following format.

» Thefirst line of each primary event should be an integer which represents the number of the following lines
of primary particles.

» Eachlinein an event correspondsto a particle in the/ HEPEVT/ common. Each line has| STHEP, | DHEP,
JDAHEP(1), JDAHEP(2), PHEP(1), PHEP(2), PHEP(3), PHEP(5). Refertothe/ HEPEVT/
manual for the meanings of these variables.

Example 3.4 shows an example FORTRAN code to generate an ASCII file.

Example 3.4. A FORTRAN example using the/ HEPEVT/ common.

E R

SUBROUTI NE HEP2G4
* Convert /HEPEVT/ event structure to an ASCII file
* to be fed by GAHEPEvt I nterface

*

E R

PARAVETER (NMXHEP=2000)

COVMON/ HEPEVT/ NEVHEP, NHEP, | STHEP(NVXHEP) , | DHEP(NMXHEP) |,
>JMOHEP(2, NMXHEP) , JDAHEP(2, NVXHEP) , PHEP(5, NMXHEP) , VHEP(4, NMXHEP)

DOUBLE PRECI SI ON PHEP, VHEP

WRI TE(6, *) NHEP
DO | HEP=1, NHEP
VIRl TE(6, 10)
> | STHEP(| HEP) , | DHEP(| HEP) , JDAHEP(1, | HEP) , JDAHEP(2, | HEP)
> PHEP(1, | HEP), PHEP(2, | HEP) , PHEP(3, | HEP) , PHEP(5, | HEP)
10 FORMAT(41 10, 4(1X, D15. 8))
ENDDO

RETURN
END

3.6.2.3. Future interface to the new generation generators

Severa activities have already been started for devel oping object-oriented event generators. Such new generators
can be easily linked and used with a Geant4 based simulation. Furthermore, we need not distinguish a primary

55

Toolkit Fundamentals

generator from the physics processes used in Geant4. Future generators can be akind of physics process plugged-
in by inheriting G4VProcess.

3.6.3. Event overlap using multiple generators

Y our G4VUser PrimaryGenerator Action concrete class can have more than one G4VPrimaryGenerator concrete
class. Each G4VPrimaryGenerator concrete class can be accessed more than once per event. Using these class
objects, one event can have more than one primary event.

Onepossible useisthefollowing. Within an event, a GAHEPEVtI nterface class object instantiated with aminimum
biasevent fileisaccessed 20 times and another GAHEPEVtI nterface class object instantiated with asignal event file
is accessed once. Thus, this event represents atypica signal event of LHC overlapping 20 minimum bias events.
It should be noted that a simulation of event overlapping can be done by merging hits and/or digits associated
with several events, and these events can be simulated independently. Digitization over multiple events will be
mentioned in Section 4.5.

3.7. Event Biasing Techniques

3.7.1. Scoring, Geometrical Importance Sampling and
Weight Roulette

Geant4 provides event biasing techniques which may be used to save computing time in such applications as the
simulation of radiation shielding. These are geometrical splitting and Russian roulette (also called geometrical
importance sampling), and weight roul ette. Scoring iscarried out by GAMultiFunctional Detector (see Section4.4.5
and Section 4.4.6) using the standard Geant4 scoring technique. Biasing specific scorers have been implemented
and are described within G4MultiFunctionDetector documentation. In this chapter, it is assumed that the reader
isfamiliar with both the usage of Geant4 and the concepts of importance sampling. More detailed documentation
may be found in the documents 'Scoring, geometrical importance sampling and weight roulette’ . A detailed
description of different use-cases which employ the sampling and scoring techniques can befound in the document
'Use cases of importance sampling and scoring in Geant4' .

The purpose of importance sampling is to save computing time by sampling less often the particle histories en-
tering "less important” geometry regions, and more often in more "important” regions. Given the same amount
of computing time, an importance-sampled and an analogue-sampled simulation must show equal mean values,
while the importance-sampled simulation will have a decreased variance.

Theimplementation of scoring isindependent of the implementation of importance sampling. However both share
common concepts. Scoring and importance sampling apply to particle types chosen by the user, which should be
borne in mind when interpreting the output of any biased simulation.

Examples on how to use scoring and importance sampling may befoundin exanpl es/ ext ended/ bi asi ng.

3.7.1.1. Geometries

Thekind of scoring referred to in this note and the importance sampling apply to spatial cells provided by the user.

A cell is a physical volume (further specified by it's replica number, if the volume is a replica). Cells may be
defined in two kinds of geometries:

1. mass geometry: the geometry setup of the experiment to be simulated. Physics processes apply to this geom-
etry.

2. parallel-geometry: a geometry constructed to define the physical volumes according to which scoring and/or
importance sampling is applied.

The user has the choice to score and/or sample by importance the particles of the chosen type, according to mass
geometry or to parallel geometry. It ispossibleto utilize several parallel geometriesin addition to the mass geom-
etry. This provides the user with alot of flexibility to define separate geometries for different particle typesin
order to apply scoring or/and importance sampling.

56

http://geant4.cern.ch/collaboration/working_groups/geometry/biasing/Sampling.html
http://geant4.cern.ch/collaboration/working_groups/geometry/biasing/BiasScoreUseCases.html

Toolkit Fundamentals

Note
Parallel geometries should be constructed using the implementation as described in Section 4.7. There
are afew conditions for parallel geometries:

e Theworld volume for parallel and mass geometries must be identical copies.
* Scoring and importance cells must not share boundaries with the world volume.

3.7.1.2. Changing the Sampling

Samplers are higher level tools which perform the necessary changes of the Geant4 sampling in order to apply
importance sampling and weight roul ette.

Variance reduction (and scoring through the G4Multi Functional Detector) may be combined arbitrarily for chosen
particle types and may be applied to the mass or to parallel geometries.

The G4CGeonet r ySanpl er can be applied equally to mass or parallel geometries with an abstract interface
supplied by GAVSanpl er . GAVSanpl er providesPr epar e. . . methods and a Conf i gur e method:

cl ass AVSanpl er
{
public:
AVSanpl er () ;
virtual ~&4AVSanpler();
virtual void Preparel mportanceSanpling(G4VI Store *istore,
const G4VI nportanceAl gorithm
*ialg = 0) = 0;
virtual void PrepareWi ght Roul ett (Adoubl e wsurvive = 0.5,
HAdouble Wimt = 0.25,
G4doubl e i source = 1) = 0;
virtual void PrepareWi ght Wndow GAVWei ght W ndowSt ore *wwst or e,
GAVWei ght W ndowAl gori thm *wwAl g = O,
GAPl aceOF Action pl aceOF Action =
onBoundary) = 0;
virtual void Configure() = 0;
virtual void d earSanpling() = 0;
virtual (Abool |sConfigured() const = 0;

I
The methods for setting up the desired combination need specific information:

 Importance sampling: message Pr epar el npor t anceSanpl i ng with a 4VI St or e and optionaly a
G4Vl mport anceAl gorithm
* Weight window: message Pr epar eWi ght W ndow with the arguments:
* *wwstore: a AV ght W ndowsSt or e for retrieving the lower weight bounds for the energy-space cells
o *wwAlg: aGAVWei ght W ndowAl gor i t hmif acustomized algorithm should be used
» placeOfAction: a(APl aceOf Act i on specifying where to perform the biasing
* Weight roulette: message Pr epar eWei ght Roul et t with the optional parameters:
e wsurvive: survival weight
o wlimit: minimal allowed value of weight * source importance / cell importance
* isource: importance of the source cell

Each object of a sampler class is responsible for one particle type. The particle type is given to the constructor
of the sampler classes via the particle type name, e.g. "neutron”. Depending on the specific purpose, the Con-
figure() of asampler will set up specialized processes (derived from GAVPr ocess) for transportation in the
parallel geometry, importance sampling and weight roulette for the given particle type. When Conf i gur e()
is invoked the sampler places the processes in the correct order independent of the order in which user invoked
the Pr epar e. . . methods.

Note

e ThePrepare... () functions may each only be invoked once.
» To configure the sampling thefunction Conf i gur e() must becalled after the GARunManager has
been initialized and the PhysicsList has been instantiated.

57

Toolkit Fundamentals

The interface and framework are demonstrated in the exanpl es/ ext ended/ bi asi ng directory, with the
main changes being to the G4GeometrySampler class and the fact that in the parallel case the WorldVolumeisa
copy of the Mass World. The parallel geometry now has to inherit from G4VUserParallelWorld which also has
the GetWorld() method in order to retrieve a copy of the mass geometry WorldVolume.

cl ass BO2I nport anceDet ect or Construction : public GAVUserParall el Wrld
ghostWorld = GetWorld();

The constructor for G4GeometrySampler takes a pointer to the physical world volume and the particle type name
(e.g. "neutron") as arguments. In a single mass geometry the sampler is created as follows:

GAGeonet rySanpl er ngs(det ect or - >Get Wor | dVol une(), "neutron");
ngs. Set Paral | el (fal se);

Whilst the following lines of code are required in order to set up the sampler for the parallel geometry case:

G4VPhysi cal Vol ume* ghost Worl d = pdet - >Get Wor | dVol une() ;
GAGeonet rySanpl er pgs(ghost Wrl d, "neutron");

pgs. Set Paral | el (true);

Also note that the preparation and configuration of the samplers has to be carried out after the instantiation of the
UserPhysicsList and after the initialisation of the G4RunManager:

pgs. Prepar el nport anceSanpl i ng(&l store, 0);
pgs. Configure();

Due to the fact that biasing is a process and has to be inserted after all the other processes have been created.

3.7.1.3. Importance Sampling

I mportance sampling acts on particles crossing boundaries between "importance cells'. The action taken depends
on the importance values assigned to the cells. In general a particle history is either split or Russian roulette is
played if theimportanceincreases or decreases, respectively. A weight assigned to the history ischanged according
to the action taken.

The tools provided for importance sampling require the user to have a good understanding of the physicsin the
problem. Thisis because the user has to decide which particle types require importance sampled, define the cells,
and assign importance values to the cells. If thisis not done properly the results cannot be expected to describe
area experiment.

The assignment of importance valuesto a cell is done using an importance store described below.

An "importance store" with the interface G4VI St or e is used to store importance values related to cells. In order
to do importance sampling the user has to create an object (e.g. of class (41 St or e) of type G4VI St or e. The
samplers may be given a4 VI St or e. The user fills the store with cells and their importance values.

Animportance store hasto be constructed with areferenceto theworld volume of the geometry used for importance
sampling. This may be the world volume of the mass or of a parallel geometry. Importance stores derive from
theinterface G4VI St or e:

class ™AVI Store
{
public:
GAVI Store();
virtual ~&4VIStore();
virtual G4doubl e Getlnportance(const AGeonetryCell &gCell) const = 0;
virtual (4bool |sKnown(const GAGeonetryCell &gCell) const = O;
virtual const GAVPhysi cal Vol ume &Get Wor | dVol ume() const = 0;

58

Toolkit Fundamentals

i

A concrete implementation of an importance store is provided by the class G4VSt or e. The public part of the
classis:

class G4l Store : public GAVI Store

{
public:
explicit CGAl Store(const GAVPhysi cal Vol ume &wor | dvol une) ;
virtual ~&AlStore();
virtual GAdoubl e Getl nportance(const GAGeonetryCell &gCell) const;
virtual &4bool |sKnown(const GAGeonetryCell &gCell) const;
virtual const G4VPhysi cal Vol ume &Get Wor | dVol unme() const;
voi d Addl nport anceGeonet ryCel | (G4doubl e i nportance,
const ACGeonetryCell &gCell);
voi d Addl nport anceGeonet ryCel | (G4doubl e i nportance,
const 4VPhysi cal Vol une &,
G4int aRepNum = 0);

voi d Changel nportance(G4doubl e i nport ance,

const GAGeonetryCell &gCell);
voi d Changel nportance(G4doubl e i nport ance,

const GAVPhysi cal Vol une &,

G4int aRepNum = 0);
GAdoubl e Get | nport ance(const (AVPhysi cal Vol une &,
G4int aRepNum = 0) const ;
private:

ik

The member function AddI npor t anceCGeonet ryCel | () entersacell and an importance value into the im-
portance store. The importance values may be returned either according to a physical volume and a replica num-
ber or according to aGACGeonet r yCel | . The user must be aware of the interpretation of assigning importance
valuesto acell. If scoring is also implemented then thisis attached to logical volumes, in which case the physical
volume and replica number method should be used for assigning importance values. See exanpl es/ ext end-
ed/ bi asi ng B01 and BO2 for examples of this.

Note

» Animportance value must be assigned to every cell.
The different cases:
» Cdlisnotin store

Not filling a certain cell in the store will cause an exception.
 Importance value = zero

Tracks of the chosen particle type will be killed.
* importance values> 0

Normal allowed values
 Importance value smaller zero

Not allowed!

3.7.1.4. The Importance Sampling Algorithm

Importance sampling supports using a customized importance sampling algorithm. To this end, the sampler inter-
face AVSanpl er may be given a pointer to the interface G4VI npor t anceAl gorit hm

cl ass AVI nportanceAl gorithm

public:
GAVI npor t anceAl gorit hn();
virtual ~GAVI nmportanceAl gorithn();
virtual GANsplit_Wei ght Cal cul at e(G4doubl e ipre,

59

Toolkit Fundamentals

GAdoubl e i post,
G4doubl e init_w) const = 0;

Ik
The method Cal cul at e() takesthe arguments:

* ipre, ipost: importance of the previous cell and the importance of the current cell, respectively.
* init_w: the particles weight

It returns the struct:

class ANsplit_Weight
public:
&int N
HAdoubl e fW

Ik

« fN: the calculated number of particles to exit the importance sampling
» fW: the weight of the particles

The user may have a customized algorithm used by providing a class inheriting from
GAVI mpor t anceAl gorit hm

If no customized algorithm is given to the sampler the default importance sampling algorithm is used. This algo-
rithmisimplemented in G4l nport anceAl gorit hm

3.7.1.5. The Weight Window Technique

The weight window technique is a weight-based alternative to importance sampling:

« applies splitting and Russian roul ette depending on space (cells) and energy
* user defines weight windows in contrast to defining importance values as in importance sampling

In contrast to importance sampling this technique is not weight blind. Instead the technique is applied according
to the particle weight with respect to the current energy-space cell.

Therefore the technique is convenient to apply in combination with other variance reduction techniques such as
cross-section biasing and implicit capture.

A weight window may be specified for every cell and for several energy regions: space-energy cell.

t splitting
to survival weight

upper weight bound T

survival weight

weight window

L
Russian roulette

lower weight bound :
J kill or move to survival weight

Figure 3.2. Weight window concept

Weight window concept
The user specifies alower weight bound W_L for every space-energy cell.

e The upper weight bound W_U and the survival weight W_S are calculated as:

60

Toolkit Fundamentals

W U=C UW_L and

W_S=C SW._L.

The user specifiesC_Sand C_U once for the whole problem.

The user may give different sets of energy bounds for every cell or one set for all geometrical cells
Specia case: if C_ S=C_U =1 for al energies then weight window is equivalent to importance sampling
The user can choose to apply the technique: at boundaries, on collisions or on boundaries and collisions

The energy-space cells are realized by AGeonet r yCel | asin importance sampling. The cells are stored in a
weight window store defined by AVWei ght W ndowSt or e:

class GAVWeéi ght W ndowSt ore {

b

public:

AWVWei ght W ndowSt ore() ;

virtual ~&AVWei ght W ndowStore();

virtual GAdoubl e Get Lower Wi tgh(const GAGeonetryCel |l &gCell,
G4doubl e partEnergy) const = 0;

virtual Abool |sKnown(const G4CGeonetryCell &gCell) const = O;

virtual const GAVPhysi cal Vol unme &Get Wor | dVol ume() const = O;

A concrete implementation is provided:

cl ass GAWei ght W ndowSt ore: public GAVWéi ght WndowSt ore {
public:

explicit GAWei ght Wndowst or e(const G4VPhysi cal Vol unme &wor | dvol une) ;

virtual ~G4Wei ght W ndowSt ore() ;

virtual G4doubl e Get Lower Wi tgh(const GAGeonetryCell &gCell,

GAdoubl e part Energy) const;

virtual G4bool |sKnown(const GAGeonetryCell &gCell) const;

virtual const GAVPhysi cal Vol ume &Get Wor| dVol une() const;

voi d AddLower Wi ght s(const G4GeonetryCel |l &gCel |,

const std::vector<4doubl e> & ower Wi ghts) ;

voi d AddUpper EboundLower Wi ght Pai rs(const G4GeonetryCel | &gCel |,
const (AUpper Ener gyToLower Wi ght Map&
enV\eMap) ;

voi d Set Gener al Upper Ener gyBounds(const

st d: : set <G4doubl e, std::|ess<Gdoubl e> > & enBounds);

private::

The user may choose equal energy bounds for all cells. In this case a set of upper energy bounds must be given to
the store using the method Set Gener al Upper Ener gyBounds. If ageneral set of energy bounds have been
set AddLower Wi ght s can be used to add the célls.

Alternatively, the user may chose different energy regions for different cells. In this case the user must provide a
mapping of upper energy bounds to lower weight bounds for every cell using the method AddUpper Ebound-
Lower Vi ght Pai rs.

Weight window algorithms implementing the interface class AVWei ght W ndowAl gor i t hmcan be used to
define a customized algorithm:

cl ass GAVWei ght W ndowAl gorit hm {

}s

public:

AWei ght W ndowAl gori t hn() ;
virtual ~&AAVWei ght W ndowAl gorithm();
virtual ANsplit_Wei ght Cal cul ate(4double init_w,
G4doubl e | ower Wi ght Bound) const = 0;

A concrete implementation is provided and used as a defaullt:

61

Toolkit Fundamentals

cl ass AWei ght W ndowAl gorithm : public GAVWei ght W ndowAl gori t hm {
public:
GAWeéi ght W ndowAl gor i t hm(GAdoubl e upperLinitFaktor = 5,
G4doubl e survival Faktor = 3,
G4i nt maxNunber Of Splits = 5);
virtual ~GAWei ght W ndowAl gorithn();
virtual GANsplit_Weight Cal cul ate(G4doubl e init_w,
G4doubl e | ower Wi ght Bound) const;
private:

b

The constructor takes three parameters which are used to: calculate the upper weight bound (upperLimitFaktor),
calculate the survival weight (survival Faktor), and introduce a maximal number (maxNumberOf Splits) of copies
to be created in one go.

In addition, the inverse of the maxNumberOfSplits is used to specify the minimum survival probability in case
of Russian roulette.

3.7.1.6. The Weight Roulette Technique

Weight roul ette (al so called weight cutoff) isusually applied if importance sampling and implicit capture are used
together. Implicit capture is not described here but it is useful to note that this procedure reduces a particle weight
in every collision instead of killing the particle with some probability.

Together with importance sampling the weight of a particle may become so low that it does not change any result
significantly. Hence tracking a very low weight particle is awaste of computing time. Weight roulette is applied
in order to solve this problem.

The weight roulette concept

Weight roulette takes into account the importance "Ic" of the current cell and the importance "Is" of the cell in
which the source is located, by using the ratio "R=Ig/Ic".

WEeight roulette uses a relative minimal weight limit and a relative survival weight. When a particle falls below
the weight limit Russian roulette is applied. If the particle survives, tracking will be continued and the particle
weight will be set to the survival weight.

The weight roul ette uses the following parameters with their default values:
e wasurvival: 0.5

o wlimit: 0.25

* isource: 1

The following agorithm is applied:

If aparticle weight "w" islower than R*wlimit:

 theweight of the particle will be changed to "ws = wsurvival*R"
* the probability for the particle to surviveis"p = w/ws"

3.7.2. Physics Based Biasing

Geant4 supports physics based biasing through anumber of general use, built in biasing techniques. A utility class,
GAWrapperProcess, is also available to support user defined biasing.

3.7.2.1. Builtin Biasing Options

3.7.2.1.1. Primary Particle Biasing

Primary particle biasing can be used to increase the number of primary particles generated in a particular phase
space region of interest. The weight of the primary particle is modified as appropriate. A general implementation

62

Toolkit Fundamentals

is provided through the G4General ParticleSource class. It is possible to bias position, angular and energy distri-
butions.

G4GeneralParticleSource is a concrete implementation of G4VPrimaryGenerator. To use, instantiate
G4General ParticleSource in the G4V UserPrimaryGeneratorAction class, as demonstrated below.

M/Pri mar yGener at or Acti on: : MyPri mar yGener at or Acti on() {
generator = new GACeneral Parti cl eSource;
}

voi d

MyPri mar yGener at or Acti on: : Gener at ePri mari es(G4Event *anEvent) {
gener at or - >Gener at ePri maryVer t ex(anEvent) ;

}

The biasing can be configured through interactive commands. Extensive documentation can be found in Primary
particle biasing. Examples are also distributed with the Geant4 distribution in examples/extended/eventgener a-
tor/exgps.

3.7.2.1.2. Radioactive Decay Biasing

The G4RadioactiveDecay class simulates the decay of radioactive nuclei and implements the following biasing
options:

* Increase the sampling rate of radionuclides within observation times through a user defined probability distri-
bution function

* Nuclear splitting, where the parent nuclide is split into a user defined number of nuclides

 Branching ratio biasing where branching ratios are sampled with equal probability

G4RadioactiveDecay is a process which must be registered with a process manager, as demonstrated below.

voi d MyPhysi csLi st:: Construct Process()

(GARadi oact i veDecay* theRadi oacti veDecay =
new (ARadi oactiveDecay();

GAProcessManager* pmanager = ...
pmanager ->AddProcess(theRadi oacti veDecay);

}

The biasing can be controlled either in compiled code or through interactive commands. Extensive documentation
can befound in Radioactive decay biasing example and Radioactive decay biasing .

Radioactive decay biasing examples are also distributed with the Geant4 distribution in examples/extended/r a-
dioactivedecay/exrdm.

3.7.2.1.3. Hadronic Leading Particle Biasing

One hadronic leading particle biasing technique isimplemented in the G4HadL eadBias utility. This method keeps
only the most important part of the event, as well as representative tracks of each given particle type. So the track
with the highest energy as well as one of each of Baryon, pi0, mesons and leptons. As usual, appropriate weights
are assigned to the particles. Setting the SwitchL eadBiasOn environmental variable will activate this utility.

3.7.2.1.4. Hadronic Cross Section Biasing

Cross section biasing artificially enhances/reduces the cross section of a process. This may be useful for study-
ing thin layer interactions or thick layer shielding. The built in hadronic cross section biasing applies to photon
inelastic, electron nuclear and positron nuclear processes.

Thebiasingiscontrolled through the BiasCr ossSectionByFactor method in G4Hadroni cProcess, asdemonstrated
below.

63

http://reat.space.qinetiq.com/gps/
http://reat.space.qinetiq.com/gps/
http://reat.space.qinetiq.com/septimess/exrdm/
http://www.space.qinetiq.com/geant4/rdm.html

Toolkit Fundamentals

voi d MyPhysi csLi st:: Construct Process()
{

GAEl ect roNucl ear Reacti on * theEl ectroReaction =
new GAEIl ect r oNucl ear React i on;

AEl ect ronNucl ear Process t heEl ect ronNucl ear Pr ocess;
t heEl ect ronNucl ear Process. Regi st er Me(t heEl ectroReacti on);
t heEl ect ronNucl ear Pr ocess. Bi asCr ossSect i onByFact or (100) ;

pManager - >AddDi scr et ePr ocess(& heEl ect r onNucl ear Process) ;

}

3.7.2.2. GAWrapperProcess

G4WrapperProcess can be used to implement user defined event biasing. G4WrapperProcess, which is a process
itself, wraps an existing process. By default, all function calls are forwared to the wrapped process. It is a non-
invasive way to modify the behaviour of an existing process.

To use this utility, first create a derived class inheriting from G4WrapperProcess. Override the methods whose
behaviour you would like to modify, for example, PostStepDolt, and register the derived class in place of the
process to be wrapped. Finaly, register the wrapped process with G4WrapperProcess. The code snippets below
demonstrate its use.

class MW apper Process : public GAW apperProcess {

AVParti cl eChange* Post St epDol t (const (ATracké& track,
const GAStep& step) {
/1 Do sonething interesting

}
IE

voi d MyPhysi csLi st:: Construct Process()
{

AeBrensst rahl ung* brenProcess =
new (AeBrensst rahl ung();

M/W apper Process* w apper = new MyW apper Process();
wr apper - >Regi st er Process(brenProcess) ;

pr ocessManager - >AddPr ocess(wr apper, -1, -1, 3);

}
3.7.3. Adjoint/Reverse Monte Carlo

Another powerful biasing technique available in Geant4 is the Reverse Monte Carlo (RMC) method, also known
asthe Adjoint Monte Carlo method. In thismethod particles are generated on the external boundary of the sensitive
part of the geometry and then are tracked backward in the geometry till they reach the external source surface, or
exceed an energy threshold. By thisway the computing timeisfocused only on particle tracksthat are contributing
tothetallies. The RM C method is much rapid than the Forward M C method when the sensitive part of the geometry
is small compared to the rest of the geometry and to the externa source, that has to be extensive and not beam
like. At the moment the RMC method is implemented in Geant4 only for some electromagnetic processes (see
Section 3.7.3.1.3). An example illustrating the use of the Reverse MC method in Geant4 is distributed within the
Geant4 toolkit in examples/extended/biasing/Rever seM COL.

3.7.3.1. Treatment of the Reverse MC method in Geant4

Different G4Adjoint classes have been implemented into the Geant4 toolkit in order to run an adjoint/reverse
simulation in a Geant4 application. Thisimplementation isillustrated in Figure 3.3. An adjoint run isdivided in
a serie of alternative adjoint and forward tracking of adjoint and normal particles. One Geant4 event treats one
of thistracking phase.

Toolkit Fundamentals

Reverse Tracking of adjoint

particles from the Forward Tracking of normal
Boundary of the sensitive particles trough the
region sensitive region from the
to the External source. same sitarting position than

the reverse tracking.

Adjoint source
Boundary of the region External
with sensitive source
components

Figure 3.3. Schematic view of an adjoint/reverse smulation in Geant4

3.7.3.1.1. Adjoint tracking phase

Adjoint particles (adjoint_e-, adjoint_gamma,...) are generated one by one on the so called adjoint source with
random position, energy (I/E distribution) and direction. The adjoint sourceisthe external surface of auser defined
volume or of auser defined sphere. The adjoint source should contain one or several sensitive volumes and should
be small compared to the entire geometry. The user can set the minimum and maximum energy of the adjoint
source. After its generation the adjoint primary particle is tracked backward in the geometry till a user defined
external surface (spherical or boundary of avolume) or iskilled before if it reaches a user defined upper energy
limit that represents the maximum energy of the external source. During the reverse tracking, reverse processes
take place where the adjoint particle being tracked can be either scattered or transformed in another type of adjoint
particle. During the reverse tracking the G4AdjointSimulationManager replaces the user defined primary, run,
stepping, ... actions, by its own actions. A reverse tracking phase corresponds to one Geant4 event.

3.7.3.1.2. Forward tracking phase

When an adjoint particle reaches the external surface its weight, type, position, and direction are registered and a
normal primary particle, with a type equivalent to the last generated primary adjoint, is generated with the same
energy, position but opposite direction and istracked in theforward direction in the sensitiveregion asin aforward
MC simulation. During this forward tracking phase the event, stacking, stepping, tracking actions defined by the
user for his forward simulation are used. By this clear separation between adjoint and forward tracking phases,
the code of the user developed for aforward simulation should be only slightly modified to adapt it for an adjoint
simulation (see Section 3.7.3.2). Indeed the computation of the signalsis done by the same actions or classes that
the one used in the forward simulation mode. A forward tracking phase corresponds to one G4 event.

3.7.3.1.3. Reverse processes

During the reverse tracking, reverse processes act on the adjoint particles. The reverse processes that are at the
moment available in Geant4 are the:

» Reversediscreteionization for e-, proton and ions
 Continuous gain of energy by ionization and bremsstrahlung for e- and by ionization for protons and ions
» Reverse discrete e- bremsstrahlung

65

Toolkit Fundamentals

» Reverse photo-electric effect
* Reverse Compton scattering
» Approximated multiple scattering (see comment in Section 3.7.3.4.3)

It is important to note that the electromagnetic reverse processes are cut dependent as their equivalent forward
processes. The implementation of the reverse processes is based on the forward processes implemented in the G4
standard electromagnetic package.

3.7.3.1.4. Nb of adjoint particle types and nb of G4 events of an adjoint simula-
tion

The list of type of adjoint and forward particles that are generated on the adjoint source and considered in the
simulation isafunction of the adjoint processes declared in the physicslist. For exampleif only the e- and gamma
electromagnetic processes are considered, only adjoint e- and adjoint gamma will be considered as primaries. In
this case an adjoint event will be divided in four G4 event consisting in the reverse tracking of an adjoint e-, the
forward tracking of its equivalent forward e-, the reverse tracking of an adjoint gamma, and the forward tracking
of itsequivalent forward gamma. In this case arun of 100 adjoint eventswill consist into 400 Geant4 events. If the
proton ionization is also considered adjoint and forward protons are also generated as primaries and 600 Geant4
events are processed for 100 adjoint events.

3.7.3.2. How to update a G4 application to use the reverse Monte
Carlo mode

Some modifications are needed to an existing Geant4 application in order to adapt it for the use of the reverse
simulation mode (see also the G4 example examples/extended/biasing/Rever seM C01). It consistsinto the:

* Creation of the adjoint simulation manager in the main code

» Optional declaration of user actions that will be used during the adjoint tracking phase
» Useof aspecia physicslists that combine the adjoint and forward processes

» Modification of the user analysis part of the code

3.7.3.2.1. Creation of G4AdjointSimManager in the main

The class G4AdjointSimManager represents the manager of an adjoint simulation. This static class should be
created somewhere in the main code. The way to do that isillustrated below

int main(int argc,char** argv) {
G4Adj oi nt Si mvanager * t heAdj oi nt Si mvanager = G4Adj oi nt Si mvanager : : Get | nst ance() ;
}

By doing this the G4 application can be run in the reverse MC mode as well as in the forward MC mode. It is
important to note that G4AdjointSimManager isnot anew G4RunManager and that the creation of G4RunM anager
in the main and the declaration of the geometry, physics list, and user actions to G4RunManager is still needed.
The definition of the adjoint and external sources and the start of an adjoint simulation can be controlled by G4Ul
commands in the directory /adjoint.

3.7.3.2.2. Optional declaration of adjoint user actions

During an adjoint simulation the user stepping, tracking, stacking and event actions declared to G4RunManager are
used only during the G4 events dedicated to the forward tracking of normal particlesin the sensitive region, while
during the events where adjoint particles are tracked backward the following happen concerning these actions:

» Theuser stepping actionisreplaced by G4AdjointSteppingAction that isreponsibl e to stop an adjoint track when
it reaches the external source, exceed the maximum energy of the external source, or cross the adjoint source
surface. If needed the user can declare its own stepping action that will be called by G4AdjointSteppingAction
after the check of stopping track conditions. This stepping action can be different that the stepping action used
for the forward simulation. It is declared to G4AdjointSimManager by the following lines of code:

66

Toolkit Fundamentals

G4Adj oi nt Si mivanager * t heAdj oi nt Si mvanager = G4Ad] oi nt Si mvanager : : Get | nst ance() ;
t heAdj oi nt Si mvanager - >Set Adj oi nt St eppi ngAct i on(aUser Def i nedSt eppi ngActi on) ;

* No stacking, tracking and event actions are considered by default. If needed the user can declare to
G4AdjointSimManager stacking, tracking and event actions that will be used only during the adjoint tracking
phase. The following lines of code show how to declare these adjoint actions to G4AdjointSimManager:

G4Adj oi nt Si mvanager * t heAdj oi nt Si mvanager = G4Adj oi nt Si mvanager : : Get | nst ance() ;
t heAdj oi nt Si mvanager - >Set Adj oi nt Event Act i on(aUser Def i nedEvent Acti on) ;

t heAdj oi nt Si mVanager - >Set Adj oi nt St acki ngAct i on(aUser Def i nedSt acki ngActi on) ;

t heAdj oi nt Si mvanager - >Set Adj oi nt Tr acki ngAct i on(aUser Def i nedTr acki ngActi on) ;

By default no user run action is considered in an adjoint simulation but if needed such action can be declared to
G4AdjointSimManager as such:

G4Adj oi nt Si mVanager * t heAdj oi nt Si mvanager = G4Adj oi nt Si mvanager : : Get | nst ance() ;
t heAdj oi nt Si mvanager - >Set Adj oi nt RunAct i on(aUser Def i nedRunAct i on) ;

3.7.3.2.3. Physics list for reverse and forward electromagnetic processes

To run an adjoint simulation a specific physics list should be used where existing G4 adjoint electromagnetic
processes and their forward equivaent have to be declared. An example of such physics list is provided by the
class G4AdjointPhysicsLitsin the G4 example extended/biasing/Rever seM COL.

3.7.3.2.4. Modification in the analysis part of the code

The user code should be modified to normalize the signals computed during the forward tracking phase to the
weight of the last adjoint particle that reaches the external surface. This weight represents the statistical weight
that the last full adjoint tracks (from the adjoint source to the external source) would have in aforward simulation.
If multiplied by a signal and registered in function of energy and/or direction the simulation results will give an
answer matrix of thissignal. To normalizeit to agiven spectrum it hasto be furthermore multiplied by adirectional
differential flux corresponding to this spectrum The weight, direction, position , kinetic energy and type of the last
adjoint particle that reaches the external source, and that would represents the primary of a forward simulation,
can be get from G4AdjointSimManager by using for example the following line of codes

G4Adj oi nt Si mVanager * t heAdj oi nt Si mvanager = (4Adj oi nt Si mvlnager : : Get | nst ance() ;

&AAString particle_nane = theAdj oi nt Si mvanager - >Get FwdPar t i cl eNameAt EndCOf Last Adj oi nt Tr ack() ;

G4i nt PDGEncodi ng= t heAdj oi nt Si mvlinager - >Get FwdPar t i cl ePDGEncodi ngAt EndCf Last Adj oi nt Tr ack() ;

GAdoubl e wei ght = t heAdj oi nt Si mvanager - >Get Wi ght At EndCf Last Adj oi nt Tr ack() ;

G4doubl e Eki n = t heAdj oi nt Si mvinager - >Get Eki nAt EndCf Last Adj oi nt Track() ;

G4doubl e Eki n_per _nuc=t heAdj oi nt Si mVanager - >Get Eki nNucAt EndCf Last Adj oi nt Track(); // in case of ions
GAThreeVector dir = theAdjoi nt Si mvanager - >Get Di r ecti onAt EndOf Last Adj oi nt Tr ack() ;

GAThreeVect or pos = t heAdj oi nt Si mvanager - >CGet Posi t i onAt EndCf Last Adj oi nt Tr ack() ;

In order to have a code working for both forward and adjoint simulation mode, the extra code needed in user
actions or analysis manager for the adjoint simulation mode can be separated to the code needed only for the
normal forward simulation by using the following public method of G4AdjointSimManager:

(Abool Get Adj oi nt Si mvbde() ;

that returns true if an adjoint simulation is running and false if not.

The following code example shows how to normalize a detector signal and compute an answer matrix in the case
of an adjoint simulation.

Example 3.5. Normalization in the case of an adjoint simulation. The detector signal S
computed during theforward tracking phaseisnormalized to a primary sour ce of e- with

67

Toolkit Fundamentals

a differential directional flux given by the function F. An answer matrix of the signal is
also computed.

G4double S = ...; // signal in the sensitive volune conputed during a forward tracki ng phase

/I Normalization of the signal for an adjoint sinulation
G4Adj oi nt Si mvanager * t heAdj Si mvanager = G4Adj oi nt Si mvanager : : Get | nst ance() ;
if (theAdj Si mvanager - >Get Adj oi nt Si mivbde()) {
GAdoubl e normalized _S=0.; //normalized to a given e- primary spectrum
GAdoubl e S for_answer_matrix=0.; //for e- answer matrix

i f (theAdj Si mvanager - >Cet FwdPart i cl eNameAt EndCf Last Adj oi nt Track() == "e-"){
GAdoubl e eki n_prim = theAdj Si mvanager - >Get Eki nAt EndCf Last Adj oi nt Track() ;
GAThreeVector dir_prim= theAdjoi ntSi mvanager - >Get Di recti onAt EndCOf Last Adj oi nt Tr ack() ;
GAdoubl e wei ght _pri m = t heAdj Si mvanager - >Get Wi ght At EndCF Last Adj oi nt Tr ack() ;
S for_answer_matrix = S*weight_prim
normalized_ S = S for_answer_matrix*F(ekin_primdir); //F(ekin_primdir_prin gives the differential directional

//follows the code where normalized_ S and S for_answer_matrix are registered or whatever

}

/I anal ysi s/ normal i zati on code for forward sinulation
el se {

:

3.7.3.3. Control of an adjoint simulation
The G4UI commands in the directory /adjoint. allow the user to :

 Define the adjoint source where adjoint primaries are generated
» Define the external source till which adjoint particles are tracked
 Start an adjoint simulation

3.7.3.4. Known issues in the Reverse MC mode

3.7.3.4.1. Occasional wrong high weight in the adjoint simulation

In rare cases an adjoint track may get awrong high weight when reaching the external source. While this happens
not often it may corrupt the simulation results significantly. This happens in some tracks where both reverse
photo-el ectric and bremsstrahlung processes take place at low energy. We still need someinvestigationsto remove
this problem at the level of physical adjoint/reverse processes. However this problem can be solved at the level of
event actions or analysisin the user code by adding atest on the normalized signal during an adjoint simulation.
An example of such test has been implemented in the Geant4 example extended/biasing/ReverseM CO1 . In this
implementation an event isrejected when therel ative error of the computed normalized energy deposited increases
during one event by more than 50% while the computed precision is already below 10%.

3.7.3.4.2. Reverse bremsstrahlung

A difference between the differential cross sections used in the adjoint and forward bremsstrahlung models is
the source of a higher flux of >100 keV gamma in the reverse simulation compared to the forward simulation
mode. In principle the adjoint processessmodels should make use of the direct differential cross section to sample
the adjoint secondaries and compute the adjoint cross section. However due to the way the effective differential
crosssection isconsidered in the forward model G4eBremsstrahlungM odel thiswas not possible to achieve for the
reverse bremsstrahlung. Indeed the differential cross section used in G4AdjointeBremstrahlungModel is obtained
by the numerical derivation over the cut energy of the direct cross section provided by G4eBremsstrahlungModel.
This would be a correct procedure if the distribution of secondary in G4eBremsstrahlungModel would match
this differential cross section. Unfortunately it is not the case as independent parameterization are used in
G4eBremsstrahlungModel for both the cross sections and the sampling of secondaries. (It means that in the for-
ward case if onewould integrate the effective differential cross section considered in the simulation we would not
find back the used cross section). In the future we plan to correct this problem by using an extraweight correction

68

./AllResources/Control/UIcommands/_adjoint_.html

Toolkit Fundamentals

factor after the occurrence of areverse bremsstrahlung. Thisweight factor should be the ratio between the differ-
ential CS used in the adjoint simulation and the one effectively used in the forward processes. Asit isimpossible
to have asimple and direct accessto the forward differential CSin G4eBremsstrahlungModel we areinvestigating
the feasihility to use the differential CS considered in G4Penel ope models.

3.7.3.4.3. Reverse multiple scattering

For the reverse multiple scattering the same model is used than in the forward case. This approximation makes
that the discrepancy between the adjoint and forward simulation cases can get to a level of ~ 10-15% relative
differencesinthetest casesthat we have considered. In the future we plan to improve the adjoint multiple scattering
models by forcing the computation of multiple scattering effect at the end of an adjoint step.

69

Chapter 4. Detector Definition and Response

4.1. Geometry
4.1.1. Introduction

The detector definition requires the representation of its geometrical elements, their materials and electronics
properties, together with visualization attributes and user defined properties. The geometrical representation of
detector elements focuses on the definition of solid models and their spatial position, as well as their logical
relations to one another, such as in the case of containment.

Geant4 uses the concept of "Logical Volume' to manage the representation of detector element properties. The
concept of "Physical Volume" is used to manage the representation of the spatial positioning of detector elements
and their logical relations. The concept of "Solid" is used to manage the representation of the detector element
solid modeling. Volumes and solids must be dynamically allocated in the user program; objects alocated are
automatically registered in dedicated stores which also take care to free the memory at the end of ajob.

The Geant4 solid modeler is STEP compliant. STEP is the ISO standard defining the protocol for exchanging
geometrical data between CAD systems. Thisis achieved by standardizing the representation of solid modelsvia
the EXPRESS object definition language, which is part of the STEP 1SO standard.

4.1.2. Solids

The STEP standard supports multiple solid representations. Constructive Solid Geometry (CSG) representations
and Boundary Represented Solids (BREPS) are available. Different representations are suitable for different pur-
poses, applications, required complexity, and levels of detail. CSG representations are easy to use and normally
give superior performance, but they cannot reproduce complex solids such as those used in CAD systems. BREP
representations can handle more extended topologies and reproduce the most complex solids.

All constructed solids can stream out their contents via appropriate methods and streaming operators.

For all solidsit is possible to estimate the geometrical volume and the surface area by invoking the methods:

G4doubl e Get Cubi cVol une()
G4doubl e Get SurfaceArea()

which return an estimate of the solid volume and total areain internal unitsrespectively. For elementary solidsthe
functions compute the exact geometrical quantities, while for composite or complex solids an estimate is made
using Monte Carlo techniques.

For all solidsit isaso possible to generate pseudo-random points lying on their surfaces, by invoking the method

GAThr eeVect or Get Poi nt OnSur f ace() const

which returns the generated point in local coordinates relative to the solid. To be noted that this function is not
meant to provide a uniform distribution of points on the surfaces of the solids.

4.1.2.1. Constructed Solid Geometry (CSG) Solids

CSG solidsare defined directly asthree-dimensional primitives. They are described by aminimal set of parameters
necessary to define the shape and size of the solid. CSG solids are Boxes, Tubes and their sections, Cones and
their sections, Spheres, Wedges, and Toruses.

Box:

To create abox one can use the constructor:

70

Detector Definition and Response

G4Box(const GAString& pNane,
G4doubl e pX,
GAdoubl e pY,
G4doubl e p2)

In the picture:
pX = 30, pY = 40, pZ = 60

by giving the box a name and its half-lengths along the X, Y and Z axis:

pX half lengthin X [pY half lengthinY |pZ half lengthin Z

Thiswill create abox that extends from - pXto +pXin X, from- pYto+pYinY, and from- pZto+pZinZ.

For example to create a box that is 2 by 6 by 10 centimeters in full length, and called Box A one should use the
following code:

G4Box* aBox = new ABox("BoxA", 1.0*cm 3.0*cm 5.0*cm;
Cylindrical Section or Tube:

Similarly to create acylindrical section or tube, one would use the constructor:

GATubs(const GAStri ng& pNane,
G4doubl e pRM n,
G4doubl e pRMax,
G4doubl e pDz,
G4doubl e pSPhi ,
G4doubl e pDPhi)

In the picture:
pRM n = 10, pRvax = 15, pDz = 20

giving its name pNane and its parameters which are:

pPRM n Inner radius pRVax Outer radius
pDz Half lengthiin z pSPhi Starting phi angle in radi-
ans

71

Detector Definition and Response

pDPhi

Angle of the segment in ra-
dians

Cylindrical Cut Section or Cut Tube:

A cut in Z can be applied to a cylindrical section to obtain a cut tube. The following constructor should be used:

GACut Tubs(const G4String& pNang,
G4doubl e pRM n,
G4doubl e pRMax
G4doubl e pDz,
G4doubl e pSPhi
G4doubl e pDPhi ,
GAThr eeVect or pLowNor m
GAThr eeVect or pH ghNor m)

giving its name pNane and its parameters which are:

pRM n
30, pSPhi

In the picture:

12, pRvax = 20, pbz =
= 0, pDPhi = 1.5*pi,

pLowNorm = (0,-0.7,-0.71),
pH ghNorm = (0.7,0,0.71)

pPRM n Inner radius pRMax Outer radius
pDz Half lengthin z pSPhi Starting phi angle in radi-
ans
pDPhi Angle of the segment in ra- | pLowNor m Outside Normal at -z
dians
pHi ghNor m Outside Normal at +z

Cone or Conical section:

Similarly to create acone, or conical section, one would use the constructor

GACons(const GAString& pNane,

G4doubl e
Gddoubl e
G4doubl e
Gddoubl e
G4doubl e
G4doubl e
G4doubl e

pRm nl
pRmax1
pRm n2
pRmax2
pDz,

pSPhi ,
pDPhi)

In the picture:

72

Detector Definition and Response

giving its name pNane, and its parameters which are:

pRm nl = 5, pRmaxl = 10, pRm n2
= 20, pRmax2 = 25, pDz = 40,
pSPhi = 0, pDPhi = 4/3*Pi

pRm nl insideradius at - pDz pRmax1 outsideradius at - pDz

pRmM n2 inside radius at +pDz pRmax2 outsideradius at +pDz

pDz half lengthiin z pSPhi starting angle of the seg-
ment in radians

pDPhi the angle of the segment in

radians

Parallelepiped:

A parallelepiped is constructed using:

GAPar a(const GAString& pNane,

G4doubl e
Gddoubl e
G4doubl e
Gddoubl e
G4doubl e
Gddoubl e

giving its name pNane and its parameters which are:

dx,
dy,

dz,

al pha
t het a,
phi)

dx, dy, dz Half-length in x,y,z

al pha Angle formed by they axis and by the plane joining the
centre of the faces parallel to the z-x plane at -dy and
+dy

theta Polar angle of the linejoining the centres of the faces at
-dzand +dzinz

phi Azimutha angle of the line joining the centres of the
facesat -dz and +dzin z

Trapezoid:

To construct atrapezoid use:

73

Detector Definition and Response

GATrd(const GAString& pNane,
G4Adoubl e dx1,
HAdoubl e dx2,
G4doubl e dy1, —40
GAdoubl e dy2,
Giddoubl e dz) 50

Z0

In the picture:

dx1 = 30, dx2 = 10, dyl
= 40, dy2 = 15, dz = 60

to obtain a solid with name pNane and parameters

dx1 Half-length along x at the surface positioned at - dz
dx2 Half-length along x at the surface positioned at +dz
dyl Half-length along y at the surface positioned at - dz
dy2 Half-length along y at the surface positioned at +dz
dz Half-length along z axis

Generic Trapezoid:

To build a generic trapezoid, the GATr ap classis provided. Here are the two costructors for a Right Angular
Wedge and for the general trapezoid for it:

GATrap(const GAStri ng& pNane,
G4double pZ,
G4doubl e pY,
G4doubl e pX,
G4doubl e pLTX)

GATrap(const GAStri ng& pNane,
G4doubl e pDz, GAdoubl e pThet a,
G4doubl e pPhi, 4doubl e pDy1,
G4doubl e pDx1, Adouble pDx2,
G4doubl e pAl p1, Adoubl e pDy2,
G4doubl e pDx3, 4double pDx4,
G4doubl e pAl p2)

In the picture:

pDx1 30, pDx2 40, pDyl 40,
pDx3 = 10, pDx4 = 14, pDy2 = 16,
pDz = 60, pTheta = 20*Degree, pPhi =
5*Degree, pAl pl = pAl p2 = 10*Degree

to obtain a Right Angular Wedge with name pNane and parameters:

pZ Length along z
pY Length alongy
pX Length along x at the wider side

74

Detector Definition and Response

pLTX

Length along x at the narrower side (pl TX<=pX) ‘

or to obtain the general trapezoid (see the Software Reference Manual):

pDx1 Half x length of the side at y=-pDy1 of the face at -pDz

pDx2 Half x length of the side at y=+pDy1 of theface at -pDz

pDz Half z length

pThet a Polar angle of the line joining the centres of the faces
at -/+pDz

pPhi Azimuthal angle of thelinejoining the centre of theface
at -pDz to the centre of the face at +pDz

pDy1 Half y length at -pDz

pDy2 Half y length at +pDz

pDx3 Half x length of the side at y=-pDy2 of theface at +pDz

pDx4 Half x length of the side at y=+pDy2 of thefaceat +pDz

pAl pl Angle with respect to the y axis from the centre of the
side (lower endcap)

pAl p2 Angle with respect to the y axis from the centre of the

side (upper endcap)

Note on pAl phl/ 2: the two angles have to be the same due to the planarity condition.

Sphere or Spherical Shell Section:

To build asphere, or aspherical shell section, use:

G4Sphere(const GAString& pNare,
G4double pRmin,
G4doubl e pRmax,
G4doubl e pSPhi ,
G4doubl e pDPhi ,
Giddoubl e pSThet a,
G4doubl e pDThet a)

to obtain a solid with name pNane and parameters:

In the picture:

pRmi n = 100, pRmax = 120,
pSPhi = 0*Degree, pDPhi =
180*Degree, pSTheta = 0 De-
gree, pDTheta = 180*Degree

pRmin Inner radius

pRmMax Outer radius

pSPhi Starting Phi angle of the segment in radians
pDPhi Delta Phi angle of the segment in radians
pSTheta Starting Theta angle of the segment in radians
pDTheta Delta Theta angle of the segment in radians

75

Detector Definition and Response

Full Solid Sphere:

To build afull solid sphere use:

GAOr b(const GAString& pNane,
G4doubl e pRmax)

In the picture:
pRmax = 100

The Orb can be obtained from a Sphere with: pRmi n =0, pSPhi =0, pDPhi =2*Pi, pSThet a =0, pDThet a
=Pi

pRmMax Outer radius

Torus:

To build atorus use:

GATor us(const GAString& pNane,
HAdoubl e pRm n,
GAdoubl e pRaX,
HAdoubl e pRtor,
GAdoubl e pSPhi ,
G4doubl e pDPhi)

In the picture:

pRmin = 40, pRmax = 60, pRtor =
200, pSPhi = 0, pDPhi = 90*Degree

to obtain a solid with name pNane and parameters:

pRmin Inside radius

pRmax Outside radius

pRtor Swept radius of torus

pSPhi Starting Phi angle in radians (f SPhi +f DPhi <=2PI ,
f SPhi >- 2Pl)

pDPhi Delta angle of the segment in radians

In addition, the Geant4 Design Documentati on showsin the Solids Class Diagram the complete list of CSG classes,
and the STEP documentation contains a detailed EXPRESS description of each CSG solid.

Specific CSG Solids

Polycons:

Polycons (PCON) are implemented in Geant4 through the G4Pol ycon class:

76

Detector Definition and Response

GAPol ycone(const

GAPol ycone(const

GAStri ng& pNane,

G4doubl e phi Start,

HAdoubl e phi Tot al , 1
G4i nt nun¥Pl anes,

const Adouble zPlane[],

const G4double rlnner[], 30

const (Adoubl e rQuter[])

GAStri ng& pNane, “
G4doubl e phi Start,

HAdoubl e phi Tot al ,

G4i nt nuniRz,

const (Adoubl e
const (Adoubl e

ril,
z[1)

In the picture:

phi St art
3/ 2*Pi ,
ner = { O,

nun¥Pl anes = 9, rln-
o, 0o, 00 0, 0, 0, O,
0}, rQuter = { 0, 10, 10, 5,
5, 10, 10, 2, 2}, z ={ 5,
7, 9, 11, 25, 27, 29, 31, 35}

1/ 4*Pi, phi Tot al
0

where:

phi Start Initial Phi starting angle

phiTotal Total Phi angle

numZPlanes Number of z planes

numRZ Number of cornersinr,z space
zPlane Position of z planes

rinner Tangent distance to inner surface
rOuter Tangent distance to outer surface
r r coordinate of corners

z z coordinate of corners

Polyhedra (PGON):

Polyhedra (PGON) are implemented through G4Pol yhedr a:

GAPol yhedr a(const

const
const
const

G4Pol yhedr a(const

const
const

GAString& pNane,

G4doubl e phi Start,
G4Adoubl e phi Tot al ,
G4i nt nunSi de,
i nt nun¥ZPl anes,
G4doubl e zPl ane[],
G4Adoubl e rlnner[],
G4double rQuter[])
GAStri ng& pNane,
G4doubl e phiStart,
G4doubl e phi Total , .
i nt nunsi de, In the picture:
G4i nt nuniRZ,
Gidouble r[], phi Start = -1/4*Pi, phi To-
Gidouble z[]) tal = 5/4*Pi, nunSide = 3, nun-
ZPlanes = 7, rinner = { 0, O,
0, 0,0 0,0 0, 0}, rQuter = { O,
15, 15, 4, 4, 10, 10}, z =
{0 5 8 13, 30, 32, 35}

77

Detector Definition and Response

where;

phi St art Initial Phi starting angle

phi Tot al Total Phi angle

nunSi de Number of sides

nunZPl anes Number of z planes

nuniRZ Number of cornersinr,z space
zPlane Position of z planes

rlnner Tangent distance to inner surface
rOuter Tangent distance to outer surface
r r coordinate of corners

z z coordinate of corners

Tube with an elliptical cross section:

A tubewith an dlliptical cross section (ELTU) can be defined as follows:

GAEl i ptical Tube(const GAString& pName,
G4doubl e Dx,
G4doubl e Dy,
GAdoubl e Dz)

The equation of the surfacein x/y is1. 0 = (x/
dx)**2 +(y/dy)**2

In the picture:

Dx =5, Dy = 10, Dz = 20

Dx \ Haflength X [Dy HaflengthY |Dz Half length Z

General Ellipsoid:

The general ellipsoid with possible cut in Z can be defined as follows:

78

Detector Definition and Response

GAEl | i psoi d(const (AString& pNang,

G4doubl e pxSem AXxi s,
G4doubl e pySem Axi s,
G4doubl e pzSem AXxi s,
G4doubl e pzBot t onCut =0,
G4doubl e pzTopCut =0)

|
i

e o

A

g

o

In the picture:

pxSem Axis = 10, pySem Axis
= 20, pzSem Axis = 50, pzBot-
tonCut = -10, pzTopCut = 40

A general (or triaxial) ellipsoid is a quadratic surface which is given in Cartesian coordinates by:

1.0 = (x/pxSem Axis)**2 + (y/pySem Axis)**2 + (z/pzSem AXis)**2

where:

pxSem AXi s Semiaxisin X
pySemiAxis SemiaxisinY
pzSemiAxis SemiaxisinZ
pzBottomCut lower cut planelevel, z
pzTopCut upper cut plane level, z

Cone with Elliptical Cross Section:

A conewith an elliptical cross section can be defined as follows:

GAEl li pti cal Cone(const GAString& pNane,

G4doubl e
G4doubl e
G4doubl e
G4doubl e

pxSemi AXi s,
pySem Axi s,
zMax,
pzTopCut)

i
il

RS T

%,
i
A

5,

"‘
8y
T

e
'fn'f‘-
L

o
D
T

o
YL

1

In the picture:

pxSem Axis = 30/ 75, pySem Axis =
60/ 75, zMax = 50, pzTopCut = 25

where:

pxSemiAxis Semiaxisin X
pySemiAxis SemiaxisinY

zMax Height of elliptical cone
pzTopCut

upper cut plane level

79

Detector Definition and Response

An elliptical cone of height zMax, semiaxis pxSem Axi s, and semiaxis pySem AXxi s is given by the para-
metric equations:

X

pxSem Axis * (zMax - u) / u * Cos(v)
y u) / u
z

pySem Axis * (zMax -
u

Where v isbetween 0 and 2* Pi , and u between 0 and h respectively.
Paraboloid, a solid with parabolic profile:

A solid with parabolic profile and possible cuts along the Z axis can be defined as follows:

GAPar abol oi d(const AStri ng& pNang,
GAdoubl e Dz,
HAdoubl e R1,
G4doubl e R2)

The equation for the solid is:

rho**2 <= k1 * z + k2; In the picture:
-dz <= z <= dz
rix*2 = k1 * (-dz) + k2 _ _ -
r2**2 = kl * (dz) - k2 Rl - 20, R2 - 35, DZ - 20
Dz Half length Z R1 Radius at -Dz R2 Radius at +Dz
greater than R1

Tube with Hyperbolic Profile:

A tubewith a hyperbolic profile (HY PE) can be defined as follows:

GAHype(const GAString& pNane,
GAdoubl e i nner Radi us,
GAdoubl e out er Radi us,
GAdoubl e i nner Stereo,
GAdoubl e outerStereo,
G4doubl e hal fLenZ)

In the picture:

innerStereo = 0.7, outerStereo
= 0.7, halfLenzZ = 50, innerRa-
dius = 20, outerRadius = 30

(AHy pe isshaped with curved sides parallel to the z-axis, has a specified half-length along the z axis about which
it is centred, and a given minimum and maximum radius.

A minimum radius of 0 defines a filled Hype (with hyperbolic inner surface), i.e. inner radius = 0 AND inner
stereo angle = 0.

The inner and outer hyperbolic surfaces can have different stereo angles. A stereo angle of 0 gives acylindrical
surface:

i nner Radi us Inner radius

out er Radi us Outer radius

80

Detector Definition and Response

i nner St ereo Inner stereo angle in radians

Outer stereo anglein radians
Half lengthin Z

out er St ereo
hal f LenZ

Tetrahedra:

A tetrahedra solid can be defined as follows:

GATet (const GAStri ng& pNane,
GAThr eeVect or anchor,
GAThreeVector p2,
GAThr eeVector p3,
GAThreeVector p4,
G4bool *degener acyFl ag=0)

In the picture:
sqrt(3)},

anchor = {0, O,
p2 = { 0, 2*sqgrt(2/3), -1/
sqrt(3) }, p3 ={ -sqrt(2), -
sqrt(2/3),-1/sqrt(3) }, p4 =
{ sqrt(2), -sqrt(2/3) , -1/sqrt(3) }

The solid is defined by 4 points in space:

anchor Anchor point

p2 Point 2

p3 Point 3

p4 Point 4

degeneracyFlag Flag indicating degeneracy of points

Extruded Polygon:

The extrusion of an arbitrary polygon (extruded solid) with fixed outline in the defined Z sections can be defined
asfollows (in agenera way, or as special construct with two Z sections):

GAExt rudedSol i d(const GAString& pNane,
std: : vect or <&GATwoVect or > pol ygon,
std:: vector<ZSecti on> zsections) 50,0
GAExt rudedSol i d(const GAString& pNane,
std: : vect or <GATwoVect or > pol ygon, z
G4doubl e hz,

ATwoVect or of f1, GAdoubl e scal el,
HATwoVector of f2, GAdoubl e scal e2)

20,0
90300

In the picture:

pol i gon = {-30, -30}, {-30, 30},
{30, 30}, {30,-30}, {15,-30},
{15, 15}, {- 15, 15}, {- 15, - 30}

zsections = [-60,{0, 30}, 0. 8],
[-15, {0,-30},1.], [10,
{0,0},0.6], [60,{0,30},1.2]

81

Detector Definition and Response

The z-sides of the solid are the scaled versions of the same polygon.

pol ygon the vertices of the outlined polygon defined in clock-
wise order

zsections the z-sections defined by z position in increasing order

hz Half lengthin Z

of f1, off2 Offset of the side in -hz and +hz respectively

scal el, scal e2 Scale of the side in -hz and +hz respectively

Box Twisted:

A box twisted along one axis can be defined as follows:

GATwi st edBox(const AStri ng& pNane,
GAdoubl e tw stedangl e,
G4doubl e pDx,
G4doubl e pDy,
G4doubl e pDz)

|
E
i
’
4

/
!
]
i
]
1
/
7

s
AL

In the picture:

tw st edangl e = 30*Degr ee,
pDx = 30, pDy =40, pDz 60

ATw st edBox isabox twisted along the z-axis. The twist angle cannot be greater than 90 degrees:

twi st edangl e Twist angle

pDx Half x length
pDy Half y length
pDz Half z length

Trapezoid Twisted along One AXxis:

trapezoid twisted along one axis can be defined as follows:

GATwi st edTrap(const GAStri ng& pNane,

GAdoubl e tw stedangl e,

G4doubl e pDxx1,

GAdoubl e pDxx2,

G4doubl e pDy,

GAdoubl e pDz)
GATwi st edTr ap(const AString&
G4doubl e
G4doubl e
G4doubl e
G4doubl e
G4doubl e
G4doubl e
G4doubl e
G4doubl e
G4doubl e
G4doubl e
G4doubl e

pNare,
tw st edangl e,
pDz,
pThet a,
pPhi ,
pDy1,
pDx1,
pDx2,
pDy2,
pDx3,
pDx4,
pAl ph)

In the picture:
pDx1 = 30, pDx2 = 40, pDyl = 40,
pDx3 = 10, pDx4 = 14, pDy2 = 16,

82

Detector Definition and Response

pDz = 60, pTheta = 20*Degree,
pDphi = 5*Degree, pAl ph = 10*De-
gree, tw stedangl e = 30*Degree

Thefirst constructor of ATwi st edTr ap produces aregular trapezoid twisted along the z-axis, where the caps
of the trapezoid are of the same shape and size.

The second constructor produces a generic trapezoid with polar, azimuthal and tilt angles.

The twist angle cannot be greater than 90 degrees:

tw st edangl e Twisted angle

pDx1 Half x length at y=-pDy

pDx2 Half x length at y=+pDy

pDy Half y length

pDz Half z length

pThet a Polar angle of the line joining the centres of the faces
at -/+pDz

pDy1 Half y length at -pDz

pDx1 Half x length at -pDz, y=-pDy1

pDx2 Half x length at -pDz, y=+pDy1

pDy2 Half y length at +pDz

pDx3 Half x length at +pDz, y=-pDy2

pDx4 Half x length at +pDz, y=+pDy2

pAl ph Angle with respect to the y axis from the centre of the
side

Twisted Trapezoid with x and y dimensions varying along z:

A twisted trapezoid with the x andy dimensions varying along z can be defined as follows:

GATwi st edTrd(const GAString& pNane,

GAdoubl e
GAdoubl e
GAdoubl e
GAdoubl e
GAdoubl e
GAdoubl e

pDx1,

pDx2,

pDy1,

pDy2,

pDz,

tw st edangl e)

5
FaS

i
o]
O e i
Fillr .
L]

Ny,
‘{\g’nt
e
it S e

In the picture:

dx1 = 30, dx2 = 10, dyl
= 40, dy2 = 15, dz = 60,
twi st edangl e = 30*Degree

where:
pDx1 Half x length at the surface positioned at -dz
pDx2 Half x length at the surface positioned at +dz

83

Detector Definition and Response

pDyl Half y length at the surface positioned at -dz
pDy2 Half y length at the surface positioned at +dz
pDz Half z length

twi st edangl e

Twisted angle

Generic trapezoid with optionally collapsing vertices:

An arbitrary trapezoid with up to 8 vertices standing on two parallel planes perpendicular to the Z axis can be

defined as follows:

GACeneri cTrap(const 4S
G4d
const std

In the picture: In the picture: In the picture:
pbz = 25 ver- pbz = 25 ver- pbz = 25 ver-
tices = {-30, tices = {-30,-30}, tices = {-30, -30},
-30}, {-30, 30}, {-30, 30}, {-30, 30},
{30, 30}, {30, {30, 30}, {30,-30} {30,30}, {30,-30}
-30} {-5, -20}, {-20,-20}, {o,0}, {0,0},
{-20, 20}, {20, {-20, 20}, {0,0}, {O,0}
20}, {20, -20} {20, 20}, {20, 20}
where:
pDz Half z length
vertices The (x,y) coordinates of vertices

The order of specification of the coordinates for the verticesin G4CGener i cTr ap is important. The first four
points are the vertices sitting on the - hz plane; the last four points are the vertices sitting on the +hz plane.

The order of defining the vertices of the solid is the following:

 point 0 is connected with points 1,3,4
* point 1 is connected with points 0,2,5
* point 2 is connected with points 1,3,6
* point 3 is connected with points 0,2,7
* point 4 is connected with points 0,5,7
* point 5 is connected with points 1,4,6
* point 6 is connected with points 2,5,7
* point 7 is connected with points 3,4,6

Points can be identical in order to create shapes with less than 8 vertices; the only limitation isto have at least one
triangleat +hz or - hz; thelateral surfacesare not necessarily planar. Not planar lateral surfacesare represented by
asurface that linearly changes from the edge on - hz to the corresponding edge on +hz; it represents a sweeping
surface with twist angle linearly dependent on Z, but it is not areal twisted surface mathematically described by
equations as for the other twisted solids described in this chapter.

Tube Section Twisted along Its Axis:

A tube section twisted along its axis can be defined as follows:

84

Detector Definition and Response

GATwi st edTubs(const (AString& pNane,
G4doubl e tw stedangl e,
HAdoubl e endi nnerrad,
G4doubl e endout errad,
HAdoubl e hal f zl en,
GAdoubl e dphi) -10

In the picture:

endi nnerrad = 10, endouterrad =
15, halfzlen = 20, dphi = 90*De-
gree, tw stedangl e = 60*Degree

ATw st edTubs isasort of twisted cylinder which, placed along the z-axis and divided into phi -segmentsis
shaped like an hyperboloid, where each of its segmented pieces can be tilted with a stereo angle.

It can have inner and outer surfaces with the same stereo angle:

tw st edangl e Twisted angle

endi nnerrad Inner radius at endcap
endout err ad Outer radius at endcap
hal f zl en Half z length

dphi Phi angle of a segment

Additional constructors are provided, allowing the shape to be specified either as:

« the number of segmentsin phi and the total angle for all segments, or
« acombination of the above constructors providing instead the inner and outer radii at z=0 with different z-
lengths along negative and positive z -axis.

4.1.2.2. Solids made by Boolean operations

Simple solids can be combined using Boolean operations. For example, a cylinder and a half-sphere can be com-
bined with the union Boolean operation.

Creating such a new Boolean solid, requires:

» Two solids
» A Boolean operation: union, intersection or subtraction.
» Optionaly atransformation for the second solid.

The solids used should be either CSG solids (for examples a box, a spherical shell, or atube) or another Boolean
solid: the product of a previous Boolean operation. An important purpose of Boolean solids is to allow the de-
scription of solids with peculiar shapes in asimple and intuitive way, till allowing an efficient geometrical nav-
igation inside them.

The solids used can actually be of any type. However, in order to fully support potential export of a
Geant4 solid model via STEP to CAD systems, we restrict the use of Boolean operations to this subset
of solids. But this subset contains all the most interesting use cases.

85

Detector Definition and Response

The constituent solids of a Boolean operation should possibly avoid be composed by sharing all or part
of their surfaces. This precaution is necessary in order to avoid the generation of ‘fake' surfaces due to
precision loss, or errors in the final visualization of the Boolean shape. In particular, if any one of the
subtractor surfaces is coincident with a surface of the subtractee, the result is undefined. Moreover, the
final Boolean solid should represent a single ‘closed' solid, i.e. a Boolean operation between two solids
which are digoint or far apart each other, is not avalid Boolean composition.

The tracking cost for navigating in a Boolean solid in the current implementation, is proportional to
the number of constituent solids. So care must be taken to avoid extensive, unecessary use of Boolean
solidsin performance-critical areas of ageometry description, where each solid is created from Boolean
combinations of many other solids.

Examples of the creation of the simplest Boolean solids are given below:

G4Box* box =
new ABox("Box", 20* mm 30* nm 40* nm) ;
GATubs* cyl =
new ATubs("Cylinder", 0, 50*nm 50*mm O, twopi); // r: 0O M -> 50 mMm
Il z: 50 nm -> 50 mm
/1 phi 0-> 2 pi

GAUni onSol i d* union =

new AUni onSol i d("Box+Cyl i nder", box, cyl);
G4l ntersectionSol i d* intersection =

new Al ntersectionSolid("Box*Cylinder", box, cyl);
GASubtracti onSol i d* subtraction =

new ASubtractionSol i d("Box-Cylinder", box, cyl);

where the union, intersection and subtraction of a box and cylinder are constructed.

The more useful case where one of the solids is displaced from the origin of coordinates also exists. In this case
the second solid is positioned relative to the coordinate system (and thus relative to the first). This can be done
in two ways:

* Either by giving arotation matrix and trand ation vector that are used to transform the coordinate system of the
second solid to the coordinate system of the first solid. Thisis called the passive method.

» Or by creating a transformation that moves the second solid from its desired position to its standard position,
e.g., abox's standard position is with its centre at the origin and sides parallel to the three axes. Thisis called
the active method.

Inthefirst case, thetranslation is applied first to move the origin of coordinates. Then the rotation is used to rotate
the coordinate system of the second solid to the coordinate system of the first.

GARot ati onMatri x* yRot = new ARotationMatrix; // Rotates X and Z axes only
yRot - >rotateY(M Pl / 4. *rad) ; /] Rotates 45 degrees
GAThreeVector zTrans(0, 0, 50);

G4Uni onSol i d* uni onMoved =

new GAUni onSol i d(" Box+Cyl i nder Moved", box, cyl, yRot, zTrans);
/1
/1 The new coordi nate systemof the cylinder is translated so that
/] its centre is at +50 on the original Z axis, and it is rotated
/1 with its X axis hal fway between the original X and Z axes.

/1 Now we build the same solid using the alternative nmethod
11l
GARot ati onMatri x invRot = *(yRot->invert());
GATr ansfornBD transforn(i nvRot, zTrans);
GAUni onSol i d* uni onMoved =
new G4Uni onSol i d(" Box+Cyl i nder Moved", box, cyl, transform;

Note that the first constructor that takes a pointer to the rotation-matrix (ARot at i onMat ri x*), does NOT
copy it. Therefore once used a rotation-matrix to construct a Boolean solid, it must NOT be modified.

86

Detector Definition and Response

In contrast, with the alternative method shown, aG4Tr ansf or nBDis provided to the constructor by value, and
its transformation is stored by the Boolean solid. The user may modify the G4 Tr ansf or n8D and eventually
useit again.

When positioning a volume associated to a Boolean solid, the relative center of coordinates considered for the
positioning is the one related to the first of the two constituent solids.

4.1.2.3. Boundary Represented (BREPS) Solids

BREP solids are defined viathe description of their boundaries. The boundaries can be made of planar and second
order surfaces. Eventually these can be trimmed and have holes. The resulting solids, such as polygonal, polycon-
ical solids are known as Elementary BREPS.

In addition, the boundary surfaces can be made of Bezier surfacesand B-Splines, or of NURBS (Non-Uniform-Ra-
tional-B-Splines) surfaces. The resulting solids are Advanced BREPS.

Currently, theimplementation for surfaces generated by Beziers, B-Splinesor NURBSisonly at thelevel
of prototype and not fully functional.

Extensionsin this area are foreseen in future.

A few elementary BREPS are provided in the BREPS modul e as exampl es on how to assemble a BREP shap; these
can be instantiated in the same manner as for the Constructed Solids (CSGs). We summarize their capabilitiesin
the following section.

Most BREPS Solids are however defined by creating each surface separately and tying them together.
Specific BREP Solids:

We have defined one polygonal and one polyconical shape using BREPS. The polycone provides a shape defined
by a series of conical sections with the same axis, contiguous along it.

The polyconical solid G4BREPSol i dPCone isashape defined by aset of inner and outer conical or cylindrical
surface sections and two planes perpendicular to the Z axis. Each conical surface is defined by its radius at two
different planes perpendicular to the Z-axis. Inner and outer conical surfaces are defined using common Z planes.

GABREPSol i dPCone(const GAStri ng& pNane,

GAdoubl e start_angl e,
G4doubl e openi ng_angl e,
G4i nt num z_pl anes, /] sections,
G4double z_start,

const (Adouble z_values[],

const GAdouble RMN],

const Adouble RMVAX[])

The conical sections do not need to fill 360 degrees, but can have a common start and opening angle.

start_angl e starting angle

openi ng_angl e opening angle

num z_pl anes number of planes perpendicular to the z-axis used.
z_start starting value of z

z_val ues z coordinates of each plane

RM N radius of inner cone at each plane

RMAX radius of outer cone at each plane

The polygonal solid G4BREPSol i dPol yhedr a isashape defined by aninner and outer polygonal surface and
two planes perpendicular to the Z axis. Each polygonal surface is created by linking a series of polygons created
at different planes perpendicular to the Z-axis. All these polygons all have the same number of sides(si des) and
are defined at the same Z planes for both inner and outer polygonal surfaces.

87

Detector Definition and Response

The polygons do not need to fill 360 degrees, but have a start and opening angle.

The constructor takes the following parameters:

GABREPSoI i dPol yhedra(const (AString& pNane,

G4doubl e start_angl e,
G4doubl e openi ng_angl e,
G4i nt si des,
GAi nt num z_pl anes,
G4double z_start,

const GAdoubl e z_val ues[],

const GAdouble RM N],

const GAdouble RMAX[])

which in addition to its name have the following meaning:

start_angl e starting angle

openi ng_angl e opening angle

si des number of sides of each polygon in the x-y plane
num z_pl anes number of planes perpendicular to the z-axis used.
z_start starting value of z

z_val ues z coordinates of each plane

RM N radius of inner polygon at each corner

RMAX radius of outer polygon at each corner

the shape is defined by the number of sidessi des of the polygon in the plane perpendicular to the z-axis.

4.1.2.4. Tessellated Solids

In Geant4 it isaso implemented aclass GATessel | at edSol i d which can be used to generate a generic solid
defined by a number of facets ((AVFacet). Such constructs are especially important for conversion of complex
geometrical shapes imported from CAD systems bounded with generic surfaces into an approximate description
with facets of defined dimension (see Figure 4.1).

Figure 4.1. Example of geometries imported from CAD system and converted to
tessellated solids.

They can aso be used to generate a solid bounded with a generic surface made of planar facets. It is important
that the supplied facets shall form afully enclose space to represent the solid.

Two types of facet can be used for the construction of a ATessel | at edSol i d: a triangular facet
(ATri angul ar Facet) and a quadrangular facet (AQuadr angul ar Facet).

An example on how to generate a simple tessellated shape is given below.
Example4.1. An example of a simple tessellated solid with GATessel | at edSol i d.

88

Detector Definition and Response

/Il First declare a tessellated solid
I
GATessel | atedSol i d sol i dTar get

new ATessel | at edSol i d(" Sol i d_name") ;

/1 Define the facets which formthe solid
/1
G4doubl e targetSize 10*cm ;
GATri angul ar Facet *facet1 new
GATri angul ar Facet (AThreeVector (-targetSize,-targetSi ze,
GAThr eeVect or (+t ar get Si ze, -t arget Si ze,
GAThr eeVect or (0.0, 0.0,
ABSCOLUTE) ;
*facet2 = new
(GAThr eeVect or (+t arget Si ze, -t arget Si ze,
GAThr eeVect or (+t ar get Si ze, +t ar get Si ze,
GAThr eeVect or (0.0, 0.0,
ABSOLUTE) ;
*facet3 new
(GAThr eeVect or (+t ar get Si ze, +t ar get Si ze,
GAThr eeVector (-t arget Si ze, +t arget Si ze,
GAThr eeVect or (0.0, 0.0,
ABSCOLUTE) ;
*facet4 = new
(GAThreeVector (-targetSi ze, +t arget Si ze,
GAThreeVector (-target Si ze, -target Si ze,
GAThr eeVect or (0.0,
ABSOLUTE) ;
GAQuadr angul ar Facet *facet5 = new
GAQuadr angul ar Facet (AThreeVector (-targetSi ze,
GAThreeVector (-targetSi ze,
GAThr eeVect or (+t ar get Si ze,
GAThr eeVect or (+t arget Si ze,
ABSOLUTE) ;

0.0),
0.0),
+t ar get Si ze) ,

GATri angul ar Facet
GATr i angul ar Facet 0.0),
0.0),

+t arget Si ze) ,

GATr i angul ar Facet
GATri angul ar Facet 0.0),
0.0),

+t ar get Si ze) ,

GATri angul ar Facet
GATr i angul ar Facet 0.0),
0.0),

0.0, +t arget Si ze),

-target Si ze,
+t ar get Si ze,
+t ar get Si ze,
-target Si ze,

/1 Now add the facets to the solid
/1

sol i dTar get - >AddFacet ((AVFacet *)
sol i dTar get - >AddFacet ((G4VFacet *)
sol i dTar get - >AddFacet ((AVFacet *)
sol i dTar get - >AddFacet ((G4VFacet *)
sol i dTar get - >AddFacet ((AVFacet *)

facetl);
facet 2);
facet 3);
facet4);
facet5);

Finally declare the solid is conplete
/1
sol i dTar get - >Set Sol i dC osed(true);

TheATri angul ar Facet classisused for the contruction of GATessel | at edSol i d. Itisdefined by three
vertices, which shall be supplied in anti-clockwise order looking from the outside of the solid where it belongs.
Its constructor looks like:

GATri angul ar Facet (const (AThreeVect or Pt 0,
const GAThr eeVect or vt 1,
const (AThr eeVect or vt 2,

GAFacet Vert exType fType)

i.e, it takes 4 parameters to define the three vertices:

(AFacet Vert exType

ABSOLUTE in which case Pt 0, vt 1 and vt 2 are the
three vertices in anti-clockwise order looking from the
outside.

AFacet Vert exType

RELATI VE in which case the first vertex is Pt 0, the
second vertex is Pt O+vt 1 and the third vertex is
Pt O+vt 2, dl in anti-clockwise order when looking
from the outside.

The GAQuadr angul ar Facet classcan be used for the contruction of G4Tessel | at edSol i d aswell. Itis
defined by four vertices, which shall be in the same plane and be supplied in anti-clockwise order looking from
the outside of the solid where it belongs. Its constructor looks like:

GAQuadr angul ar Facet (const (AThreeVect or

Pt O,

89

Detector Definition and Response

const (AThr eeVect or vt1l,
const GAThr eeVect or vt 2,
const GAThr eeVect or vt 3,

GAFacet Vert exType fType)

i.e., it takes 5 parameters to define the four vertices:

HAFacet Vert exType ABSOLUTE inwhichcasePt 0,vt 1,vt 2 andvt 3 are
the four vertices required in anti-clockwise order when
looking from the outside.

AFacet Vert exType RELATI VE in which case the first vertex is Pt 0, the
second vertex isPt 0+vt , thethird vertex isPt 0+vt 2
and thefourth vertex isPt 0+vt 3, in anti-clockwise or-
der when looking from the outside.

Importing CAD models as tessellated shapes

Tessellated solids can a so be used to import geometrical models from CAD systems (see Figure 4.1). In order to
dothis, itisrequired to convert first the CAD shapesinto tessellated surfaces. A way to do thisisto save the shapes
inthe geometrical model as STEPfilesand convert them to tessellated (faceted surfaces) solids, using atool which
allows such conversion. At thetime of writing, at least two tools are available for such purpose: STViewer (part of
the STEP-Tools development suite) or FASTRAD. This strategy allowsto import any shape with some degree of
approximation; the converted CAD models can then be imported through GDML (Geometry Description Markup
Language) into Geant4 and be represented as G4 Tessel | at edSol i d shapes.

Other tools which can be used to generate meshes to be then imported in Geant4 as tessellated solids are:

* STL2GDML - A free STL to GDML conversion tool.

» SALOME - Open-source software allowing to import STEP/BREP/IGES/STEP/ACI S formats, mesh them and
export to STL.

» ESABASE?2 - Space environment analysis CAD, basic modules free for academic non-commercial use. Can
import STEP files and export to GDML shapes or compl ete geometries.

» CADMesh - Tool based onthe VCG Library to read STL files and import in Geant4.

» Cogenda- Commercial TCAD software for generation of 3D meshes through the module Gds2Mesh and final
export to GDML.

4.1.3. Logical Volumes

The Logical Volume manages the information associated with detector elements represented by a given Solid and
Material, independently from its physical position in the detector.

A Logica Volume knowswhich physical volumes are contained withiniit. It isuniquely defined to be their mother
volume. A Logical Volume thus represents a hierarchy of unpositioned volumes whose positions relative to one
another are well defined. By creating Physical Volumes, which are placed instances of a Logical Volume, this
hierarchy or tree can be repeated.

A Logica Volume also manages the information relative to the Visualization attributes (Section 8.6) and user-
defined parameters related to tracking, el ectro-magnetic field or cuts (through the GAUser Li mi t s interface).

By default, tracking optimization of the geometry (voxelization) is applied to the volume hierarchy identified by
alogical volume. It is possible to change the default behavior by choosing not to apply geometry optimization
for a given logical volume. This feature does not apply to the case where the associated physical volume is a
parameterised volume; in this case, optimization is always applied.

(ALogi cal Vol ume(&4VSol i d* pSol i d,
GAMat eri al * pMateri al ,
const (AString& Nane,
GAFi el dvanager * pFi el dMvgr =0,
GAVSensi ti veDet ect or* pSDet ect or =0,
HAUser Limts* pULi mi t s=0,
G4bool Optimi se=true)

90

http://www.steptools.com/products/stviewer/
http://www.fastrad.net/
http://cern.ch/gdml/
http://cern.ch/gdml/
http://www.solveering.com/products/products_stl2gdml.html
http://www.salome-platform.org/
http://esabase2.net/
http://code.google.com/p/cadmesh/
http://vcg.sourceforge.net/index.php/VCGLib
http://www.cogenda.com/

Detector Definition and Response

Through the logical volume it is also possible to tune the granularity of the optimisation algorithm to be applied
to the sub-tree of volumes represented. Thisis possible using the methods:

G4doubl e Get Smartl ess() const
voi d Set Smart| ess(G4doubl e s)

The default smartless value is 2 and controls the average number of dlices per contained volume which are used
in the optimisation. The smaller the value, the less fine grained optimisation grid is generated; this will trandate
in a possible reduction of memory consumed for the optimisation of that portion of geometry at the price of a
dight CPU time increase at tracking time. Manual tuning of the optimisation isin general not required, since the
optimal granularity level is computed automatically and adapted to the specific geometry setup; however, in some
cases (like geometry portions with 'dense’ concentration of volumes distributed in a non-uniform way), it may be
necessary to adopt manual tuning for helping the optimisation process in dealing with the most critical areas. By
setting the verbosity to 2 through the following Ul run-time command:

/run/verbose 2

a statistics of the memory consumed for the allocated optimisation nodes will be displayed volume by volume,
allowing to easily identify the critical areas which may eventually require manual intervention.

The logical volume provides away to estimate the mass of atree of volumes defining a detector or sub-detector.
This can be achieved by calling the method:

GAdoubl e Get Mass(HAbool forced=fal se)

The mass of thelogical volumetreeiscomputed from the estimated geometrical volume of each solid and material
associated with thelogica volumeand its daughters. Notethat thiscomputation may require aconsiderable amount
of time, depending on the complexity of the geometry tree. The returned value is cached by default and can be
used for successive calls, unless recomputation is forced by providing t r ue for the boolean argument f or ced
in input. Computation should be forced if the geometry setup has changed after the previous call.

Finally, the Logical Volume manages the information relative to the Envel opes hierarchy required for fast Monte
Carlo parameterisations (Section 5.2.6).

4.1.3.1. Sub-detector Regions

In complex geometry setups, such as those found in large detectors in particle physics experiments, it is useful to
think of specific Logical Volumes as representing parts (sub-detectors) of the entire detector setup which perform
specific functions. In such setups, the processing speed of areal simulation can be increased by assigning specific
production cuts to each of these detector parts. This alows a more detailed simulation to occur only in those
regions whereit is required.

The concept of detector Region is introduced to address this need. Once the final geometry setup of the detector
has been defined, aregion can be specified by constructing it with:

(ARegi on(const (AString& rNane)

where:

r Nane String identifier for the detector region

A (ARegi on must then be assigned to alogical volume, in order to make it a Root Logical Volume:

(ARegi on* ental ori neter = new G4Regi on("EM Cal ori nmeter");
emCal ori met er LV- >Set Regi on(ental ori neter);
enCal ori net er - >AddRoot Logi cal Vol une(ental ori neterLV);

A root logical volumeisthefirst volume at the top of the hierarchy to which a given region is assigned. Once the
region is assigned to the root logical volume, the information is automatically propagated to the volume tree, so

91

Detector Definition and Response

that each daughter volume shares the same region. Propagation on atree branch will be interrupted if an already
existing root logical volume is encountered.

A specific Production Cut can be assigned to the region, by defining and assigning to it a G4Pr oduct i onCut
object

emCal ori met er - >Set Pr oduct i onCut s(ental Cuts) ;

Section 5.4.2 describes how to define a production cut. The same region can be assigned to more than one root
logical volume, and root logical volumes can be removed from an existing region. A logical volume can have only
one region assigned to it. Regions will be automatically registered in a store which will take care of destroying
them at the end of the job. A default region with a default production cut is automatically created and assigned
to the world volume.

Regions can also become 'envelopes for fast-simulation; can be assigned user-limits or gener-
ic user-information (AVUser Regi onl nf ormati on); can be associated to specific stepping-actions
(AUser St eppi ngAct i on) or have assigned alocal magnetic-field (local fields specifically associated to log-
ical volumes take precedence anyhow).

4.1.4. Physical Volumes

Physical volumes represent the spatial positioning of the volumes describing the detector elements. Several tech-
nigues can be used. They range from the simple placement of asingle copy to the repeated positioning using either
asimple linear formula or a user specified function.

The simple placement involves the definition of atransformation matrix for the volume to be positioned. Repeated
positioning is defined using the number of times a volume should be replicated at a given distance along a given
direction. Finally it is possible to define a parameterised formula to specify the position of multiple copies of a
volume. Details about these methods are given below.

Note - For geometries which vary between runs and for which components of the old geometry setup are ex-
plicitely -deleted-, it is required to consider the proper order of deletion (which is the exact inverse of the actual
construction, i.e., first delete physical volumes and then logical volumes). Deleting a logical volume does NOT
delete its daughter volumes.

It is not necessary to delete the geometry setup at the end of a job, the system will take care to free the volume
and solid stores at the end of the job. The user has to take care of the deletion of any additional transformation or
rotation matrices allocated dinamically in his/her own application.

4.1.4.1. Placements: single positioned copy

Inthiscase, the Physical Volumeiscreated by associating aL ogical Volumewith a Rotation Matrix and a Transla-
tion vector. The Rotation Matrix represents the rotation of the reference frame of the considered volume relatively
to its mother volume's reference frame. The Trandation Vector represents the trandation of the current volume
in the reference frame of its mother volume.

Transformations including reflections are not allowed.

To create a Placement one must construct it using:

GAPVPI acenent (GARot ati onMatri x* pRot,
const AThr eeVect or & tlate,
GALogi cal Vol unme* pCurrent Logi cal ,
const GA4String& pNane,
GALogi cal Vol unme* pMot her Logi cal ,
G4bool pMany,
G4i nt pCopyNo,
G4bool pSur f Chk=f al se)
where:

92

Detector Definition and Response

pRot Rotation with respect to its mother volume

tlate Trandlation with respect to its mother volume

pCurrent Logi cal The associated Logical Volume

pName String identifier for this placement

pMot her Logi cal The associated mother volume

pMany For future use. Can be set to false

pCopyNo Integer which identifies this placement

pSur f Chk if true activates check for overlaps with existing vol-
umes

Care must be taken because the rotation matrix is not copied by aG4PVPI acenent . So the user must not modify
it after creating a Placement that uses it. However the same rotation matrix can be re-used for many volumes.

Currently Boolean operations are not implemented at the level of physical volume. So pMany must be false.
However, an alternative implementation of Boolean operations exists. In this approach a solid can be created from
the union, intersection or subtraction of two solids. See Section 4.1.2.2 above for an explanation of this.

The mother volume must be specified for all volumes except the world volume.

An aternative way to specify aPlacement utilizes adifferent method to place the volume. The solid itself ismoved
by rotating and trandlating it to bring it into the system of coordinates of the mother volume. If compared to the
previous construct, the transformation in this case is generated by specifying the same translation with respect to
its mother volume and the inverse of the rotation matrix. This active method can be utilized using the following
constructor:

GAPVPI acenent (GATr ansf or nBD sol i dTransform
GALogi cal Vol unme* pCurrent Logi cal ,
const GAString& pNane,
GALogi cal Vol ume* pMbt her Logi cal ,
G4bool phvany,
G4i nt pCopyNo,
G4bool pSur f Chk=f al se)

An alternative method to specify the mother volume is to specify its placed physical volume. It can be used in
either of the above methods of specifying the placement's position and rotation. The effect will be exactly the
same as for using the mother logical volume.

Note that a Placement VVolume can still represent multiple detector elements. This can happen if several copies
exist of the mother logical volume. Then different detector elements will belong to different branches of the tree
of the hierarchy of geometrical volumes.

4.1.4.2. Repeated volumes

In this case, asingle Physical VVolume represents multiple copies of avolume within its mother volume, allowing
to save memory. This is normally done when the volumes to be positioned follow a well defined rotational or
tranglational symmetry along a Cartesian or cylindrical coordinate. The Repeated V olumes techniqueis available
for volumes described by CSG solids.

Replicas:

Replicas are repeated volumes in the case when the multiple copies of the volume are all identical. The coordinate
axis and the number of replicas need to be specified for the program to compute at run time the transformation
matrix corresponding to each copy.

GAPVRepl i ca(const (AString& pNang,
G4Logi cal Vol une* pCurrent Logi cal ,
GALogi cal Vol une* pMdt her Logi cal, // OR AVPhysi cal Vol une*
const EAXi s pAXi s,

93

Detector Definition and Response

const Aint nRepl i cas,
const (Adoubl e wi dt h,
const GAdoubl e of fset=0)
where:
pName String identifier for the replicated volume
pCurrent Logi cal The associated Logical Volume
pMot her Logi cal The associated mother volume
pPAXi s The axis along with the replication is applied
nRepl i cas The number of replicated volumes
wi dt h Thewidth of asinglereplicaalongtheaxisof replication
of f set Possible offset associated to mother offset along the axis
of replication

APVRepl i ca represents nRepl i cas volumes differing only in their positioning, and completely filling the
containing mother volume. Conseguently if aGAPVRepl i cais'positioned inside agiven mother it MUST bethe
mother's only daughter volume. Replica's correspond to divisions or slices that completely fill the mother volume
and have no offsets. For Cartesian axes, dlices are considered perpendicular to the axis of replication.

The replica's positions are calculated by means of alinear formula. Replication may occur along:
e Cartesian axes (kXAXi s, kYAXi s, KZAxi s)

The replications, of specified width have coordinates of form (-
wi dt h*(nRepl i cas-1)*0. 5+n*wi dt h, 0, 0)

wheren=0.. nRepl i cas- 1 for the case of kXAxi s, and are unrotated.
» Radial axis (cylindrical polar) (kRho)

The replications are cong/tubs sections, centred on the origin and are unrotated.

They haveradii of wi dt h* n+of f set tow dt h* (n+1) +of f set wheren=0. . nRepl i cas-1
» Phi axis (cylindrical polar) (kPhi)

The replications are phi sections or wedges, and of cong/tubs form.
They have phi of of f set +n*wi dt h to of f set +(n+1) *wi dt h wheren=0. . nRepl i cas- 1

The coordinate system of the replicasis at the centre of each replicafor the cartesian axis. For the radial case, the
coordinate system is unchanged from the mother. For the phi axis, the new coordinate system isrotated such that
the X axis bisects the angle made by each wedge, and Z remains parallel to the mother's Z axis.

The solid associated via the replicas logical volume should have the dimensions of the first volume created and
must be of the correct symmetry/type, in order to assist in good visualisation.

ex. For X axisreplicasin abox, the solid should be another box with the dimensions of the replications. (same Y
& Z dimensions as mother box, X dimension = mother's X dimension/nReplicas).

Replicas may be placed inside other replicas, provided the above rule is observed. Normal placement volumes
may be placed insidereplicas, provided that they do not intersect the mother's or any previous replica's boundaries.
Parameterised volumes may not be placed inside.

Because of theserules, it is not possible to place any other volumeinside areplicationinr adi us.
The world volume cannot act as areplica, therefore it cannot be sliced.

During tracking, the trandlation + rotation associated with each GAPVRepl i ca object is modified according to
the currently ‘active' replication. The solid is not modified and consequently has the wrong parameters for the
cases of phi andr replication and for when the cross-section of the mother is not constant along the replication.

94

Detector Definition and Response

Example:

Example4.2. An example of smplereplicated volumeswith GAPVRepl i ca.

GAPVRepl i ca repX("Linear Array",
pRepLogi cal ,
pCont ai ni ngWbt her,
kXAxi s, 5, 10*mm);

G4PVRepl i ca repR("RSlices",
pRepRLogi cal ,
pCont ai ni ngWbt her,
kRho, 5, 10*mm O0);

GAPVRepl i ca repRzZ("RzSli ces",
pRepRZLogi cal ,
&r epR,
kZAxi s, 5, 10*nm);

G4PVRepl i ca repRZPhi (" RZPhi Sli ces",
pRepRZPhi Logi cal ,
&r epRZ,
kPhi, 4, MPI*0.5*rad, 0);

RepXisan array of 5 replicas of width 10*mm, positioned inside and completely filling the volume pointed by
pCont ai ni ngMot her . The mother's X length must be 5* 10* mm=50*mm (for example, if the mother's solid
were a Box of half lengths [25,25,25] then the replica's solid must be a box of half lengths [25,25,5]).

If the containing mother's solid is a tube of radius 50* mm and half Z length of 25* mm, Re pR divides the mother
tube into 5 cylinders (hence the solid associated with pRepRLogi cal must be atube of radius 10* mm, and half
Z length 25*mm); r epRZ divides it into 5 shorter cylinders (the solid associated with pRepRZLogi cal must
be atube of radius 10* mm, and half Z length 5*mm); finally, r epRZPhi dividesit into 4 tube segmentswith full
angle of 90 degrees (the solid associated with pRepRZPhi Logi cal must be atube segment of radius 10* mm,
half Z length 5*mm and delta phi of M_PI*0.5*rad).

No further volumes may be placed inside these replicas. To do so would result in intersecting boundaries due to
ther replications.

Parameterised Volumes:

Parameterised V olumes are repeated volumes in the case in which the multiple copies of avolume can be different
in size, solid type, or material. The solid's type, its dimensions, the material and the transformation matrix can all
be parameterised in function of the copy humber, both when a strong symmetry exist and when it does not. The
user implements the desired parameterisation function and the program computes and updates automatically at
run time the information associated to the Physical Volume.

An example of creating a parameterised volume (by dimension and position) exists in basic ex-
ample B2b. The implementation is provided in the two classes B2bDet ect or Const ructi on and
B2bChanber Par anet eri sati on.

To create a parameterised volume, one must first create its logical volume like t r acker Chanber LV below.
Then one must create his own parameterisation class (B2bChamber Parameterisation) and instantiate an object of
this class (chamber Par am). We will see how to create the parameterisation below.

Example 4.3. An example of Parameterised volumes.

/] Tracker segnents

/1 An exanpl e of Paraneterised vol unes
// Dummy val ues for GATubs -- nodified by paraneterised vol une

GATubs* chanber S
= new GATubs("tracker", 0, 100*cm 100*cm O.*deg, 360.*deq);
f Logi cChanber
= new GALogi cal Vol une(chanber S, f Chanber Mat eri al , " Chanber", 0, 0, 0) ;

95

Detector Definition and Response

G4doubl e firstPosition
GAdoubl e firstLength

-tracker Si ze + chanber Spaci ng;
tracker Lengt h/ 10;

G4doubl e | astLength tracker Lengt h;

G4VPVPar anet eri sati on* chanber Param =
new B2bChanber Par anet eri sati on(

NbOf Chanber s, /1l
firstPosition, [/
chanber Spaci ng, //
chanber W dt h, /1l

NoChanber s

Z of center of first
Z spacing of centers
chanmber wi dth

firstLength, /] initial length
| ast Lengt h) ; /1 final length
// dummy value : kZAxis -- nodified by paraneterised vol une
new APVPar anet eri sed(" Chanber", // their nane
f Logi cChanber, /1 their |ogical volune
trackerLV, /1 Mot her |ogical volune
kZAxi s, /] Are placed along this axis
NbOf Chanber s, /1 Nunber of chanbers

chanber Par am /1l
f CheckOverl aps); //

The general constructor is:

GAPVPar anet eri sed(const GAString&

GALogi cal Vol unme*
GALogi cal Vol ume*

EAXi s
i nt

const
const

GAVPVPar anet eri sati on*

G4bool

Note that for a parameterised volume the user must always specify a mother volume. So the world volume can
never be a parameterised volume, nor it can be sliced. The mother volume can be specified either as a physical

or alogical volume.

pAXxi s specifiesthe tracking optimisation algorithm to apply: if avalid axis (the axis along which the parameter-
isation is performed) is specified, a simple one-dimensional voxelisation algorithm is applied; if "kUndefined" is
specified instead, the default three-dimensional voxelisation algorithm applied for normal placements will be ac-
tivated. In the latter case, more voxelswill be generated, therefore agreater amount of memory will be consumed

by the optimisation algorithm.

The paranetrisation
checki ng overl aps

pNanme,

pCurrent Logi cal ,
pMbt her Logi cal ,
pAXi s,

nRepl i cas,

pPar am
pSur f Chk=f al se)

/1l OR G4VPhysi cal Vol ume*

pSur f Chk if t r ue activates a check for overlaps with existing volumes or paramaterised instances.

The parameterisation mechanism associated to a parameterised volume is defined in the parameterisation class

and its methods. Every parameterisation must create two methods:

» Conput eTr ansf or mat i on defines where one of the copiesis placed,
» Conput eDi mensi ons defines the size of one copy, and
* aconstructor that initializes any member variables that are required.

An exampleisB2bChanber Par anet er i sat i on that parameterises a series of tubes of different sizes

Example4.4. An example of Parameterised tubes of different sizes.

cl ass B2bChanber Par anet eri sati on :

{

voi d Conput eTr ansf or nati on(const &4i nt

publ i c GAVPVPar anet eri sati on

copyNo,

G4VPhysi cal Vol ume *physVol) const;

voi d Conput eDi nensi ons(G4Tubs&
const A4int

tracker Layer,
copyNo,

const (AVPhysi cal Vol une *physVol) const;

96

Detector Definition and Response

These methods works as follows:

The Conmput eTr ansf or mat i on method is called with a copy number for the instance of the parameterisation
under consideration. It must compute the transformation for this copy, and set the physical volume to utilize this
transformation:

voi d B2bChanber Par anet eri sati on: : Conput eTr ansf or nat i on
(const G4int copyNo, GAVPhysi cal Vol ume *physVol) const
{
/1 Note: copyNo will start with zero!
G4doubl e Zposition = fStartZ + copyNo * f Spaci ng;
GAThreeVector origin(0, 0, Zposi tion);
physVol - >Set Tr ansl ati on(ori gi n);
physVol - >Set Rot ati on(0) ;
}

Note that the translation and rotation given in this scheme are those for the frame of coordinates (the passive
method). They are not for the active method, in which the solid is rotated into the mother frame of coordinates.

Similarly the Conput eDi mensi ons method is used to set the size of that copy.

voi d B2bChanber Par anet eri sati on: : Conput eDi nensi ons
(GATubs& tracker Chanber, const 4int copyNo, const G4VPhysi cal Vol une*) const

{
/1 Note: copyNo will start with zero!

G4doubl e rmax = f RmaxFirst + copyNo * fRmaxlncr;
tracker Chanber. Set | nner Radi us(0) ;

tracker Chanber . Set Qut er Radi us(r max) ;

tracker Chanber . Set ZHal f Lengt h(f Hal f W dt h) ;
tracker Chanber . Set St art Phi Angl e(0. *deg) ;

tracker Chanber . Set Del t aPhi Angl e(360. *deg) ;

}

The user must ensure that the type of the first argument of this method (in this example A Tubs &) corresponds
to the type of object the user give to the logical volume of parameterised physical volume.

More advanced usage allows the user:

* to change the type of solid by creating a Conput eSol i d method, or
* to change the material of the volume by creating aConput eMat er i al method. This method can also utilise
information from a parent or other ancestor volume (see the Nested Parameterisation below.)

for the parameterisation.

Example NO7 shows a simple parameterisation by material. A more complex example is provided in exam
pl es/ ext ended/ medi cal / DI COV] where a phantom grid of cellsis built using a parameterisation by ma-
terial defined through a map.

Note

Currently for many cases it is not possible to add daughter volumes to a parameterised volume. Only
parameterised volumes all of whose solids have the same size are allowed to contain daughter volumes.
Whenthesizeor typeof solid varies, adding daughtersisnot supported. So thefull power of parameterised
volumes can be used only for "leaf" volumes, which contain no other volumes.

A hierarchy of volumes included in a parameterised volume cannot vary. Therefore, it is not possible
to implement a parameterisation which can modify the hierachy of volumes included inside a specific
parameterised copy.

For parameterisations of tubes or cons, where the starting Phi and its Del t aPhi angles vary, it
is possible to optimise the regeneration of the trigonometric parameters of the shape, by invoking
Set St art Phi Angl e(newPhi, fal se); SetDel taPhi Angl e (newDPhi), i.e. by specify-
ing with f al se flag to skip the computation of the parameters which will be later on properly initialised
with the call for Del t aPhi .

97

Detector Definition and Response

Advanced parameterisations for 'nested' parameterised volumes

A new type of parameterisation enables a user to have the daughter's material also depend on the copy number
of the parent when a parameterised volume (daughter) is located inside another (parent) repeated volume. The
parent volume can be areplica, a parameterised volume, or adivision if the key feature of modifying its contents
isutilised. (Note: a'nested’ parameterisation inside a placement volume is not supported, because all copies of a
placement volume must be identical at all levels.)

Insuch a" nested" parameterisation , the user must provide a Conput eMat er i al method that utilises the new
argument that represents the touchable history of the parent volume:

/| Sanpl e Paraneterisation
cl ass Sanpl eNest edPar anet eri sation : public GAVNestedParaneterisation

{
public:
/l .. other nethods ...
/1 Mandatory nethod, required and reason for this class
virtual GAMaterial * ConputeMaterial (&AVPhysical Vol une *current Vol ,
const G4int no_lev,
const (4VTouchabl e *parent Touch);
private:

GiMvaterial *materiall, *material 2;

b

The implementation of the method can utilise any information from a parent or other ancestor volume of its
parameterised physical volume, but typically it will use only the copy number:

GAMateri al *
Sanpl eNest edPar anet eri sati on: : Conput eMat eri al (G4VPhysi cal Vol ume *current Vol ,
const G4int no_lev,
const G4VTouchabl e *par ent Touchabl e)

AAMaterial *materi al =0;

/] Get the information about the parent vol unme

G4i nt no_par ent = par ent Touchabl e- >Get Repl i caNunber () ;

Hint no_total = no_parent + no_lev;

/1 A sinple 'checkerboard' pattern of two materials

if(no_total / 2 == 1) material= material 1;

else material= material 2;

// Set the material to the current |ogical volune

GALogi cal Vol ume* current LogVol = current Vol - >Get Logi cal Vol unme() ;
current LogVol - >Set Material (naterial);

return material ;

}

Nested parameterisations are suitable for the case of regular, 'voxel' geometries in which alarge number of 'equal’
volumes are required, and their only difference isin their material. By creating two (or more) levels of parame-
terised physical volumesiit is possible to divide space, while requiring only limited additional memory for very
fine-level optimisation. Thisprovidesfast navigation. Alternative implementations, taking into account the regular
structure of such geometriesin navigation are under study.

Divisions of Volumes
Divisionsin Geant4 are implemented as a specialized type of parameterised volumes.

They serve to divide a volume into identical copies along one of its axes, providing the possibility to define an
offset, and without the limitation that the daugthers have to fill the mother volume asit is the case for the replicas.
In the case, for example, of a tube divided along its radial axis, the copies are not strictly identical, but have
increasing radii, although their widths are constant.

To divide avolume it will be necessary to provide:

1. theaxisof division, and
2. either
« the number of divisions (so that the width of each division will be automatically calculated), or

98

Detector Definition and Response

« the division width (so that the number of divisions will be automatically calculated to fill as much of the
mother as possible), or

« both the number of divisions and the division width (thisis especially designed for the case where the copies
do not fully fill the mother).

An offset can be defined so that the first copy will start at some distance from the mother wall. The dividing copies
will be then distributed to occupy the rest of the volume.

There are three constructors, corresponding to the three input possibilities described above:

 Giving only the number of divisions:

GAPVDI vi si on(const (AString& pNane,
G4Logi cal Vol une* pCurrent Logi cal ,
G4Logi cal Vol une* pMot her Logi cal ,
const EAXxi s pAXis,
const G4i nt nDivi sions,
const GAdoubl e of fset)

* Giving only the division width:

G4PVDi vi si on(const GAString& pNane,
GALogi cal Vol ume* pCurrent Logi cal ,
G4Logi cal Vol une* pMbt her Logi cal ,
const EAXi s pAXis,
const (Adoubl e wi dth,
const G4Adoubl e of fset)

* Giving the number of divisions and the division width:

GAPVDi vi si on(const GAString& pNane,
G4Logi cal Vol une* pCurrent Logi cal ,
G4Logi cal Vol une* pMbt her Logi cal ,
const EAXxi s pAXis,
const 4int nDivisions,
const (Adoubl e wi dth,
const GAdoubl e of fset)

where:

pNane String identifier for the replicated volume

pCurrent Logi cal The associated Logica Volume

pMot her Logi cal The associated mother Logical Volume

pAXi s The axis along which the division is applied

nDi vi si ons The number of divisions

wi dt h The width of asingle division along the axis

of f set Possible offset associated to the mother along the axis
of division

The parameterisation is calculated automatically using the values provided in input. Therefore the dimen-
sions of the solid associated with pCurrent Logi cal will not be used, but recomputed through the
AVPar anet eri sati on: : Conput eDi nensi on() method.

Since G4VPVPar anet er i sat i on may have different Conput eDi mensi on() methodsfor each solid type,
the user must provide a solid that is of the same type as of the one associated to the mother volume.

As for any replica, the coordinate system of the divisions is related to the centre of each division for the carte-
sian axis. For the radial axis, the coordinate system is the same of the mother volume. For the phi axis, the new
coordinate system is rotated such that the X axis bisects the angle made by each wedge, and Z remains parallel
to the mother's Z axis.

99

Detector Definition and Response

As divisions are parameterised volumes with constant dimensions, they may be placed inside other divisions,
except in the case of divisions along theradial axis.

It is also possible to place other volumesinside a volume where a division is placed.

Thelist of volumes that currently support divisioning and the possible division axis are summarised below:

(ABox kXAxi s, kKYAXi s, kKZAXi s
FATubs kRho, kPhi , kZAxi s
ACons kRho, kPhi , kZAxi s
ATrd kXAxi s, KYAXi s, KZAXi s
APar a kXAxi s, kKYAXi s, kKZAXi s
APol ycone kRho, kPhi , kZAxi s
APol yhedra kRho, kPhi , kZAxi s (*)

(*) - APol yhedr a:

e kPhi -thenumber of divisions hasto be the same as solid sides, (i.e. nuni des), the width will not be taken
into account.

In the case of division along kRho of G4Cons, (APol ycone, APol yhedr a, if widthis provided, it istaken
asthe width at the - Z radius; the width at other radii will be scaled to this one.

Examples are given below in listings Example 4.4 and Example 4.5.

Example 4.5. An example of a box division along different axes, with or without offset.

G4Box* not her Solid = new G4Box("not herSolid"*, 0.5*m 0.5*m O0.5*n);

G4ALogi cal Vol ume* not her Log = new G4Logi cal Vol une(not her Sol id, material, "nother",0,0,Q0);
GAPar a* divSolid = new GAPara("divSolid", 0.512*m 1.21*m 1.43*m);

G4ALogi cal Vol ume* chi |l dLog = new GALogi cal Vol une(di vSolid, material, "child",O0,O0,O0);

GAPVDi vi si on di vBox1("division along X giving nDiv",
chil dLog, motherlLog, kXAxis, 5, 0.);

GAPVDI vi si on di vBox2("division along X giving width and of fset",
chil dLog, notherLog, kXAxis, 0.1*m 0.45*m);

GAPVDi vi si on di vBox3("division along X giving nDiv, width and of fset",
chil dLog, motherlLog, kXAxis, 3, 0.1*m 0.5*m;

» di vBox1 isadivision of abox along its X axisin 5 equal copies. Each copy will have a dimension in meters
of[0.2, 1., 1.].

» di vBox2 isadivision of the samebox alongits X axiswith awidth of 0. 1 metersand an offset of 0. 5 meters.
As the mother dimension along X of 1 meter (0. 5* mof halflength), the division will be sized in total 1 -
0. 45 = 0. 55 meters. Therefore, there's space for 5 copies, the first extending from - 0. 05 to 0. 05 meters
in the mother's frame and the last from 0. 35 to 0. 45 meters.

» di vBox3 isadivision of the same box along its X axisin 3 equal copies of width 0. 1 meters and an offset
of 0. 5 meters. Thefirst copy will extend from 0. to 0. 1 metersin the mother's frame and the last from 0. 2
to 0. 3 meters.

Example 4.6. An example of division of a polycone.

G4doubl e* zPl anem = new G4doubl e[3] ;
zPlanenf0] = -1.*m
zPl anenf 1] = - 0. 25*m
zPlanenf2]= 1.*m

G4doubl e* rlnnerm = new G4doubl e[3] ;
rlnnernf 0] =0. ;
rlnnernf1] =0. 1*m
rlnnernf2] =0.5*m

100

Detector Definition and Response

GAdoubl e* rQuterm = new G4doubl e[3] ;
r Qut er nf 0] =0. 2*m
rQut er nf 1] =0. 4*m
rQuternf2]=1.*m
G4APol ycone* not her Sol i d = new 4Pol ycone(" not her Sol i d*, 20.*deg, 180. *deg,
3, zPlanem rlnnerm rQuterm;
GALogi cal Vol ume* not her Log = new ALogi cal Vol ume(not her Sol i d, material, "nother",O0,0,0);

GAdoubl e* zPl aned = new G4doubl e[3] ;
zPl aned[0] = -3.*m
zPl aned[1] = -0.*m
zPlaned[2]= 1.*m
GAdoubl e* rlnnerd = new G4doubl e[3] ;
rlnnerd[0] =0. 2;
rlnnerd[1] =0. 4*m
rlnnerd[2] =0. 5*m
GAdoubl e* rQuterd = new G4doubl e[3] ;
rQut erd[0] =0. 5*m
rQut erd[1] =0. 8*m
rQuterd[2] =2.*m
G4APol ycone* divSolid = new G4Pol ycone("di vSol i d", 0.*deg, 10.*deg,
3, zPlaned, rlnnerd, rQuterd);
GALogi cal Vol ume* chil dLog = new ALogi cal Vol une(di vSolid, material, "child",0,0,0);

GAPVDI vi si on di vPconePhi W "di vi sion al ong phi giving width and of fset",
chil dLog, notherLog, kPhi, 30.*deg, 60.*deg);

GAPVDi vi si on di vPconeZN("di vi sion along Z giving nDiv and offset",
chil dLog, motherlLog, kZAxis, 2, 0.1*m);

» di vPconePhi Wis adivision of a polycone aong its phi axisin egual copies of width 30 degrees with an
offset of 60 degrees. As the mother extends from O to 180 degrees, there's space for 4 copies. All the copies
have a starting angle of 20 degrees (as for the mother) and a phi extension of 30 degrees. They are rotated
around the Z axis by 60 and 30 degrees, so that the first copy will extend from 80 to 110 and the last from
170 to 200 degrees.

» di vPconeZNisadivision of the same polycone along its Z axis. Asthe mother polycone has two sections, it
will be divided in two one-section polycones, the first one extending from -1 to -0.25 meters, the second from
-0.25 to 1 meters. Although specified, the offset will not be used.

4.1.5. Touchables: Uniquely Identifying a Volume

4.15.1. Introduction to Touchables

A touchable for avolume serves the purpose of providing a unique identification for a detector element. This can
be useful for description of the geometry alternative to the one used by the Geant4 tracking system, such as a
Sensitive Detectors based read-out geometry, or a parameterised geometry for fast Monte Carlo. In order to create
atouchable volume, several techniques can be implemented: for example, in Geant4 touchables are implemented
assolidsassociated to atransformation-matrix in the global reference system, or asahierarchy of physical volumes
up to the root of the geometrical tree.

A touchableis ageometrical entity (volume or solid) which has a unique placement in a detector description. Itis
represented by an abstract base class which can be implemented in avariety of ways. Each way must provide the
capabilities of obtaining the transformation and solid that is described by the touchable.

4.15.2. What can a Touchable do?

All &AVTouchabl e implementations must respond to thetwo following "requests’, whereinall cases, by dept h
it is meant the number of levels up in the tree to be considered (the default and current oneis 0):

1. Get Transl ati on(dept h)
2. Get Rot ati on(dept h)

that return the components of the volume's transformation.

Additional capabilities are available from implementations with more information. These have a default imple-
mentation that causes an exception.

101

Detector Definition and Response

Several capahilities are available from touchables with physical volumes:
3. Get Sol i d(dept h) givesthe solid associated to the touchable.
4. Get Vol une(dept h) givesthe physical volume.

5. Get Repl i caNunber (dept h) or Get CopyNunber (dept h) which returnthe copy number of the phys-
ical volume (replicated or not).

Touchables that store volume hierarchy (history) have the whole stack of parent volumes available. Thusiit is
possible to add alittle more state in order to extend its functionality. We add a "pointer" to alevel and a member
function to movethelevel in this stack. Then calling the above member functionsfor another level theinformation
for that level can beretrieved.

Thetop of the history treeis, by convention, the world volume.
6. Get Hi st or yDept h() givesthe depth of the history tree.

7. MoveUpH st or y(num) moves the current pointer inside the touchable to point numlevels up the history
tree. Thus, e.g., caling it with nunm=1 will cause the internal pointer to move to the mother of the current
volume.

WARNING: this function changes the state of the touchable and can cause errorsin tracking if applied to Pre/
Post step touchables.

These methods are valid only for the touchable-history type, as specified also below.
An update method, with different argumentsis available, so that the information in a touchable can be updated:

8. Updat eYour sel f (vol , hi story) takesaphysical volume pointer and can additionally take aNavi -
gat i onHi st ory pointer.

4.1.5.3. Touchable history holds stack of geometry data

As shown in Sections Section 4.1.3 and Section 4.1.4, a logical volume represents unpositioned detector ele-
ments, and a physical volume can represent multiple detector elements. On the other hand, touchables provide
a unique identification for a detector element. In particular, the Geant4 transportation process and the tracking
system exploit touchables as implemented in G4Touchabl eH st ory. The touchable history is the minimal
set of information required to specify the full genealogy of a given physical volume (up to the root of the geo-
metrical tree). These touchable volumes are made available to the user at every step of the Geant4 tracking in
HAVUser St eppi ngActi on.

To createlaccessaGATouchabl eHi st or y the user must message GANavi gat or which provides the method
Cr eat eTouchabl eHi st oryHandl e():

GATouchabl eHi st or yHandl e Cr eat eTouchabl eHi st or yHandl e() const;
thiswill return a handle to the touchable.
The methods that differentiate the touchable-history from other touchables (since they have meaning only for this

type...), are:

G4int Get HistoryDepth() const;
G4int MoveUpHi story(int numlevels =1);

Thefirst method is used to find out how many levels deep in the geometry tree the current volumeis. The second
method asks the touchable to eliminate its deepest level.

As mentioned above, MoveUpHi st or y(num) significantly modifies the state of atouchable.

102

Detector Definition and Response

4.1.6. Creating an Assembly of Volumes

HAAssenbl yVol une is a helper class which allows several logical volumes to be combined together in an
arbitrary way in 3D space. Theresult isaplacement of anormal logical volume, but where final physical volumes
are many.

However, an assembly volume does not act as areal mother volume, being an envelope for its daughter volumes.
Itsrole is over at the time the placement of the logical assembly volume is done. The physical volume objects
become independent copies of each of the assembled logical volumes.

This classis particularly useful when there is a need to create aregular pattern in space of a complex component
which consists of different shapes and can't be obtained by using replicated volumes or parametrised volumes
(see dso Figure 4.2 reful usage of AAssenbl yVol une must be considered though, in order to avoid cases of
"proliferation” of physical volumes all placed in the same mother.

% L
Lylisre

Figure4.2. Examples of assembly of volumes.

4.1.6.1. Filling an assembly volume with its "daughters”

Participating logical volumes are represented as a triplet of <logica volume, trandation, rotation>
(HAAssenbl yTri pl et class).

The adopted approach is to place each participating logical volume with respect to the assembly's coordinate
system, according to the specified translation and rotation.

4.1.6.2. Assembly volume placement

An assembly volume object is composed of a set of logical volumes; imprints of it can be made inside a mother
logical volume.

Since the assembly volume class generates physical volumes during each imprint, the user has no way to specify
identifiers for these. An internal counting mechanism is used to compose uniquely the names of the physical
volumes created by theinvoked Makel nprint (. ..) method(s).

The name for each of the physical volume is generated with the following format:

av_WWW i mpr _XXX_YYY_ZZZ
where:

o WWW - assembly volume instance number

o XXX - assembly volume imprint number

* YYY - the name of the placed logical volume

» ZZZ - thelogical volume index inside the assembly volume

It is however possible to access the constituent physical volumes of an assembly and eventually customise ID
and copy-number.

4.1.6.3. Destruction of an assembly volume

At destruction all the generated physical volumes and associated rotation matrices of theimprintswill be destroyed.
A list of physical volumes created by Makel npri nt () methodiskept, in order to be able to cleanup the objects
when not needed anymore. This requires the user to keep the assembly objects in memory during the whole job

103

Detector Definition and Response

or during the life-time of the G4Navi gat or , logical volume store and physical volume store may keep pointers
to physical volumes generated by the assembly volume.

The Makel mpri nt () method will operate correctly also on transformations including reflections and can be
applied also to recursive assemblies (i.e,, it is possible to generate imprints of assemblies including other assem-
blies). Givingt r ue asthe last argument of the Makel npri nt () method, it is possible to activate the volumes
overlap check for the assembly's constituents (the default isf al se).

At destruction of aGAAssenbl yVol une, al its generated physical volumes and rotation matrices will be freed.

4.1.6.4. Example

This example shows how to use the G4Assenbl yVol ume class. It implements a layered detector where each
layer consists of 4 plates.

In the code below, at first the world volume is defined, then solid and logical volume for the plate are created,
followed by the definition of the assembly volume for the layer.

The assembly volume for the layer is then filled by the plates in the same way as normal physical volumes are
placed inside a mother volume.

Finally the layers are placed inside the world volume as the imprints of the assembly volume (see Example 4.7).

Example4.7. An example of usage of the G4Assenbl yVol une class.

static unsigned int |ayers = 5;

voi d Tst VADet ect or Const ructi on:: Construct Assenbl y()
{
/1 Define world vol une
G4Box* Worl dBox = new G4Box("WBox", worldX/ 2., worldY/2., worldz/2.);
G4Logi cal Vol une* wor | dLV new GALogi cal Vol ume(Worl dBox, sel ectedMaterial, "Wog", 0, 0, 0);
GAVPhysi cal Vol une* wor| dVol new APVPI acenent (0, GAThreeVector (), "Whys", worldLV,
0, false, 0);

/1 Define a plate
G4Box* Pl at eBox = new G4Box("Pl ateBox", plateX/ 2., plateY/ 2., platez/2.);
G4Logi cal Vol une* pl ateLV = new ALogi cal Vol une(Pl at eBox, Pb, "PlateLV', 0, 0, 0);

/1 Define one |layer as one assenbly vol une
GAAssenbl yVol une* assenbl yDet ect or = new (AAssenbl yVol une() ;

// Rotation and translation of a plate inside the assenbly
(ARot ati onMatri x Ra;

AThr eeVect or Ta;

GATr ansfornBD Tr;

/1 Rotation of the assenbly inside the world
HARot ati onMatri x Rm

/1 Fill the assenbly by the plates

Ta.set X(caloxX/4.); Ta.setY(caloY/ 4.); Ta.setZ(0.);
Tr = GATransfornB8D(Ra, Ta) ;

assenbl yDet ect or - >AddPI acedVol une(plateLV, Tr);

Ta.set X(-1*caloX/ 4.); Ta.setY(caloY/4.); Ta.setZ(0.);
Tr = GATransfornB8D(Ra, Ta) ;
assenbl yDet ect or - >AddPI acedVol une(plateLV, Tr);

Ta.set X(-1*caloX/ 4.); Ta.setY(-1*caloY/4.); Ta.setZ(0.);
Tr = GATransfornB8D(Ra, Ta) ;
assenbl yDet ect or - >AddPI acedVol une(plateLV, Tr);

Ta.set X(caloxX/4.); Ta.setY(-1*caloY/4.); Ta.setZ(0.);
Tr = GATransfornB8D(Ra, Ta) ;
assenbl yDet ect or - >AddPI acedVol une(plateLV, Tr);

/1 Now instantiate the |ayers
for(unsigned int i = 0; i < layers; i++)

{

104

Detector Definition and Response

/1 Translation of the assenbly inside the world
GAThreeVector Tn{ 0,0,i*(cal oZ + cal oCal oOf fset) -
Tr = GATransfor n8D(Rm Tm) ;

assenbl yDet ect or - >Makel nprint(worldLV, Tr);

}

firstcCal oPos);

}

The resulting detector will look asin Figure 4.3, below:

Figure4.3. Thegeometry corresponding to Example 4.7.

4.1.7. Reflecting Hierarchies of Volumes

Hierarchies of volumes based on CSG or specific solids can be reflected by means of the
HARefl ecti onFact ory class and GARef | ect edSol i d, which implements a solid that has been shifted
from its original reference frame to a new 'reflected' one. The reflection transformation is applied as a decompo-
sition into rotation and translation transformations.

The factory is asingleton object which provides the following methods:

G4Physi cal Vol unesPair Pl ace(const GATransfornBD& transfornBD,

const GAString& name,
G4Logi cal Vol ume* LV,
GALogi cal Vol ume* not her LV,
G4bool i sMany,
G4i nt copyNo,
G4bool sur f Check=f al se)

G4Physi cal Vol unmesPair Replicate(const GAString&

nane,

(ALogi cal Vol unme*

LV,

GALogi cal Vol ume* not her LV,
EAXi s axi s,
G4i nt nof Repl i cas,
GAdoubl e wi dt h,
GAdoubl e of f set =0)
G4Physi cal Vol unesPair Divi de(const GAString& nane,
GALogi cal Vol une* LV,
G4Logi cal Vol une* not her LV,
EAXi s axi s,
G4i nt nof Di vi si ons,
G4doubl e wi dt h,
HAdoubl e of fset);

The method Pl ace() used for placements, evaluates the passed transformation. In case the transformation con-
tains areflection, the factory will act asfollows:

1. Performs the transformation decomposition.

2. Creates a new reflected solid and logical volume, or retrieves them from a map if the reflected object was
already created.

3. Transforms the daughters (if any) and place them in the given mother.

105

Detector Definition and Response

If successful, the result is a pair of physical volumes, where the second physical volume is a placement in a
reflected mother. Optionally, it isalso possible to force the overlaps check at the time of placement, by activating
thesur f Check flag.

The method Repl i cat e() creates replicas in the given mother. If successful, the result is a pair of physical
volumes, where the second physical volume isareplicain areflected mother.

Themethod Di vi de() createsdivisionsinthegiven mother. If successful, theresultisapair of physical volumes,
where the second physical volumeis adivision in areflected mother. There exists aso two more variants of this
method which may specify or not width or number of divisions.

Notes

e In order to reflect hierarchies containing divided volumes, it is necessary to explicite-
ly instantiate a concrete division factory -before- applying the actua reflection: (i.e. -
APVDI vi si onFactory: : Get |l nstance() ;).

* Reflection of generic parameterised volumesis not possible yet.

Example 4.8. An example of usage of the ARef | ecti onFact ory class.

#i ncl ude "ARefl ecti onFactory. hh"

/] Calor placenent with rotation

(Adoubl e cal Thi ckness = 100*cm

G4doubl e Xpos = cal Thi ckness*1. 5;

GARot ati onMatri x* rot D3 = new ARotati onMatri x();
rot D3- >r ot at eY(10. *deg) ;

G4VPhysi cal Vol une* physi Cal or =

new GAPVPI acenent (r ot D3, /] rotation
GAThr eeVect or (Xpos, 0.,0.), // at (Xpos,O,0)
| ogi cCal or, /1 its logical volume (defined el sewhere)
"Calorinmeter", [/ its nanme
| ogi cHal I, /1 its nmother volunme (defined el sewhere)
fal se, /1 no bool ean operation
0); /'l copy nunber

/] Calor reflection with rotation

I

GATransl at e3D transl ati on(-Xpos, 0., 0.);

GATransfornBD rotation = G4Rot at e3D(*r ot D3) ;

HARefl ect X3D reflection;

ATransfornBD transform = transl ation*rotati on*refl ection;

GARef | ecti onFactory: : I nstance()

->Pl ace(transform // the transformation with refl ection
"Calorinmeter", // the actual nane
| ogi cCal or, /1 the |ogical volune
| ogi cHal |, /1 the nother vol unme
f al se, /1 no bool ean operation
1, /] copy nunber
fal se); /1 no overlap check triggered

/] Replicate |ayers
/1
GARef | ecti onFactory: : | nstance()
->Repl i cate("Layer", /1 1ayer nanme
| ogi cLayer, // layer |ogical volune (defined el sewhere)
| ogicCalor, // its nother

kXAXi s, /] axis of replication
5, /1 nunber of replica
20*cm ; /1 width of replica

4.1.8. The Geometry Navigator

Navigation through the geometry at tracking time is implemented by the class G4Navi gat or . The navigator
is used to locate points in the geometry and compute distances to geometry boundaries. At tracking time, the
navigator isintended to be the only point of interaction with tracking.

106

Detector Definition and Response

Internally, the G4ANavigator has several private helper/utility classes:

G4NavigationHistory - stores the compounded transformations, replication/parameterisation information, and
volume pointers at each level of the hierarchy to the current location. The volume types at each level are aso
stored - whether normal (placement), replicated or parameterised.

G4Nor malNavigation - provides location & distance computation functions for geometries containing 'place-
ment' volumes, with no voxels.

G4V oxelNavigation - provides location and distance computation functions for geometries containing ‘place-
ment' physical volumes with voxels. Internally a stack of voxel information is maintained. Private functions
alow for isotropic distance computation to voxel boundaries and for computation of the 'next voxel' in a spec-
ified direction.

G4Par ameterisedNavigation - provideslocation and distance computation functionsfor geometries containing
parameterised volumeswith voxels. Voxel information is maintained similarly to G4Voxel Navi gat i on, but
computation can also be simpler by adopting voxels to be one level deep only (unrefined, or 1D optimisation)
G4ReplicaNavigation - provides location and distance computation functions for replicated volumes.

In addition, the navigator maintains a set of flags for exiting/entry optimisation. A navigator is not a singleton
class; thisis mainly to allow adesign extension in future (e.g geometrical event biasing).

4.1.8.1. Navigation and Tracking

The main functions required for tracking in the geometry are described below. Additional functions are provided
to return the net transformation of volumes and for the creation of touchables. None of the functions implicitly
requires that the geometry be described hierarchically.

SetWorldVolume()

Setsthe first volume in the hierarchy. It must be unrotated and untranslated from the origin.
L ocateGlobalPointAndSetup()

L ocates the volume containing the specified global point. Thisinvolvesatraverse of the hierarchy, requiring the
computation of compound transformations, testing replicated and parameterised volumes (etc). To improve ef-
ficiency this search may be performed relative to the last, and thisis the recommended way of calling the func-
tion. A 'relative’ search may be used for thefirst call of the function which will result in the search defaulting to a
search from the root node of the hierarchy. Searches may also be performed usinga&Touchabl eHi st ory.
L ocateGlobalPointAndUpdateT ouchableHandlg()

First, search the geometrical hierarchy like the above method Locat ed obal Poi nt AndSet up() . Then
use the volume found and its navigation history to update the touchable.
ComputeStep()

Computesthe distance to the next boundary intersected al ong the specified unit direction from a specified point.
The point must be have been located prior to calling Conput eSt ep() .

When calling Conput eSt ep() , aproposed physics step is passed. If it can be determined that the first inter-
section lies at or beyond that distance then k1 nf i ni t y isreturned. In any case, if the returned step is greater
than the physics step, the physics step must be taken.

SetGeometricallyLimitedStep()

Informs the navigator that the last computed step was taken in its entirety. This enables entering/exiting opti-
misation, and should be called prior to calling Locat ed obal Poi nt AndSet up() .
CreateTouchableHistory()

Creates a G4ATouchabl eHi st ory object, for which the caler has deletion responsibility. The ‘touchable'
volume is the volume returned by the last Locate operation. The object includes a copy of the current Naviga-
tionHistory, enabling the efficient relocation of points in/close to the current volume in the hierarchy.

Asstated previoudly, the navigator makes use of utility classesto perform location and step computation functions.
The different navigation utilities manipulate the GANavi gat i onHi st ory object.

107

Detector Definition and Response

In Locat ed obal Poi nt AndSet up() the process of locating a point breaks down into three main stages -
optimisation, determination that the point is contained with a subtree (mother and daughters), and determination of
the actual containing daughter. The latter two can be thought of as scanning first ‘up' the hierarchy until avolume
that is guaranteed to contain the point is found, and then scanning 'down’ until the actual volume that contains
the point is found.

In Conput eSt ep() threetypes of computation are treated depending on the current containing volume:

» The volume contains normal (placement) daughters (or none)
» The volume contains a single parameterised volume object, representing many volumes
» Thevolumeisareplicaand contains normal (placement) daughters

4.1.8.2. Using the navigator to locate points

More than one navigator objects can be created inside an application; these navigators can act independently for
different purposes. The main navigator which is"activated automatically at the startup of asimulation programis
the navigator used for the tracking and attached the world volume of the main tracking (or mass) geometry.

The navigator for tracking can be retrieved at any state of the application by messagging the
GATr ansport ati onManager :

G4Navi gat or* tracking_navi gator =
GATr ansport ati onManager : : Cet | nst ance() - >Get Navi gat or For Tr acki ng() ;

Thisalso alowsto retrieve at any time a pointer to the world volume assigned for tracking:

G4VPhysi cal Vol ume* tracki ng_world = tracki ng_navi gat or - >Get Wor | dVol une() ;

The navigator for tracking also retains all theinformation of the current history of volumestransversed at a precise
moment of the tracking during arun. Therefore, if the navigator for tracking is used during tracking for locating a
generic point in the tree of volumes, the actual particle gets also -relocated- in the specified position and tracking
will be of course affected !

In order to avoid the problem above and provide information about location of a point without affecting the track-
ing, it is suggested to either use an alternative G4Navi gat or object (which can then be assigned to the world-
volume), or access the information through the step.

Using the 'step’ to retrieve geometrical information

During the tracking run, geometrical information can be retrieved through the touchable handle associated to the
current step. For example, to identify the exact copy-number of a specific physical volume in the mass geometry,
one should do the following:

// Gven the pointer to the step object ...
Il
AStep* aStep = ..;

/1 ... retrieve the 'pre-step' point
/1
GASt epPoi nt* preStepPoi nt = aSt ep->Get PreSt epPoi nt () ;

I/l ... retrieve a touchabl e handl e and access to the information

/1

G Touchabl eHandl e t heTouchabl e = preSt epPoi nt - >Get Touchabl eHandl e() ;
G4i nt copyNo = theTouchabl e- >Get CopyNunber () ;

G4i nt not her CopyNo = t heTouchabl e- >Get CopyNunber (1) ;

To determine the exact position in global coordinates in the mass geometry and convert to local coordinates (local
to the current volume):

GAThr eeVect or wor | dPosi ti on
GAThr eeVect or | ocal Position

preSt epPoi nt - >Get Posi ti on();
t heTouchabl e- >Get Hi story() - >

108

Detector Definition and Response

Get TopTr ansf or () . Tr ansf or nPoi nt (wor | dPosi ti on) ;
Using an alternative navigator to locate points

In order to know (when in thei dl e state of the application) in which physical volume a given point is located
in the detector geometry, it is necessary to create an aternative navigator object first and assign it to the world
volume:

GANavi gat or* aNavi gator = new ANavi gat or () ;
aNavi gat or - >Set Wor | dVol urme(wor | dVol umePoi nt er) ;

Then, locate the point myPoi nt (defined in global coordinates), retrieve a touchable handle and do whatever
you need with it:

aNavi gat or - >Locat ed obal Poi nt AndSet up(myPoi nt) ;
GATouchabl eHi st or yHandl e aTouchabl e =
aNavi gat or - >Cr eat eTouchabl eHi st or yHandl e() ;

/] Do whatever you need with it ...
// ... convert point in |ocal coordinates (local to the current vol une)
Il
GAThr eeVect or | ocal Position = aTouchabl e->CGet Hi story()->
Get TopTr ansf or () . Tr ansf or nPoi nt (myPoi nt) ;

/1 ... convert back to gl obal coordinates system
GAThr eeVect or gl obal Posi tion = aTouchabl e->Get Hi story()->
Get TopTransforn() .| nverse(). Transf or nPoi nt (| ocal Posi tion);

If outside of the tracking run and given a generic local position (local to a given volume in the geometry tree),
it is -not- possible to determine a priori its global position and convert it to the global coordinates system. The
reason for thisis rather simple, nobody can guarantee that the given (local) point is located in the right -copy- of
the physical volume! In order to retrieve this information, some extra knowledge related to the absolute position
of the physical volume is required first, i.e. one should first determine a global point belonging to that volume,
eventually making a dedicated scan of the geometry tree through a dedicated G4Navi gat or object and then
apply the method above after having created the touchable for it.

4.1.8.3. Navigation in parallel geometries

Sincerelease 8.2 of Geant4, it is possible to define geometry treeswhich arepar al | el to the tracking geometry
and having them assigned to navigator objects that transparently communicate in sync with the normal tracking
geometry.

Parallel geometries can be defined for several uses (fast shower parameterisation, geometrical biasing, particle
scoring, readout geometries, etc ...) and can overlap with the mass geometry defined for the tracking. The par -
al I el transportation will be activated only after the registration of the parallel geometry in the detector descrip-
tion setup; see Section Section 4.7 for how to define a parallel geometry and register it to the run-manager.

The GATr ansport at i onManager provides all the utilities to verify, retrieve and activate the navigators as-
sociated to the various parallel geometries defined.

4.1.8.4. Fast navigation in regular patterned geometries and phan-
toms

Sincerelease 9.1 of Geant4, a specialised navigation algorithm has been introduced to allow for optimal memory
use and extremely efficient navigation in geometries represented by aregular pattern of volumes and particularly
three-dimensional grids of boxes. A typical application of this kind is the case of DICOM phantoms for medical
physics studies.

Theclass ARegul ar Navi gat i on isused and automatically activated when such geometries are defined. Itis
required to the user to implement a parameterisation of the kind G4Phant onPar anet eri sat i on and place
the parameterised volume containing it in acontainer volume, so that al cellsinthethree-dimensional grid (voxels)
completely fill the container volume. This way the location of a point inside a voxel can be done in afast way,

109

Detector Definition and Response

transforming the position to the coordinate system of the container volume and doing a simple calculation of the
kind:

copyNo_x = (Il ocal Poi nt. x() +f Voxel Hal f X*f NoVoxel X) / (f Voxel Hal f X*2.)

where f Voxel Hal f X is the half dimension of the voxel along X and f NoVoxel X is the number of vox-
els in the X dimension. Voxel 0 will be the one closest to the corner (f Voxel Hal f X*f NoVoxel X,
f Voxel Hal f Y*f NoVoxel Y, fVoxel Hal f Z*f NoVoxel Z) .

Having the voxels filling completely the container volume alows to avoid the lengthy computation of Com
put eSt ep() andConput eSaf et y methodsrequired inthetraditional navigation algorithm. Inthiscase, when
atrack isinside the parent volume, it has always to be inside one of the voxels and it will be only necessary to
calculate the distance to the walls of the current voxel.

Skipping borders of voxels with same material

Another speed optimisation can be provided by skipping the frontiers of two voxels which the same material
assigned, so that bigger steps can be done. This optimisation may be not very useful when the number of materials
isvery big (in which case the probability of having contiguous voxels with same materia isreduced), or when the
physical step is small compared to the voxel dimensions (very often the case of electrons). The optimisation can
be switched off in such cases, by invoking the following method with argument ski p = O:

Phantoms with only one material

If you want to describe a phantom of a unique material, you may spare some memory by not filling the set of
indices of materials of each voxel. If the method Set Mat eri al | ndi ces() isnot invoked, the index for all
voxelswill be O, that isthe first (and unique) material in your list.

G4Regul ar Par anet eri sati on: : Set Ski pEqual Mat eri al s(G4bool skip);
Example

To use the gspecidised navigation, it is required to first create an object of type
GAPhant onPar anet eri sati on:

GAPhant onPar anet eri sati on* param = new G4APhant onPar anet eri sation();

Then, fill it with the all the necessary data:

/| Voxel dimensions in the three di mensions
Il

G4doubl e hal f X
(Adoubl e hal fY ..
HAdoubl e halfz = ...;

par am >Set Voxel Di nensi ons(hal fX, halfY, halfzZ);

/1 Nunmber of voxels in the three dimensions
/1

G4i nt nVoxel X
G4i nt nVoxel Y
G4int nVoxel Z = ... ;

par am >Set NoVoxel (nVoxel X, nVoxel Y, nVoxel Z);

I/ Vector of materials of the voxels

/1

std::vector < Avaterial* > theMateri al s;
theMateri al s. push_back(new GAMaterial (...
theMateri al s. push_back(new GAMaterial (...
param >Set Materi al s(theMaterials);

/1] List of material indices

|/ For each voxel it is a nunber that correspond to the index of its
/!l material in the vector of materials defined above;

/1

size_t* matel Ds = new si ze_t [nVoxel X*nVoxel Y*nVoxel Z] ;

110

Detector Definition and Response

mat el Ds[0]
mat el Ds[1]

no;
ni;

par am >Set Mat eri al | ndi ces(matel Ds);

Then, define the volume that contains all the voxels:
G4Box* cont_solid = new G4Box("Phant onCont ai ner", nVoxel X*hal f X. , nVoxel Y*hal f Y., nVoxel Z*hal f Z) ;

GALogi cal Vol une* cont _|l ogic =
new (ALogi cal Vol ume(cont _sol i d,

mat ePat i ent, // material is not relevant here...
" Phant onCont ai ner",
0, 0, 0);
G4VPhysi cal Vol ume * cont _phys =
new GAPVPl acenent (rotm /1 rotation
pos, // translation
cont _| ogi c, /1 |ogical volune
" Phant onCont ai ner", /1 nane
wor | d_| ogi c, /'l nother vol une
fal se, /1 No op. bool.
1); /1l Copy nunber

The physical volume should be assigned as the container volume of the parameteri sation:

par am >Bui | dCont ai ner Sol i d(cont _phys) ;

[/ Assure that the voxels are conpletely filling the container vol ume
Il
par am >CheckVoxel sFi | | Cont ai ner (cont_sol i d->Cet XHal f Lengt h(),

cont _sol i d- >Get yHal f Lengt h(),

cont _sol i d->Get zHal f Lengt h());

/1 The paraneterised vol une which uses this paraneterisation is placed
/1 in the container |ogical volune

/1

GAPVPar aneteri sed * patient_phys =

new APVPar aneteri sed("Patient", // name
patient _| ogi c, /1 1ogical volune
cont _| ogi c, // nother vol une
kXAXi s, /] optimsation hint
nVoxel X* nVoxel Y*nVoxel Z, // nunber of voxels
paran ; /] paraneterisation

/1 Indicate that this physical volume is having a regular structure
/1
pati ent _phys->Set Regul ar Structurel d(1);

An example showing the application of the optimised navigation algorithm for phantoms geometries is avail-
able in exanpl es/ ext ended/ medi cal / DI COM It implements a real application for reading DI COMim-
ages and convert them to Geant4 geometries with defined materials and densities, allowing for different imple-
mentation solutions to be chosen (non optimised, classical 3D optimisation, nested parameterisations and use of
APhant onPar anet eri sati on).

4.1.8.5. Run-time commands

When running in verbose mode (i.e. the default, G4AVERBOSE set while installing the Geant4 kernel libraries),
the navigator provides a few commands to control its behavior. It is possible to select different verbosity levels
(up to 5), with the command:

geonetry/ navi gator/ verbose [verbose_| evel]

or to force the navigator to run in check mode:

geonet ry/ navi gat or/ check_node [true/fal se]

The latter will force more strict and less tolerant checks in step/safety computation to verify the correctness of
the solids' response in the geometry.

111

Detector Definition and Response

By combining check_mode with verbosity level-1, additional verbosity checks on the response from the solids
can be activated.

4.1.8.6. Setting Geometry Tolerance to be relative

Thetolerance value defining the accuracy of tracking on the surfacesisby default set to areasonably small value of
10E-9 mm. Such accuracy may be however redundant for use on simulation of detectors of big size or macroscopic
dimensions. Sincerelease 9.0, it is possible to specify the surface tolerance to be relative to the extent of theworld
volume defined for containing the geometry setup.

The class GACGeonet r yManager can be used to activate the computation of the surface tolerance to be relative
to the geometry setup which has been defined. It can be done this way:

G4Geonet ryManager : : Get | nst ance() - >Set Wor | dvaxi nunExt ent (Wor | dExt ent) ;

where, Wr | dExt ent isthe actual maximum extent of the world volume used for placing the whole geometry
setup.

Such call to GAGeonet r yManager must bedone befor e defining any geometrical component of the setup (solid
shape or volume), and can be done only once'!

TheclassACGeorret r yTol er ance isto be used for retrieving the actual values defined for tolerances, surface
(Cartesian), angular or radial respectively:

GACGeonet ryTol erance: : Get | nst ance() - >Get Sur f aceTol er ance() ;
GACeonet ryTol erance: : Get | nst ance() - >Get Angul ar Tol er ance() ;
GACGeonet ryTol erance: : Get | nst ance() - >Get Radi al Tol erance() ;

4.1.9. A Simple Geometry Editor

GGE is the acronym for Geant4 Graphical Geometry Editor. GGE aims to assist physicists who have a little
knowledge on C++ and the Geant4 tool kit to construct his or her own detector geometry. In essence, GGE is made
up of a set of tables which can contain all relevant parameters to construct a simple detector geometry. Tables
for scratch or compound materials, tables for logical and physical volumes are provided. From the values in the
tables, C++ source codes are automatically generated.

GGE provides methods to:

1. construct a detector geometry including G4El ement , AMat eri al , (ASol i ds, (ALogi cal Vol une,
APVPI acenent , etc.

. View the detector geometry using existing visualization system, DAWN

3. keep the detector object in a persistent way, either in GDML format (currently only logical volumes are sup-
ported) or Java serialized format.

. produce corresponding C++ codes after the norm of Geant4 toolkit

5. make a Geant4 executable, in collaboration with another component of MOMO, i.e., GPE, or Geant4 Physics

Editor.

N

N

GGE can be found in the standard Geant4 distribution under the $GAI NSTALL/ envi r onment s/ MO
MO MOMO. j ar . JRE (Java Run-time Environment) is prerequisite to run MOMO.jar, Java archive file of MO-
MO. MOMO contains GGE, GPE, GAG and other helper tools. Further information is available from the Web
pages below.

MOMO = GGE + GPE + GAG: http://lwww-geant4.kek.jp/~yoshidah
4.1.9.1. Materials: elements and mixtures

GGE provides the database of elementsin the form of the periodic table, from which users can select el ement(s) to
construct new materials. They can be loaded, used, edited and saved as Java persistent objects or in a GDML file.

112

http://www-geant4.kek.jp/~yoshidah

Detector Definition and Response

In $G41 NSTALL/ envi r onment s/ MOMO, a pre-constructed database of materials taken from the PDG book,
PDG. xm ispresent.

Users can a so create new materials either from scratch or by combining other materials.

* By selecting an element in the periodic table, default values as shown below are copied to arow in the table.

Use Name |A z Density |Unit State Temper- | Unit Pressure | Unit
ature

Use marks the used materials. Only the elements and materials used in the logical volumes are kept in the
detector object and are used to generate C++ constructors.

» By sdlecting multiple elements in the periodic table, a material from a combination of elements is assigned to
arow of the compound material table. The minimum actions user have to do is to give a name to the material
and defineits density.

Use Name Elements |Density | Unit State Tempera- |Unit Pressure |Unit
ture

By clicking the column Elements, a new window is open to select one of two methods:
« Add an element, giving its fraction by weight
« Add an element, giving its number of atoms.

4.1.9.2. Solids

The most popular CSG solids (ABox, GATubs, G4Cons, G4Tr d) and specific BREPs solids (Pcons, Pgons)
are supported. All relevant parameters of such asolid can be specified in the parameter table, which pops up upon
selection.

Color, or the visualization attribute of alogical volume can be created, using color chooser panel. Users can view
each solid using DAWN.

4.1.9.3. Logical Volume

GGE can specify the following items:

\ Name \ Solid Material VisAttribute

The lists of solid types, names of the materials defined in the material tables, and names of user-defined visual-
ization attributes are shown automatically in respective table cell for user's choices.

The construction and assignment of appropriate entities for G4Fi el dvanager and
AVSensi tiveDet ect or areleft to the user.

4.1.9.4. Physical Volume

Geant4 enables users to create a physical volume in different ways; the mother volume can be either alogical or
a physical one, spatial rotation can be either with respect to the volume or to the frame to which the volume is
attached. GGE is prepared for such four combinatorial casesto construct a physical volume.

Five simple cases of creating physical volumes are supported by GGE. Primo, asingle copy of aphysical volume
can be created by atrandlation and rotation. Secondo, repeated copies can be created by repeated linear translations.
A logica volume is trandlated in a Cartesian direction, starting from the initial position, with a given step size.
Mother volume can be either another logical volume or a physical volume.

Name Logi- Type and|Many X0, YO0, ZO|Direction |StepSize |Unit CopyNum-
caVolume |name of ber
Mother-
Volume

113

Detector Definition and Response

Third, repeated copies are created by rotation around an axis, placing an object repeatedly on a “cylindrical"
pattern. Fourth, replicas are created by slicing a volume along a Cartesian direction. Fifth, replicas are created by
cutting avolume cylindrically.

4.1.9.5. Generation of C++ code:

User has to type in a class name to his geometry, for example, MyDet ect or Const r ucti on. Then, with a
mouse button click, source codesin the form of anincludefile and asourcefile are created and shown in the editor
pandl. In this example, they are MyDet ect or Const r ucti on. cc and MyDet ect or Const ructi on. hh
files. They reflect al current user modifications in the tables in real-time.

4.1.9.6. Visualization

The whole geometry can be \visualized after the compilation of the source code
MyDet ect or Const ruct i on. cc with appropriate parts of Geant4. (In particular only the geometry and vi-
sualization, together with the small other parts they depend on, are needed.) MOMO provides Physics Editor to
create standard el ectromagnetic physics and a minimum main program. See the on-line document in MOMO.

4.1.10. Converting Geometries from Geant3.21

4.1.10.1. Approach

G3toG4 isthe Geant4 facility to convert GEANT 3.21 geometries into Geant4. Thisis done in two stages:

1. Theuser suppliesa GEANT 3.21 RZ-file (.rz) containing the initialization data structures. An executabler z-
t 0g4 readsthisfile and produces an ASCII call list file containing instructions on how to build the geometry.
The source code of r zt 0g4 is FORTRAN.

2. Acdl listinterpreter (G4Bui | dGeom cc) readstheseinstructions and builds the geometry in the user's client
code for Geant4.

4.1.10.2. Importing converted geometries into Geant4

Two examples of how to use the call list interpreter are supplied in the directory exanpl es/ ext end-
ed/ g3t og4:

1. cl t og4 isasimple example which simply invokes the call list interpreter method (4 Bui | dGeomfrom the
G3t 0ADet ect or Const ruct i on class, builds the geometry and exits.

2. cl Geonet ry, ismore complete and is patterned as for the basic Geant4 examples. It also invokesthe call list
interpreter, but in addition, allows the geometry to be visualized and particles to be tracked.

To compile and build the G3toG4 libraries, you need to have set in your environment the variable
ALI B_BU LD _G3TOHA at thetime of installation. The G3toG4 libraries are not built by default. Then, simply

type
gnmake
from the top-level sour ce/ g3t 0g4 directory.

To build the converter executabler zt og4, smply type

gnmeke bin

To make everything, simply type:

gmake gl obal

Toremove all G3t o4 libraries, executables and .d files, simply type

114

Detector Definition and Response

grmeke cl ean

4.1.10.3. Current Status

The package has been tested with the geometries from experiments like: BaBar, CMS, Atlas, Alice, Zeus, L3,
and Opal.

Here is a comprehensive list of features supported and not supported or implemented in the current version of
the package:

» Supported shapes: all GEANT 3.21 shapes except for GTRA, CTUB.

» PGON, PCON are built using the specific solids G4Pol ycone and (4Pol yhedr a.

e GEANT 3.21 MANY feature is only partially supported. MANY positions are resolved in the G3t o AMANY()
function, which has to be processed before G3t 0G4Bui | dTr ee() (it is not called by default). In order
to resolve MANY, the user code has to provide additional info using G4gsbool (G4String vol Nane,
AString manyVol Nane) function for all the overlapping volumes. Daughters of overlapping volumes
are then resolved automatically and should not be specified viaGsbool .

Limitation: avolumewith aMANY position can have only this one position; if more than one position is needed
anew volume has to be defined (gsvol u()) for each position.

» GSDV* routinesfor dividing volumes are implemented, using GAPVRepl i cas, for shapes:
» BOX, TUBE, TUBS, PARA - all axes,
* CONE, CONS - axes 2, 3;
* TRD1, TRD2, TRAP - axis 3;
* PGON, PCON - axis 2;
* PARA -axis1; axis 2,3 for aspecial case

» GSPOSP isimplemented viaindividual logical volumes for each instantiation.

* GSROTMis implemented. Reflections of hierachies based on plain CSG solids are implemented through the
G3Di vi si on class.

 Hitsare not implemented.

» Conversion of GEANT 3.21 magnetic field is currently not supported. However, the usage of magnetic field
has to be turned on.

4.1.11. Detecting Overlapping Volumes

4.1.11.1. The problem of overlapping volumes

Volumes are often positioned within other volumes with the intent that one is fully contained within the other.
If, however, a volume extends beyond the boundaries of its mother volume, it is defined as overlapping. It may
also be intended that volumes are positioned within the same mother volume such that they do not intersect one
another. When such volumes do intersect, they are also defined as overlapping.

The problem of detecting overlaps between volumesis bounded by the complexity of the solid model description.
Hence it requires the same mathematical sophistication which is needed to describe the most complex solid topol -
ogy, in general. However, atunable accuracy can be obtained by approximating the solids viafirst and/or second
order surfaces and checking their intersections.

4.1.11.2. Detecting overlaps: built-in kernel commands

In general, the most powerful clash detection algorithms are provided by CAD systems, treating the intersection
between the solids in their topological form.

Geant4 provides some built-in run-time commands to activate verification tests for the user-defined geometry:

geonetry/test/grid_test [recursion_flag]
-->to start verification of geonetry for overlapping regions
based on standard lines grid setup. If the "recursion_flag" is

115

Detector Definition and Response

set to 'false' (the default), the check is limted to the first
depth I evel of the geonetry tree; otherwise it visits recursively
the whol e geonetry tree. In the latter case, it nay take a |long
tine, depending on the conplexity of the geonetry.
geonetry/test/cylinder_test [recursion_flag]

--> shoots lines according to a cylindrical pattern. If the
"recursion_flag" is set to 'false' (the default), the check is
limted to the first depth level of the geonetry tree; otherw se
it visits recursively the whole geonetry tree. In the |atter case,
it my take a long tine, depending on the conplexity of the geonetry.

geonetry/test/line_test [recursion_flag]

--> shoots a line according to a specified direction and position
defined by the user. If the "recursion_flag" is set to 'false'
(the default), the check is limted to the first depth |evel of the
geonetry tree; otherwise it visits recursively the whol e geonetry
tree.

geonetry/test/position

-->to specify position for the Iine_test.

geonetry/test/direction

-->to specify direction for the line_test.

geonetry/test/grid_cells

-->to define the resolution of the lines in the grid test as nunber
of cells, specifying themfor each dinmension, X, Y and Z.

The new settings will be applied to the grid_test conmand.
geonetry/test/cylinder_geonetry

-->to define the details of the cylinder geometry, by specifying:

nPhi - nunber of |ines per Phi
nZ - nunber of Z points
nRho - nunber of Rho points
The new settings will be applied to the cylinder_test comrand.
geonetry/test/cylinder_scal ez

-->to define the resolution of the cylinder geonetry, by specifying
the fraction scale for points along Z.

The new settings will be applied to the cylinder_test comrand.
geonetry/test/cylinder_scal eRho

-->to define the resolution of the cylinder geonetry, by specifying
the fraction scale for points along Rho.

The new settings will be applied to the cylinder_test comrand.
geonetry/test/recursion_start

-->to set the initial level in the geonetry tree for starting the
recursion (default value being zero, i.e. the world vol unme).

The new settings will then be applied to any recursive test.
geonetry/test/recursion_depth

-->to set the depth in the geonetry tree for recursion, so that
recursion will stop after having reached the specified depth (the
default being the full depth of the geonetry tree).

The new settings will then be applied to any recursive test.

To detect overlapping volumes, the built-in test usesthe intersection of solidswith linear trajectories. For example,
consider Figure 4.4:

Bothel Volume

C
A

Figure4.4. Different cases of placed volumes overlapping each other.

]

\

Here we have aline intersecting some physical volume (large, black rectangle). Belonging to the volume are four
daughters: A, B, C, and D. Indicated by the dots are the intersections of the line with the mother volume and the
four daughters.

This example has two geometry errors. First, volume A sticks outside its mother volume (this practice, sometimes
used in GEANT3.21, is not alowed in Geant4). This can be noticed because the intersection point (leftmost
magenta dot) lies outside the mother volume, as defined by the space between the two black dots.

116

Detector Definition and Response

The second error is that daughter volumes A and B overlap. This is noticeable because one of the intersections
with A (rightmost magentadot) isinside the volume B, as defined as the space between the red dots. Alternatively,
one of the intersections with B (leftmost red dot) is inside the volume A, as defined as the space between the
magenta dots.

Each of these two types of errors is represented by a line segment, which has a start point, an end point, and, a
length. Depending on the type of error, the points are most clearly recognized in either the coordinate system of
the volume, the global coordinate system, or the coordinate system of the daughtersinvolved.

Also notice that certain errors will be missed unlessalineis supplied in precisely the correct path. Unfortunately,
it is hard to predict which lines are best at uncovering potential geometry errors. Instead, the geometry testing
code uses agrid of lines, in the hope of at least uncovering gross geometry errors. More subtle errors could easily
be missed.

Another difficult issue is roundoff error. For example, daughters C and D lie precisaly next to each other. It is
possible, due to roundoff, that one of the intersections points will lie just dightly inside the space of the other. In
addition, a volume that lies tightly up against the outside of its mother may have an intersection point that just
dlightly lies outside the mother.

To avoid spurious errors caused by roundoff, a rather generous tolerance of 0.1 micron is used by default. This
tolerance can be adjusted as needed by the application through the run-time command:

geonetry/test/tol erance <new val ue>

Finally, notice that no mention is made of the possible daughter volumes of A, B, C, and D. To keep the code
simple, only theimmediate daughters of avolume are checked at one pass. To test these "granddaughter” volumes,
the daughters A, B, C, and D each have to be tested themselvesin turn. To make this more automatic, an optional
recursivealgorithmisincluded; it first testsatarget volume, thenit loops over all daughter volumesand callsitself.

Pay attention! For a complex geometry, checking the entire volume hierarchy can be extremely time consuming.

4.1.11.3. Detecting overlaps at construction

Since release 8.0, the Geant4 geometry modeler provides the ability to detect overlaps of placed volumes (nor-
mal placements or parameterised) at the time of construction. This check is optional and can be activated when
instantiating a placement (see GAPVPI acenent constructor in Section 4.1.4.1) or a parameterised volume (see
(APVPar anet er i sed constructor in Section 4.1.4.2).

The positioning of that specific volume will be checked against all volumes in the same hierarchy level and its
mother volume. Depending on the complexity of the geometry being checked, the check may require considerable
CPU time; it istherefore suggested to use it only for debugging the geometry setup and to apply it only to the part
of the geometry setup which requires debugging.

The classes GAPVPI acenent and GAPVPar anet er i sed also provide a method:

G4bool CheckOverl aps(&4i nt res=1000, GAdoubl e tol =0., (Abool verbose=true)

which will force the check for the specified volume, and can be therefore used to verify for overlaps also once
the geometry is fully built. The check verifiesif each placed or parameterised instance is overlapping with other
instances or with its mother volume. A default resolution for the number of points to be generated and verified
is provided. The method returnst r ue if an overlap occurs. It is also possible to specify a "tolerance" by which
overlaps not exceeding such quantity will not be reported; by default, all overlaps are reported.

Using thevisualization driver: DAVID

The Geant4 visualization offers a powerful debugging tool for detecting potential intersections of physical vol-
umes. The Geant4 DAVID visualization tool can infact automatically detect the overlaps between the volumes
defined in Geant4 and converted to a graphical representation for visualization purposes. The accuracy of the

117

http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAVID.html

Detector Definition and Response

graphical representation can be tuned onto the exact geometrical description. In the debugging, physical-volume
surfaces are automatically decomposed into 3D polygons, and intersections of the generated polygons are investi-
gated. If apolygon intersects with another one, physical volumes which these polygons belong to are visualized in
color (red is the default). The Figure 4.5 below is a sample visualization of a detector geometry with intersecting
physical volumes highlighted:

Figure4.5. A geometry with overlapping volumes highlighted by DAVID.

At present physical volumes made of the following solids are able to be debugged: G4Box, G4Cons, G4Par a,
ASphere, ATrd, GATr ap, ATubs. (Existence of other solidsis harmless.)

Visual debugging of physical-volume surfaces is performed with the DAWNFILE driver defined in the visual-
ization category and with the two application packages, i.e. Fukui Renderer "DAWN" and a visual intersection
debugger "DAVID". DAWN and DAVID can be downloaded from the Web.

How to compile Geant4 with the DAWNFILE driver incorporated is described in Section 8.3.

If the DAWNFILE driver, DAWN and DAVID are al working well in your host machine, the visual intersection
debugging of physical-volume surfaces can be performed as follows:

Run your Geant4 executable, invoke the DAWNFILE driver, and execute visualization commands to visualize
your detector geometry:

I dl e> /vis/open DAVNFI LE
..... (setting canera etc)...
I dl e> /vis/drawol une

I dl e> /vis/viewer/update

Then afile "g4.prim", which describes the detector geometry, is generated in the current directory and DAVID
isinvoked to read it. (The description of the format of the file g4.prim can be found from the DAWN web site
documentation.)

If DAVID detects intersection of physical-volume surfaces, it automatically invokes DAWN to visualize the de-
tector geometry with the intersected physical volumes highlighted (See the above sample visualization).

If no intersection is detected, visualization is skipped and the following message is displayed on the console:

111 Nunmber of intersected volunes : 0 !!!
11l Congratulations ! \(”o")/ 1

If you always want to skip visualization, set an environmental variable as follows beforehand:

% setenv DAVID NO VIEW 1

118

http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAWN.html
http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAVID.html
http://geant4.kek.jp/GEANT4/vis/DAWN/G4PRIM_FORMAT_24/
http://geant4.kek.jp/GEANT4/vis/DAWN/G4PRIM_FORMAT_24/

Detector Definition and Response

To control the precision associated to computation of intersections (default precision is set to 9), it is possible to
use the environmental variable for the DAWNFILE graphics driver, as follows:

% setenv GADAVNFI LE_PRECI SION 10

If necessary, re-visualize the detector geometry with intersected parts highlighted. The data are saved in afile
"g4david.prim" in the current directory. Thisfile can be re-visualized with DAWN as follows:

% dawn g4davi d. pri m

It is also helpful to convert the generated file g4david.prim into a VRML-formatted file and perform interactive
visualization of it with your WWW browser. The file conversion tool pr i n2wr nl can be downloaded from the
DAWN web site download pages.

For more details, see the document of DAVID mentioned above.

4.1.11.4. Using the geometry debugging tool OLAP

OL AP isatool developedin the CM S experiment at CERN to help inidentifying ovel apping volumesin adetector
geometry. It isplaced inthe areafor specific tools/examples, ingeant 4/ exanpl es/ ext ended/ geonetry.
The technique consistsin shooting geant i nos particlesin one direction and the opposite one, and verifying that
the boundary crossings are the same.

Thetool can be used for any Geant4 geometry, provided that the user geometry to be debugged is available as a
subclass of G4AVUser Det ect or Const ruct i on and is used to construct the O apDet Const r class of the
tool. A dummy class RandonDet ect or isprovided for this purpose in the tool itself.

Run-time commands are provided by thetool to navigatein the geometry tree. UNIX like navigation of thelogical
volume hierarchy isprovided by the/ ol ap/ cd command. Theroot of thelogical volumetree can be accessed by
the character '/'. Any nodein the volume tree can be accessed by a'/* separated string of regular expressions. If '/'is
at the beginning of the string, the tree hierarchy is transversed from the root, otherwise from the currently chosen
logical volume. Further the command/ ol ap/ got o [regexp] can be used to jump to thefirst logical volume
matching the expression [r egexp] . Every successful navigation command (/ ol ap/ cd, ol ap/ got o) results
in the construction of a NewWr | d, the mother volume being the argument of the command and the daughter
volumes being the direct daughters of the mother volume.

/ ol ap/ pwd always shows where in the full geometrical hierarchy the current NewMér | d and mother volume
are located.

For more detailed information, view the READVE file provided with the tool.

4.1.12. Dynamic Geometry Setups

Geant4 can handle geometries which vary in time (e.g. a geometry varying between two runs in the same job).
It is considered a change to the geometry setup, whenever:

* the shape or dimension of an existing solid is modified;
* the positioning (tranglation or rotation) of avolume is changed;
» avolume (or aset of volumes, tree) is removed/replaced or added.

Whenever such a change happens, the geometry setup needs to be first "opened" for the change to be applied and
afterwards "closed" for the optimisation to be reorganised.

Inthe general case, in order to notify the Geant4 system of the changein the geometry setup, the ARunManager
has to be messaged once the new geometry setup has been finalised:

119

http://geant4.kek.jp/GEANT4/vis/DAWN/About_prim2vrml1.html
http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAVID.html

Detector Definition and Response

GARunManager : : Geonet r yHasBeenMdi fi ed() ;

The above natification needs to be performed also if a material associated to a positioned volume is changed, in
order to allow for the internal materials/cuts table to be updated. However, for relatively complex geometries the
re-optimisation step may be extremely inefficient, since it has the effect that the whole geometry setup will be re-
optimised and re-initialised. In cases where only alimited portion of the geometry has changed, it may be suitable
to apply the re-optimisation only to the affected portion of the geometry (subtree).

Since release 7.1 of the Geant4 toolkit, it is possible to apply re-optimisation local to the subtree of the geometry
which has changed. The user will have to explicitly "open/close" the geometry providing a pointer to the top
physical volume concerned:

Example 4.9. Opening and closing a portion of the geometry without notifying the
ARunManager .

#i ncl ude " ACeonet ryManager. hh"

/1 Open geonetry for the physical volune to be nodified ...
/1
GAGeonet r yManager : : OpenGeonet r y(physCal or) ;

/1 Modify dinension of the solid ...
/1
physcCal or - >Get Logi cal Vol une()->Get Sol i d() - >Set XHal f Lengt h(12. 5*cm) ;

/] C ose geonetry for the portion nodified ...
/1
GAGeonet r yManager : : Cl oseGeonet r y(physcCal or) ;

If the existing geometry setup is modified locally in more than one place, it may be convenient to apply such a
technique only once, by specifying a physical volume on top of the hierarchy (subtree) containing all changed
portions of the setup.

An alternative solution for dealing with dynamic geometriesisto specify NOT to apply optimisation for the subtree
affected by the change and apply the general solution of invoking the GARunManager . Inthiscase, aperformance
penalty at run-time may be observed (depending on the complexity of the not-optimised subtree), considering that,
without optimisation, intersectionsto all volumesin the subtree will be explicitely computed each time.

4.1.13. Importing XML Models Using GDML

Geometry Description Markup Language (GDML) is a markup language based on XML and suited for the de-
scription of detector geometry models. It allows for easy exchange of geometry datain a human-readable XML-
based description and structured formatting.

The GDML parser is a component of Geant4 which can be built and installed as an optional choice. It allows for
importing and exporting GDML files, following the schema specified in the GDML documentation. Theinstalla-
tion of the plugin is optional and requires the installation of the XercesC DOM parser.

Examples of how to import and export a detector description model based on GDML, and a so how to extend the
GDML schema, are provided and can be found in exanpl es/ ext ended/ per si st ency/ gdmi .

4.1.14. Importing ASCII Text Models

Sincerelease 9.2 of Geant4, itisalso possibleto import geometry setups based on aplaintext description, according
to awell defined syntax for identifying the different geometrical entities (solids, volumes, materials and volume
attributes) with associated parameters. An example showing how to define a geometry in plain text format and
import it in aGeant4 applicationisshown inexanpl es/ ext ended/ per si st ency/ P03. Theexamplealso
covers the case of associating a sensitive detector to one of the volumes defined in the text geometry, the case of
mixing C++ and text geometry definitions and the case of defining new tagsin the text format so that regions and
cuts by region can be defined in the text file. It also provides an example of how to write a geometry text file from
the in-memory Geant4 geometry. For the details on the format see the dedicated manual .

120

http://cern.ch/gdml/
http://cern.ch/gdml/doc/GDMLmanual.pdf
http://xerces.apache.org/xerces-c/
http://cern.ch/gdml/
http://geant4.cern.ch/collaboration/working_groups/geometry/docs/textgeom/textgeom.pdf

Detector Definition and Response

4.1.15. Saving geometry tree objects in binary format

The Geant4 geometry tree can be stored in the Root binary file format using the reflection technique provided
by the Reflex tool (included in Root). Such a binary file can then be used to quickly load the geometry into the
memory or to move geometries between different Geant4 applications.

See Chapter 4.6 for details and references.
4.2. Material

4.2.1. General considerations

In nature, materials (chemical compounds, mixtures) are made of elements, and elements are made of isotopes.
Geant4 has three main classes designed to reflect this organization. Each of these classes has atable, which isa
static data member, used to keep track of the instances of the respective classes created.

G4l sotope
This class describes the properties of atoms: atomic number, number of nucleons, mass per mole, etc.

GA4Element
This class describes the properties of elements: effective atomic number, effective number of nucleons, ef-
fective mass per mole, number of isotopes, shell energy, and quantities like cross section per atom, etc.

G4Material
This class describes the macroscopic properties of matter: density, state, temperature, pressure, and macro-
scopic quantities like radiation length, mean free path, dE/dx, etc.

Only the G4Material class is visible to the rest of the toolkit and used by the tracking, the geometry and the
physics. It contains all the information relevant to its constituent elements and isotopes, while at the same time
hiding their implementation details.

4.2.2. Introduction to the Classes
4.2.2.1. G4lsotope

A G4lsotope object has a name, atomic number, number of nucleons, mass per mole, and an index in the table.
The constructor automatically stores "this" isotope in the isotopes table, which will assign it an index number.

4.2.2.2. G4Element

A GA4Element object has a name, symbol, effective atomic number, effective number of nucleons, effective mass
of amole, an index in the elements table, the number of isotopes, a vector of pointers to such isotopes, and a
vector of relative abundances referring to such isotopes (where relative abundance means the number of atoms
per volume). In addition, the class has methods to add, one by one, the isotopes which are to form the element.

A G4Element object can be constructed by directly providing the effective atomic number, effective number of
nucleons, and effective mass of amole, if the user explicitly wantsto do so. Alternatively, a G4Element object can
be constructed by declaring the number of isotopes of which it will be composed. The constructor will "new" a
vector of pointers to G4lsotopes and a vector of doublesto store their relative abundances. Finally, the method to
add an isotope must beinvoked for each of the desired (pre-existing) isotope objects, providing their addresses and
relative abundances. At the last isotope entry, the system will automatically compute the effective atomic number,
effective number of nucleons and effective mass of amole, and will store "this' element in the elements table.

A few quantities, with physical meaning or not, which are constant in a given element, are computed and stored
here as "derived data members'.

Using the internal Geant4 database, a G4Element can be accessed by atomic number or by atomic symbol ("Al",
"Fe', "Pb"...). Inthat case G4Element will be found from the list of existing elements or will be constructed using

121

http://cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch04s06.html

Detector Definition and Response

data from the Geant4 database, which is derived from the NIST database of elements and isotope compositions.
Thus, the natural isotope composition can be built by default. The same element can be created as using the
NIST database with the natural composition of isotopes and from scratch in user code with user defined isotope
composition.

4.2.2.3. G4Material

A G4Material object has a name, density, physical state, temperature and pressure (by default the standard con-
ditions), the number of elements and a vector of pointers to such elements, a vector of the fraction of mass for
each element, a vector of the atoms (or molecules) numbers of each element, and an index in the materials table.
In addition, the class has methods to add, one by one, the elements which will comprise the material.

A G4Material object can be constructed by directly providing the resulting effective numbers, if the user explicitly
wants to do so (an underlying element will be created with these numbers). Alternatively, a GAMaterial object
can be constructed by declaring the number of elements of which it will be composed. The constructor will "new"
avector of pointers to G4Element and a vector of doubles to store their fraction of mass. Finaly, the method to
add an element must be invoked for each of the desired (pre-existing) element objects, providing their addresses
and mass fractions. At the last element entry, the system will automatically compute the vector of the number of
atoms of each element per volume, the total number of electrons per volume, and will store "this' material in the
materials table. In the same way, a material can be constructed as a mixture of other materials and elements.

It should be noted that if the user provides the number of atoms (or molecules) for each element comprising
the chemical compound, the system automatically computes the mass fraction. A few quantities, with physical
meaning or not, which are constant in a given material, are computed and stored here as "derived data members".

Some materials are included in the internal Geant4 database, which were derived from the NIST database of ma-
terial properties. Additionally anumber of materials friquently used in HEP isincluded in the database. Materials
are interrogated or constructed by their names (Section 10). There are Ul commands for the material category,
which provide aninteractive accessto the database. If material iscreated using the NIST database by it will consist
by default of elements with the natural composition of isotopes.

4.2.2.4. Final Considerations

Theclasseswill automatically decideif thetotal of the massfractionsis correct, and perform the necessary checks.
The main reason why a fixed index is kept as a data member is that many cross section and energy tables will
be built in the physics processes "by rows of materials (or elements, or even isotopes)”. The tracking gives the
physics process the address of a material object (the material of the current volume). If the material has an index
according to which the cross section table has been built, then direct access is available when anumber in such a
table must be accessed. We get directly to the correct row, and the energy of the particle will tell us the column.
Without such an index, every accessto the cross section or energy tableswould imply a search to get to the correct
material's row. More details will be given in the section on processes.

| sotopes, elements and materials must be instantiated dynamically in the user application; they are automatically
registered in internal stores and the system takes care to free the memory alocated at the end of the job.

4.2.3. Recipes for Building Elements and Materials
Example 4.10 illustrates the different ways to define materials.

Example 4.10. A program which illustratesthe different waysto define materials.

#i ncl ude "4l sot ope. hh"

#i ncl ude " 4El enent. hh"

#i ncl ude "GAMateri al . hh"
#i ncl ude " &AUni t sTabl e. hh"

int main() {

GAString nanme, synbol; /1 a=mass of a nole;
G4doubl e a, z, density; /1 z=mean nunber of protons;
&Ghint iz, n; /1 iz=nb of protons in an isotope;

122

http://physics.nist.gov/PhysRefData/Compositions/index.html
http://physics.nist.gov/PhysRefData/Star/Text/method.html
http://physics.nist.gov/PhysRefData/Star/Text/method.html

Detector Definition and Response

/1 n=nb of nucleons in an isotope;
G4i nt nconponents, natons;
G4doubl e abundance, fractionnass;
GAdoubl e tenperature, pressure;

GAUni t Definition::BuildUnitsTabl e();

/1 define Elenments
a = 1.01*g/ nol e;
G4El enent* el H = new G4El enent (nanme="Hydr ogen", synbol ="H' , z= 1., a);

a = 12.01*g/ nol €;
G4El enent* el C = new AEl enent (nane="Car bon" ,synbol="C' , z= 6., a);

a = 14.01*g/ nol e;
GAEl enent* el N = new G4El enent (name="Ni trogen", synbol ="N' , z= 7., a);

a = 16.00*g/ nol e;
G4El enent* el O = new AEl enent (nanme="Oxygen" ,synbol="0' , z= 8., a);

a = 28.09*g/ nol e;
GAEl enent* el Si = new G4El enent (name="Si | i con", synbol="Si", z=14., a);

a = 55.85*g/ nol e;
G4AEl enent * el Fe = new AEl enent (name="1ron" , synbol ="Fe", z=26., a);

a = 183. 84*g/ nol e;
GAEl enent* el W= new GA4El enent (nane="Tungst en" , synbol ="W, z=74., a);

a = 207.20*g/ nol e;
GAEl enent * el Pb = new AEl enent (nanme="Lead" , synbol ="Pb", z=82., a);

/1 define an El ement fromisotopes, by relative abundance
G4l sot ope* U5 = new G4l sot ope(nane="U235", iz=92, n=235, a=235.01*g/nole);
G4l sot ope* U8 = new Al sot ope(nane="U238", iz=92, n=238, a=238.03*g/nole);

G4El enent* el U = new AEl enent (name="enri ched Uraniuni', synbol ="U', nconponents=2);
el U- >Addl sot ope(U5, abundance= 90. *per Cent) ;
el U- >Addl sot ope(U8, abundance= 10. *per Cent);

cout << *(Al sotope:: CetlsotopeTable()) << endl;
cout << *(GAEl enent:: Get El enent Tabl e()) << endl;

/] define sinple materials

density = 2.700*g/cnB;

a = 26.98*g/ nol e;

GAMaterial* Al = new AMat eri al (name="Al um nunt', z=13., a, density);

density = 1.390*g/cnB;
a = 39.95*¢g/ nol e;
vAMaterial* | Ar = new AMateri al (nane="1i qui dArgon", z=18., a, density);

density = 8.960*g/cnB;
a = 63.55*g/ nol e;
GAMaterial* Cu = new AMat eri al (nanme=" Copper " , z=29., a, density);

// define a material from el enents. case 1: chem cal nol ecul e
density = 1.000*g/cnB;

GAMaterial * H20 = new AMateri al (nanme="Water", density, nconponents=2);
H20O >AddEl enent (el H, nat ons=2) ;

H20 >AddEl enent (el O, nat ons=1) ;

density = 1.032*g/cnB;

GAMaterial* Sci = new GAMateri al (name="Scintillator", density, nconponents=2);
Sci - >AddEl enent (el C, nat ons=9) ;

Sci - >AddEl enent (el H, nat ons=10) ;

density = 2.200*g/cnB;

GAMaterial* Si Q2 = new AMateri al (name="quartz", density, nconmponents=2);
Si O2- >AddEl enent (el Si, natons=1);

Si O2- >AddEl enent (el O, nat ons=2);

density = 8.280*g/cnB;

GAMat eri al * PbWD4= new GAMat eri al (name="PbWDX4", density, nconmponents=3);
PbWD4- >AddEl enent (el O , nat ons=4);

PbWO4- >AddEl enent (el W, nat ons=1) ;

123

Detector Definition and Response

PbWD4- >AddEl enent (el Pb, natons=1);

/1 define a material from el ements. case 2: mxture by fractional nass
density = 1.290*ng/ cnB;
GAMaterial* Air = new AMateri al (name="Air " , density, nconmponents=2);

Ai r - >AddEl enent (el N, fracti onmass=0.7);
Ai r- >AddEl enent (el O fracti onmass=0. 3) ;

I/l define a material fromelements and/or others naterials (mxture of m xtures)
density = 0.200*g/cnB;

GAMaterial * Aerog = new GAMat eri al (name="Aerogel ", density, nconponents=3);

Aer og- >AddMat eri al (Si @, fracti onmass=62. 5*per Cent);

Aer og- >AddMat eri al (H20 , fracti onmass=37. 4*per Cent) ;

Aer og- >AddEl enent (el C, fractionmass= 0. 1*perCent);

/| exanples of gas in non STP conditions

density = 27.*nmg/ cnB;
pressure = 50. *at nosphere;
tenperature = 325. *kel vi n;

GAMaterial* CO2 = new AMat eri al (nane="Car boni c gas", density, nconponents=2,
kSt at eGas, t enper at ur e, pressure);

CO2- >AddEl enent (el C, natons=1);

CO2- >AddEl enent (el O, nat ons=2) ;

density = 0. 3*ny/ cnB;
pressure = 2. *at nosphere;
tenperature = 500. *kel vi n;

GAMaterial * steam = new GAMateri al (name="Water steam", density, nconponents=1,
kSt at eGas, t enper at ur e, pressure) ;
st eam >AddMat eri al (H2O, fracti onmass=1.);

/1 What about vacuum ? Vacuumis an ordinary gas with very |ow density

density = uni verse_nean_density; /] from Physi cal Constants. h
pressure = 1. e-19*pascal ;

tenperature = 0. 1*kel vin;

new AMateri al (name="Gal actic", z=1., a=1.01*g/nole, density,

kSt at eGas, t enper at ur e, pressure) ;

density = 1.e-5*g/cnB;
pressure = 2.e-2*%bar;
tenperature = STP_Tenper at ure; /] from Physi cal Constants. h

GAMateri al * beam = new AMateri al (name="Beam ", density, nconponents=1,
kSt at eGas, t enper at ur e, pressure) ;
beam >AddMat eri al (Air, fracti onmass=1.);

[/ print the table of naterials
Gdcout << *(AMaterial::GetMaterial Table()) << endl;

return EXI T_SUCCESS;
}

As can be seen in the later examples, a material has a state: solid (the default), liquid, or gas. The constructor
checks the density and automatically sets the state to gas below a given threshold (10 mg/cm3).

In the case of a gas, one may specify the temperature and pressure. The defaults are STP conditions defined in

Physi cal Const ant s. hh.
An element must have the number of nucleons >= number of protons >= 1.

A material must have non-zero values of density, temperature and pressure.

Materials can also be defined using the internal Geant4 database. Example 4.11 illustrates how to do this for the
same materials used in Example 4.10. There are a'so Ul commands which allow the database to be accessed. The

list of currently avalable material names (Section 10) is extended permanetly.

Example 4.11. A program which shows how to define materials from the internal

database.

#i ncl ude "gl obal s. hh"
#i ncl ude "AMateri al . hh"
#i ncl ude " &ANi st Manager . hh"

124

Detector Definition and Response

int main() {
GANi st Manager* man = (AN st Manager: : | nst ance() ;
man- >Set Ver bose(1) ;

/1 define el ements
GAEl enent* C = man->Fi ndOr Bui | dEl ement ("C") ;
G4El enent* Pb = man->Fi ndOr Bui | dvat eri al ("Pb");

/] define pure NIST materials
GAMaterial* Al = man->Fi ndOr Bui | dvaterial ("GA_Al");
GAMaterial * Cu = nman->Fi ndOr Bui | dvaterial ("G4_Cu");

/1 define NIST materials

GAMaterial * H0 man- >Fi ndOr Bui | dvat eri al (" G4_WATER') ;

GAMateri al * Sci man- >Fi ndOr Bui | dMat eri al (" G4_PLASTI C_SC_VI NYLTOLUENE") ;
GAMaterial * Si 2 man- >Fi ndOr Bui | dvat eri al ("G4_SI LI CON_DI OXI DE") ;
GAMaterial* Air man- >Fi ndOr Bui | dMaterial ("G4_AIR");

/1 HEP materials

GAMaterial * PoWD4 = nan- >Fi ndOr Bui | dvat eri al (" G4_PbWD4") ;
GAMaterial * | Ar = man->Fi ndOr Bui | dvaterial ("G4_I Ar");
GAMaterial * vac = man->Fi ndOr Bui | dvateri al ("G4_Gal actic");

I/ define gas material at non STP conditions (T = 120K, P=0.5atm
GAMat eri al * col dAr = man- >Const ruct NewGasdMat eri al (" Col dAr", "G4_Ar", 120. *kel vi n, 0. 5*at nosphere) ;

/] print the table of materials
GiAcout << *(GAMaterial::GetMterial Table()) << endl;

return EXI T_SUCCESS;
}

4.2.4. The Tables

4.2.4.1. Print aconstituent

The following shows how to print a constituent:

Gdcout << el U << endl;
Gdcout << Air << endl;

4.2.4.2. Print the table of materials

The following shows how to print the table of materials:

GAcout << *(CGAMaterial ::GetMaterial Table()) << endl;

4.3. Electromagnetic Field

4.3.1. An Overview of Propagation in a Field

Geant4 is capabl e of describing and propagating in avariety of fields. Magnetic fields, electric fields, electromag-
netic fields, and gravity fields, uniform or non-uniform, can specified for a Geant4 setup. The propagation of tracks
inside them can be performed to a user-defined accuracy.

In order to propagate a track inside a field, the equation of motion of the particle in the field is integrated. In
general, thisis done using a Runge-K utta method for the integration of ordinary differential equations. However,
for specific cases where an analytical solution is known, it is possible to utilize this instead. Several Runge-
Kutta methods are available, suitable for different conditions. In specific cases (such as a uniform field where
the analytical solution is known) different solvers can also be used. In addition, when an approximate analytical
solution is known, it is possible to utilize it in an iterative manner in order to converge to the solution to the
precision required. This latter method is currently implemented and can be used particularly well for magnetic
fields that are almost uniform.

125

Detector Definition and Response

Once amethod is chosen that cal cul ates the track's propagation in aspecific field, the curved path isbroken upinto
linear chord segments. These chord segments are determined so that they closely approximate the curved path.
The chords are then used to interrogate the Navigator as to whether the track has crossed a volume boundary.
Several parameters are available to adjust the accuracy of the integration and the subsequent interrogation of the
model geometry.

How closely the set of chords approximates acurved trajectory isgoverned by a parameter called the missdistance
(also called the chord distance). Thisisan upper bound for the value of the sagitta - the distance between the 'real’
curved trgjectory and the approximate linear trajectory of the chord. By setting this parameter, the user can control
the precision of the volume interrogation. Every attempt has been made to ensure that al volume interrogations
will be made to an accuracy within this miss distance.

miss distance

"Tracking’ Step a7 s
T ol

real trajectory

Figure4.6. Thecurved trajectory will be approximated by chords, so that the maximum
estimated distance between curve and chord islessthan the the miss distance.

In addition to the miss distance there are two more parameters which the user can set in order to adjust the accuracy
(and performance) of tracking in afield. In particular these parameters govern the accuracy of the intersection
with a volume boundary and the accuracy of the integration of other steps. As such they play an important role
for tracking.

The delta intersection parameter isthe accuracy to which an intersection with avolume boundary is calculated. If
acandidate boundary intersection is estimated to have a precision better than this, it is accepted. This parameter is
especially important becauseit is used to limit abias that our algorithm (for boundary crossing in afield) exhibits.
Thisalgorithm cal culates the intersection with avolume boundary using achord between two points on the curved
particle trgjectory. As such, the intersection point is aways on the 'inside’ of the curve. By setting avalue for this
parameter that is much smaller than some acceptable error, the user can limit the effect of thisbiason, for example,
the future estimation of the reconstructed particle momentum.

Figure 4.7. The distance between the calculated chord intersection point C and a
computed curve point D isused to determine whether C isan accurate representation of
the inter section of the curved path ADB with a volume boundary. Here CD islikely too
large, and a new inter section on the chord AD will be calculated.

The delta one step parameter is the accuracy for the endpoint of ‘ordinary’ integration steps, those which do not
intersect avolume boundary. This parameter isalimit on the estimated error of the endpoint of each physicsstep. It
can be seen as akin to astatistical uncertainty and is not expected to contribute any systematic behavior to physical
guantities. In contrast, the bias addressed by delta intersection isclearly correlated with potential systematic errors

126

Detector Definition and Response

in the momentum of reconstructed tracks. Thus very strict limits on the intersection parameter should be used in
tracking detectors or wherever the intersections are used to reconstruct a track's momentum.

Delta intersection and delta one step are parameters of the Field Manager; the user can set them according to the
demands of his application. Because it is possible to use more than one field manager, different values can be set
for different detector regions.

Note that reasonable values for the two parameters are strongly coupled: it does not make sense to request an
accuracy of 1 nm for delta intersection and accept 100 & #956m for the delta one step error value. Nevertheless
delta intersection is the more important of the two. It is recommended that these parameters should not differ
significantly - certainly not by more than an order of magnitude.

4.3.2. Practical Aspects

4.3.2.1. Creating a Magnetic Field for a Detector
The simplest way to define afield for a detector involves the following steps:

1. create afield:
G4Uni f or mvagFi el d* nagFi el d
= new GAUni f or mvagFi el d(G4Thr eeVector (0., 0., fi el dVal ue));

2. setit asthe default field:

GAFi el dvanager * fi el dvgr
= GATransportati onManager: : Get Tr ansport at i onManager ()
- >Cet Fi el dManager () ;
fi el dMgr - >Set Det ect or Fi el d(magFi el d) ;

3. create the objects which calculate the trgjectory:
fi el dMgr - >Cr eat eChor dFi nder (magFi el d) ;
To change the accuracy of volume intersection use the Set Del t aChor d method:

fi el dMyr - >Get Chor dFi nder () - >Set Del t aChor d(GAdoubl e newval ue) ;

4.3.2.2. Creating a Field for a Part of the Volume Hierarchy

It is possible to create a field for a part of the detector. In particular it can describe the field (with pointer
fEmField, for example) inside a logical volume and all its daughters. This can be done by simply creating a
AFi el dManager and attaching it to alogical volume (with pointer, logicVolumeWithField, for example) or
set of logical volumes.

G4bool al | Local = true;
| ogi cVol umeW t hFi el d- >Set Fi el dveinager (| ocal Fi el dManager, all Local);

Using the second parameter to Set Fi el dManager you choose whether daughter volumes of thislogical volume
will aso be given this new field. If it has the value t r ue, the field will be assigned also to its daughters, and
all their sub-volumes. Else, if it isf al se, it will be copied only to those daughter volumes which do not have
afield manager already.

4.3.2.3. Creating an Electric or Electromagnetic Field

The design and implementation of the Field category allows and enables the use of an electric or combined elec-
tromagnetic field. These fields can also vary with time, as can magnetic fields.

127

Detector Definition and Response

Source listing Example 4.12 shows how to define a uniform electric field for the whole of a detector.

Example4.12. How todefineauniform electricfield for thewhole of a detector, extracted
from example in examples/extended/field/field02 .

/1l in the header file (or first)
#i ncl ude " GAEqMagEl ectri cFi el d. hh"
#i ncl ude "&AUni f ornEl ectri cFi el d. hh"

GAEl ectri cFi el d* fEMi el d;
GAEqMagE! ectri cFi el d* f Equat i on;
GAMagl nt egr at or St epper * f St epper ;

GAFi el dvanager * fFi el dMyr;
G4doubl e fMnStep ;
G4AChor dFi nder * f Chor dFi nder ;

/1 in the source file

fEMield = new G4Uni fornEl ectri cFi el d(
GAThr eeVect or (0. 0, 100000. 0*ki | ovol t/cm 0.0)) ;

I/l Create an equation of notion for this field
f Equati on = new GAEgMagE!l ectricFiel d(fEMi el d);

G4int nvar = 8;
f St epper = new (4d assi cal RK4(f Equation, nvar);

I/ Cet the global field nanager

f Fi el dManager = GATr ansport ati onManager : : Get Tr ansport ati onManager () - >
Get Fi el dvanager () ;

/Il Set this field to the global field manager

f Fi el dManager - >Set DetectorFiel d(fEMield);

f M nStep = 0.010*mm; // mnimal step of 10 m crons

fintgrDriver = new GAMagl nt _Driver (fM nStep,
f St epper,
f St epper - >Get Nunber O Vari abl es());

f Chor dFi nder = new GAChor dFi nder (fIntgrDriver);
f Fi el dManager - >Set Chor dFi nder (f Chor dFi nder);

}

An example with an electric field is examplesextended/field/field02, where the class FO2ElectricFieldSetup
demonstrates how to set these and other parameters, and how to choose different Integration Steppers. An example
with auniform gravity field (G4UniformGravityField) is exampl es/extended/fiel d/fiel dO6.

Theuser can aso create their own type of field, inheriting from G4 VFi el d, and an associated Equation of Motion
class (inheriting from GAEqRhs) to simulate other types of fields.

4.3.2.4. Choosing a Stepper

Runge-Kutta integration is used to compute the motion of a charged track in a general field. There are many
genera steppers from which to choose, of low and high order, and specialized steppers for pure magnetic fields.
By default, Geant4 uses the classical fourth-order Runge-Kutta stepper, which is general purpose and robust. If
thefield isknown to have specific properties, lower or higher order steppers can be used to obtain the same quality
results using fewer computing cycles.

In particular, if the field is calculated from afield map, alower order stepper is recommended. The less smooth
thefield is, the lower the order of the stepper that should be used. The choice of lower order steppersincludesthe
third order stepper G4Si nmpl eHeum the second order G41 npl i ci t Eul er and G4Si npl eRunge, and the
first order AExpl i ci t Eul er . A first order stepper would be useful only for very rough fields. For somewhat
smooth fields (intermediate), the choi ce between second and third order steppers should be made by trial and error.
Trying afew different types of steppersfor aparticular field or application is suggested if maximum performance
isagoal.

128

Detector Definition and Response

The choice of stepper depends on the type of field: magnetic or general. A general field can be an electric or
electromagnetic field, it can be amagnetic field or a user-defined field (which requires a user-defined equation of
motion.) For ageneral field several steppers are available as alternatives to the default (ACl assi cal RK4):

G4int nvar = 8; // To integrate time & energy
I in addition to position, nomentum
GAEqMRgE! ectri cFi el d* f Equati on= new GAEqQMagE! ectricFi el d(fEMi el d);

f St epper = new GASi npl eHeum(f Equati on, nvar);

/1l 3rd order, a good alternative to O assical RK
f St epper = new GASi npl eRunge(f Equati on, nvar);

// 2nd order, for less smooth fields
f St epper = new GACashKar pRKF45(f Equation);

/1 4/5th order for very snooth fields

Specialized steppers for pure magnetic fields are also available. They take into account the fact that alocal tra-
jectory in a slowly varying field will not vary significantly from a helix. Combining this in with a variation the
Runge-Kutta method can provide higher accuracy at lower computational cost when large steps are possible.

GAMag_Usual EqRhs*
f Equati on = new GAMag_Usual EqRhs(f Magneti cFi el d) ;

f St epper = new G4Hel i xI nplicitEuler(fEquation);
/] Note that for magnetic field that do not vary with tinme,
/1 the default nunber of variables suffices.

[l or ..
f St epper = new GAHel i xExplicitEul er(fEquation);
f St epper = new G4Hel i xSi npl eRunge(f Equation);

A new stepper for propagation in magnetic field is available in release 9.3. Choosing the G4ANystromRK 4 stepper
provides accuracy near that of G4ClassicalRK4 (4th order) with a significantly reduced cost in field evaluation.
Using anovel analytical expression for estimating the error of a proposed step and the Nystrom reuse of the mid-
point field value, it requires only 2 additional field evaluations per attempted step, in place of 10 field evaluations
of ClassicalRK4 (which uses the general midpoint method for estimating the step error.)

GAMag_Usual EqRhs*
pMagFl dEquati on = new GAMag_Usual EqRhs(f Magneti cFi el d);
f St epper = new ANystronRK4(pMagFl dEquation);

It isproposed as an alternative stepper in the case of apure magnetic field. It isnot applicable for the simulation of
electric or full electromagnetic or other types of field. For a pure magnetic field, results should be fully compatible
with the results of ClassicalRK4 in nearly all cases. (The only potential exceptions are large steps for tracks with
small momenta - which cannot be integrated well by any RK method except the Helical extended methods.)

Y ou can choose an alternative stepper either when the field manager is constructed or later. At the construction
of the ChordFinder it is an optional argument:

GAChor dFi nder (G4Magneti cFi el d* itsMagFi el d,
G4doubl e stepM ni mum = 1.0e-2 * nmm
GAMagl nt egr at or St epper* pltsStepper = 0);

To change the stepper at alater time use

pChor dFi nder - >Get | nt egrati onDri ver ()
- >RenewSt epper AndAdj ust (newSt epper) ;

4.3.2.5. How to Adjust the Accuracy of Propagation

In order to obtain a particular accuracy in tracking particles through an electromagnetic field, it is necessary to
adjust the parametersof thefield propagation module. In thefollowing section, some of these additional parameters
are discussed.

129

Detector Definition and Response

When integration is used to calculate the trgjectory, it is necessary to determine an acceptable level of numerical
imprecision in order to get performant simulation with acceptable errors. The parameters in Geant4 tell the field
module what level of integration inaccuracy is acceptable.

In all quantities which are integrated (position, momentum, energy) there will be errors. Here, however, we focus
on the error in two key quantities: the position and the momentum. (The error in the energy will come from the
momentum integration).

Three parameters exist which are relevant to the integration accuracy. DeltaOneStep is a distance and is roughly
the position error which is acceptable in an integration step. Since many integration steps may be required for a
single physics step, DeltaOneStep should be a fraction of the average physics step size. The next two parameters
impose a further limit on the relative error of the position/momentum inaccuracy. EpsilonMin and EpsilonMax
impose a minimum and maximum on this relative error - and take precedence over DeltaOneStep. (Note: if you
set EpsilonMin=EpsilonMax=your-value, then all stepswill be made to this relative precision.

Example 4.13. How to set accuracy parametersfor the'global’ field of the setup.

GAFi el dvanager *gl obal Fi el dManager ;

GATr ansport ati onManager *transport Mr=
GATransport ati onManager : : Get Tr ansport at i onManager () ;

gl obal Fi el dManager = transportMr->GCet Fi el dManager () ;

/1 Relative accuracy val ues:
GAdoubl e mi nEps= 1.0e-5; [/ M ni mum & val ue for smallest steps
G4doubl e maxEps= 1.0e-4; [/ Maxi mum & val ue for |argest steps

gl obal Fi el dManager - >Set M ni munEpsi | onSt ep(m nEps);
gl obal Fi el dManager - >Set Maxi munEpsi | onSt ep(nmexEps);
gl obal Fi el dManager - >Set Del t aOneStep(0.5e-3 * nm); // 0.5 mcroneter

Gdcout << "EpsilonStep: set min= " << mnEps << " max= " << maxEps << Gdendl ;

We note that the relevant parameters above limit the inaccuracy in each step. The final inaccuracy due to the full
trajectory will accumulate!

The exact point at which atrack crossesaboundary isalso calculated with finite accuracy. To limit thisinaccuracy,
aparameter called Deltal ntersection is used. Thisisamaximum for the inaccuracy of asingle boundary crossing.
Thus the accuracy of the position of the track after a number of boundary crossingsis directly proportional to the
number of boundaries.

4.3.2.6. Reducing the number of field calls to speed-up simulation

An additional method to reduce the number of field evaluationsisto utilise the new class G4CachedMagneticField
class. It is applicable only for pure magnetic fields which do not vary with time.

GAMagneticField * pvagField; // Your field - Defined el sewhere

GAdoubl e di stanceConst = 2.5 * mllineter;
GAMagneti cFiel d * pCachedMagFi el d= new (ACachedMagneti cFi el d(pMagField, distanceConst);

4.3.2.7. Choosing different accuracies for the same volume

It is possible to create a FieldManager which has different properties for particles of different momenta (or de-
pending on other parameters of a track). This is useful, for example, in obtaining high accuracy for ‘important’
tracks (e.g. muons) and accept less accuracy in tracking others (e.g. electrons). To use this, you must create your
own field manager which uses the method

voi d Confi gureFor Track(const GATrack *);

to configure itself using the parameters of the current track. An example of thiswill be available in examples/ex-
tended/field05.

130

Detector Definition and Response

4.3.2.8. Parameters that must scale with problem size

The default settings of this module are for problems with the physical size of atypical high energy physics setup,
that is, distances smaller than about one kilometer. A few parameters are necessary to carry this information
to the magnetic field module, and must typically be rescaled for problems of vastly different sizes in order to
get reasonable performance and robustness. Two of these parameters are the maximum acceptable step and the
minimum step size.

The maximum acceptable step should be set to adistance larger than the biggest reasonabl e step. If the apparatus
in a setup has a diameter of two meters, alikely maximum acceptable steplength would be 10 meters. A particle
could then take large spiral steps, but would not attempt to take, for example, a 1000-meter-long step in the case
of avery low-density material. Similarly, for problems of a planetary scale, such as the earth with its radius of
roughly 6400 km, a maximum acceptabe steplength of afew times this value would be reasonable.

An upper limit for the size of a step is a parameter of GAPr opagat or | nFi el d, and can be set by calling its
Set Lar gest Accept abl eSt ep method.

The minimum step sizeisused during integration to limit the amount of work in difficult cases. It is possible that
strong fields or integration problems can force the integrator to try very small steps; this parameter stops them
from becoming unnecessarily small.

Tria steps smaller than this parameter will be treated with less accuracy, and may even be ignored, depending
on the situation.

The minimum step size is a parameter of the Magint_Driver, but can be set in the contstructor of G4ChordFinder,
asin the source listing above.

4.3.2.9. Known Issues

Currently it is computationally expensive to change the miss distance to very small values, asit causes tracks to
be limited to curved sections whose 'bend' is smaller than this value. (The bend is the distance of the mid-point
from the chord between endpoints.) For tracks with small curvature (typically low momentum particlesin strong
fields) this can cause alarge number of steps

» even in areas where there are no volumes to intersect (something that is expected to be addressed in future
development, in which the safety will be utilized to partialy alleviate this limitation)

* especialy inaregion near avolume boundary (in which caseit is hecessary in order to discover whether atrack
might intersect avolume for only a short distance.)

Requiring such precision at the intersection is clearly expensive, and new development would be necessary to
minimize the expense.

By contrast, changing the intersection parameter is less computationally expensive. It causes further calculation
for only afraction of the steps, in particular those that intersect a volume boundary.

4.3.3. Spin Tracking

The effects of a particle's motion on the precession of its spin angular momentum in slowly varying external
fields are smulated. The relativistic equation of motion for spin is known as the BMT equation. The equation
demonstrates a remarkable property; in a purely magnetic field, in vacuum, and neglecting small anomalous mag-
netic moments, the particle's spin precessesin such amanner that the longitudinal polarization remains a constant,
whatever the motion of the particle. But when the particle interacts with electric fields of the medium and multi-
ple scatters, the spin, which is related to the particle's magnetic moment, does not participate, and the need thus
arises to propagate it independent of the momentum vector. In the case of a polarized muon beam, for example,
it isimportant to predict the muon's spin direction at decay-time in order to simulate the decay electron (Michel)
distribution correctly.

In order to track the spin of a particlein amagnetic field, you need to code the following:

131

Detector Definition and Response

1. inyour DetectorConstruction

#i ncl ude " &AMag_Spi nEqRhs. hh"
GAMag_EqRhs* f Equation = new GAMag_Spi nEqRhs(magFi el d) ;

G4Magl nt egr at or St epper * pSt epper = new Ad assi cal RK4(f Equati on, 12);
notice the 12

2. inyour PrimaryGenerator

particl eGun->Set Particl ePol ari zati on(G4Thr eeVect or p)

for example:

particl eGun->
Set Particl ePol ari zation(-(particleGun->CetParticleMonentunDirection()));

/'l or
particl eGun->

Set Particl ePol ari zati on(particl eGun->Get Particl eMonent unDirection()
.cross(GAThreeVector(0.,1.,0.)));

where you set the initial spin direction.

While the GAMag_SpinEqRhs class constructor

GAMag_Spi nEqRhs: : GAMag_Spi nEqRhs(GAMagneti cFi el d* MagField)
: GAMag_EgRhs(MagFiel d)
{

}

anomaly = 1.165923e- 3;
sets the muon anomaly by default, the class also comes with the public method:

inline void SetAnonal y(G4double a) { anomaly = a; }
with which you can set the magnetic anomaly to any value you require.

The code has been rewritten (in Release 9.5) such that field tracking of the spin can now be done for charged and
neutral particles with a magnetic moment, for example spin tracking of ultracold neutrons. This requires the user
to set Enabl eUseMagnet i cMonent , a method of the GATr ansport ati on process. The force resulting
from the term, pI#, is not yet implemented in Geant4 (for example, simulated trajectory of a neutral hydrogen
atom trapped by its magnetic moment in a gradient B-field.)

4.4. Hits
4.4.1. Hit

A hit is a snapshot of the physical interaction of atrack in the sensitive region of a detector. In it you can store
information associated with a G4Step object. This information can be

* the position and time of the step,

 the momentum and energy of the track,
« the energy deposition of the step,

» geometrical information,

or any combination of the above.

132

Detector Definition and Response

G4VHit

G4VHit is an abstract base class which represents a hit. You must inherit this base class and derive your own
concrete hit class(es). The member data of your concrete hit class can be, and should be, your choice.

G4VHit has two virtual methods, Dr aw() and Pri nt () . To draw or print out your concrete hits, these methods
should be implemented. How to define the drawing method is described in Section 8.9.

G4THitsCollection

G4VHit is an abstract class from which you derive your own concrete classes. During the processing of a giv-
en event, represented by a G4Event object, many objects of the hit class will be produced, collected and associ-
ated with the event. Therefore, for each concrete hit class you must also prepare a concrete class derived from
G4VHitsCollection, an abstract class which represents a vector collection of user defined hits.

GATHitsCollection is a template class derived from G4VHitsCollection, and the concrete hit collection class of a
particular G4VHit concrete class can be instantiated from this template class. Each object of a hit collection must
have a unique name for each event.

G4Event has a G4HCofThisEvent class object, that is a container class of collections of hits. Hit collections are
stored by their pointers, whose type is that of the base class.

An example of a concrete hit class
Example 4.14 shows an example of a concrete hit class.

Example 4.14. An example of a concr ete hit class.

#i f ndef ExNO4TrackerHit_h
#defi ne ExNO4TrackerHi t _h 1

#i nclude "GAVHi t. hh"

#i ncl ude "GATH tsCol | ecti on. hh"
#i ncl ude "&4Al | ocat or. hh"

#i ncl ude " &AThr eeVect or. hh"

cl ass ExNO4TrackerHt : public GAVH t

{

public:
ExNO4TrackerHit () ;
~ExNO4Tr ackerHit ();
ExNO4Tr acker Hi t (const ExNO4TrackerHit &right);
const EXNOATracker Hit & operat or=(const ExNO4TrackerHit &right);
int operator==(const ExNO4TrackerHit &right) const;
inline void * operator new(size_t);
inline void operator delete(void *aHit);
voi d Draw() const;
void Print() const;

private:
GAdoubl e edep;
GAThr eeVect or pos;

public:
inline void Set Edep(x4doubl e de)
{ edep = de; }
inline G4doubl e Get Edep() const
{ return edep; }
inline void Set Pos(AThreeVector xyz)
{ pos = xyz; }
inline AThreeVector GetPos() const
{ return pos; }

=

typedef GATHi t sCol | ecti on<ExNO4Tr acker Hi t > ExNO4Tr acker Hi t sCol | ecti on;

133

Detector Definition and Response

extern (AAl | ocat or <ExNO4Tr acker Hi t > ExNO4Tr acker Hi t Al | ocat or;
inline void* ExNO4TrackerHit::operator new(size_t)

void *aHit;
aHit = (void *) ExNOATrackerHi t Al |l ocator. Mal | ocSi ngl e();
return aHit;

}

inline void ExNOATrackerHit::operator delete(void *aHit)

ExXNOATr acker Hi t Al | ocat or . FreeSi ngl e((ExNO4TrackerHi t*) aHit);
}

#endi f

G4Allocator is a class for fast alocation of objects to the heap through the paging mechanism. For details of
G4Allocator, refer to Section 3.2.4. Use of G4Allocator is not mandatory, but it is recommended, especially for
users who are not familiar with the C++ memory allocation mechanism or alternative tools of memory allocation.
On the other hand, note that G4Allocator is to be used only for the concrete class that is not used as a base class
of any other classes. For example, do not use the G4Trajectory class as a base class for a customized trajectory
class, since G4Trajectory uses G4Allocator.

GA4THitsMap

GA4THitsMap is an aternative to GATHitsCollection. G4THitsMap does not demand G4VHit, but instead any
variable which can be mapped with an integer key. Typically the key is a copy number of the volume, and the
mapped value could for example be a double, such as the energy deposition in a volume. GATHitsMap is conve-
nient for applications which do not need to output event-by-event data but instead just accumulate them. All the
G4VPrimitiveScorer classes discussed in Section 4.4.5 use GATHitsMap.

GA4THitsMap is derived from the G4VHitsCollection abstract base class and all objects of this class are also stored
in G4HCofThisEvent at the end of an event. How to access a G4THitsMap object is discussed in the following
section (Section 4.4.5).

4.4.2. Sensitive detector

G4VSensitiveDetector

G4VSensitiveDetector isan abstract base classwhich representsadetector. The principal mandate of asensitive de-
tector isthe construction of hit objects using information from stepsalong aparticletrack. ThePr ocessHi t s()
method of G4VSensitiveDetector performs this task using G4Step objects as input. In the case of a "Readout"
geometry (see Section 4.4.3), objects of the G4TouchableHistory class may be used as an optional input.

Your concrete detector class should be instantiated with the unique name of your detector. The name can be
associated with one or more global names with "/" as adelimiter for categorizing your detectors. For example

nyEMcal = new MyEMcal ("/ nyDet/ nyCal / nyEMcal ") ;

where nyEMcal is the name of your detector. The pointer to your sensitive detector must be set to one or
more G4Logical Volume objects to set the sensitivity of these volumes. The pointer should also be registered to
G4SDManager, as described in Section 4.4.4.

G4VensitiveDetector has three mgjor virtual methods.

ProcessHits()
This method is invoked by G4SeppingManager when a step is composed in the G4Logical Volume which
has the pointer to this sensitive detector. The first argument of this method is a G4Step object of the current
step. The second argument is a G4TouchableHistory object for the "~ Readout geometry" described in the next
section. The second argument isNULL if “Readout geometry" is not assigned to this sensitive detector. In this
method, one or more G4VHit objects should be constructed if the current step is meaningful for your detector.

134

Detector Definition and Response

Initialize()
This method is invoked at the beginning of each event. The argument of this method is an object of
the G4HCofThisEvent class. Hit collections, where hits produced in this particular event are stored, can
be associated with the G4HCofThisEvent object in this method. The hit collections associated with the
G4HCofThisEvent object during this method can be used for ~“during the event processing" digitization.

EndOf Event ()
This method is invoked at the end of each event. The argument of this method is the same object as the
previous method. Hit collections occasionally created in your sensitive detector can be associated with the
G4HCofThisEvent object.

4.4.3. Readout geometry

This section describes how a ™" Readout geometry" can be defined. A Readout geometry isavirtua, parallel geom-
etry for obtaining the channel number.

As an example, the accordion calorimeter of ATLAS has a complicated tracking geometry, however the readout
can be done by simple cylindrical sectors divided by theta, phi, and depth. Tracks will be traced in the tracking
geometry, the ““real" one, and the sensitive detector will have its own readout geometry Geant4 will message to
find to which ““readout" cell the current hit belongs.

The Tracking Geometry A Readowt Geometry
(builds by G4VUserDetectorConstraction) (builde by a G4 VEeadoutT eometry)

World of RO geometoy

Figure4.8. Association of tracking and readout geometry.

Figure 4.8 shows how this association is done in Geant4. The first step is to associate a sensitive detector to
a volume of the tracking geometry, in the usual way (see Section 4.4.2). The next step is to associate your
G4VReadoutGeometry object to the sensitive detector.

At tracking time, the base class G4VReadoutGeometry will provide to your sensitive detector code the
G4TouchableHistory in the Readout geometry at the beginning of the step position (position of PreSepPoint of
G4 ep) and at this position only.

This G4TouchableHistory is given to your sensitive detector code through the G4VSensitiveDetector virtual
method:
G4bool processHits(AStep* aStep, ATouchabl eHi st ory* RChi st);

by the ROhi st argument.

Thus, you will be able to use information from both the G4ep and the G4TouchableHistory coming from your
Readout geometry. Notethat sincethe association isdonethrough asensitive detector object, it isperfectly possible
to have several Readout geometriesin paralel.

Definition of a virtual geometry setup

The base class for the implementation of a Readout geometry is G4VReadoutGeometry. This class has a single
pure virtual protected method:
virtual &AVPhysi cal Vol une* build() = 0;

which you must overridein your concrete class. The G4VPhysical Volume pointer you will have to return is of the
physical world of the Readout geometry.

135

Detector Definition and Response

The step by step procedure for constructing a Readout geometry is:

* inherit from G4VReadoutGeometry to define a MyROGeom class;
 implement the Readout geometry inthe bui | d() method, returning the physical world of this geometry.

Theworld is specified in the same way as for the detector construction: a physical volume with no mother. The
axis system of thisworld is the same as the one of the world for tracking.

In this geometry you need to declare the sensitive partsin the same way as in the tracking geometry: by setting
anon-NULL G4VSensitiveDetector pointer in, say, the relevant G4Logical Volume objects. This sensitive class
needs to be there, but will not be used.

Y ouwill also need to assign well defined material sto the volumesyou placein thisgeometry, but these materials
are irrelevant since they will not be seen by the tracking. It is foreseen to alow the setting of a NULL pointer
in this case of the parallel geometry.

* intheconstruct () method of your concrete G4VUser Detector Construction class:

* instantiate your Readout geometry:

M/ROGeont ROgeom = new MyROGeon(" RONane") ;

* buildit:
ROgeom >bui | dROGeonet ry();

That will invoke your bui | d() method.

 |Instantiate the sensitive detector which will receive the ROGeompointer, My Sensi t i ve, and add this sen-
sitive to the G4SDManager. Associate this sensitive to the volume(s) of the tracking geometry as usual.

« Associate the sensitive to the Readout geometry:

MySensi ti ve- >Set ROgeonet r y(ROgeomn) ;

4.4.4. G4SDManager

G4SDManager isthe singleton manager class for sensitive detectors.
Activation/inactivation of sensitive detectors

The user interface commands act i vat e and i nact i vat e are available to control your sensitive detectors.
For example:

/hits/activate detector_nane
/hits/inactivate detector_nane

wheredet ect or _narme can be the detector name or the category hame.

For example, if your EM calorimeter is named

[myDet / nyCal / nyEMcal
/hits/inactivate nmyCal

will inactivate al detectors belonging to the myCal category.
Access to the hit collections
Hit collections are accessed for various cases.

 Digitization

136

Detector Definition and Response

» Event filtering in G4VUser SackingAction
e TEnd of event" simple analysis
» Drawing/ printing hits

The following is an example of how to access the hit collection of a particular concrete type:

G4SDMvanager * f SDM = GASDManager : : Get SDMVpoi nter () ;

GARunManager * f RM = GARunManager : : Get RunManager () ;

Gdint collectionlD = fSDM >Cet Col | ectionl D("col |l ecti on_nane");

const AEvent* current Event = fRM >Get Current Event ();

GAHCof Thi sEvent * HCof Event = current Event - >Get HCof Thi sEvent () ;

M/Hi t sCol | ecti on* myCol l ection = (M/Hi tsCol | ecti on*) (HCOf Event - >Get HC(col | ectionl D)) ;

4.45. G4AMultiFunctionalDetector and G4VPrimitiveScorer

GAMultiFunctional Detector is a concrete class derived from G4VSensitiveDetector. Instead of implementing a
user-specific detector class, G4MultiFunctional Detector allows the user to register G4VPrimitiveScorer classes
to build up the sensitivity. GAMultiFunctional Detector should be instantiated in the users detector construction
with its unique name and should be assigned to one or more G4Logical Volumes.

G4VPrimitiveScorer is an abstract base class representing a class to be registered to G4MultiFunctional Detector
that creates a GATHitsMap object of one physics quantity for an event. Geant4 provides many concrete primitive
scorer classes listed in Section 4.4.6, and the user can aso implement his’her own primitive scorers. Each prim-
itive scorer object must be instantiated with a name that must be unique among primitive scorers registered in
a G4MultiFunctional Detector. Please note that a primitive scorer object must not be shared by more than one
GAMultiFunctional Detector object.

Asmentioned in Section 4.4.1, each G4VPrimitiveScorer generates one G4ATHitsMap object per event. The name
of the map object is the same as the name of the primitive scorer. Each of the concrete primitive scorers listed
in Section 4.4.6 generates a G4THitsMap< G4double> that maps a G4double value to its key integer number.
By default, the key is taken as the copy number of the G4Logical Volume to which G4MultiFunctional Detector
is assigned. In case the logical volume is uniquely placed in its mother volume and the mother is replicated,
the copy number of its mother volume can be taken by setting the second argument of the G4VPrimitiveScorer
constructor, "depth" to 1, i.e. onelevel up. Furthermore, in case the key must consider more than one copy number
of a different geometry hierarchy, the user can derive his’her own primitive scorer from the provided concrete
class and implement the Getl ndex(G4Step*) virtual method to return the unique key.

Example 4.15 shows an example of primitive sensitivity class definitions.

Example 4.15. An example of defining primitive sensitivity classes taken from
ExNO7Detector Construction.

voi d ExNO7Det ect or Constructi on: : Set upDet ect ors()

{
GAAString filterNane, particl eNang;

GASDParticleFilter* ganmaFilter =

new ASDParticleFilter(filterName="gamuaFilter", particl eName="gama");
GASDParticleFilter* electronFilter =

new ASDParticleFilter(filterName="electronFilter", particleName="e-");
GASDParticleFilter* positronFilter =

new ASDParticleFilter(filterName="positronFilter", particleName="e+");
GASDParticleFilter* epFilter = new GASDParticleFilter(filterName="epFilter");
epFilter->add(particl eName="e-");
epFi |l ter->add(particl eName="e+");

for(G4int i=0;i<3;i++)
for(G4int j=0;j<2;j++)
/1 Loop counter j 0 : absorber
/1 1: gap

GAString det Name = cal Nane[i];
i f(j==0)

137

Detector Definition and Response

{ detNane += "_abs"; }

el se

{ detNanme += "_gap"; }

GAMul ti Functi onal Detector* det = new AMul ti Functi onal Det ect or (det Nane) ;

/1 The second argunent in each primtive means the "level" of geonmetrical hierarchy,
// the copy number of that |evel is used as the key of the GATH t sMap.

/Il For absorber (j = 0), the copy nunber of its own physical volume is used.
/1 For gap (j = 1), the copy nunber of its nother physical volune is used, since there
/Il is only one physical volune of gap is placed with respect to its nother.
GAVPrimtiveScorer* primtive;

primtive = new GAPSEner gyDeposit("eDep",j);
det->RegisterPrinmtive(primtive);

primtive = new GAPSNof Secondar y("nGanma",j);
primtive->SetFilter(gammaFilter);

det->Regi sterPrimtive(primtive);

primtive = new GAPSNof Secondary("nEl ectron",j);
primtive->SetFilter(electronFilter);

det->Regi sterPrinmtive(primtive);

primtive = new GAPSNof Secondary("nPositron",j);
primtive->SetFilter(positronFilter);

det->Regi sterPrimtive(primtive);

primtive = new GAPSM nKi nEAt Gener at i on(" m nEki nGamma", j);
primtive->SetFilter(gammaFilter);

det->Regi sterPrinmtive(primtive);

primtive = new GAPSM nKi nEAt Gener ati on(" m nEki nEl ectron”,j);
primtive->SetFilter(electronFilter);

det->Regi sterPrimtive(primtive);

primtive = new GAPSM nKi nEAt Gener ati on(" m nEki nPositron",j);
primtive->SetFilter(positronFilter);

det->Regi sterPrinmtive(primtive);

primtive = new GAPSTrackLengt h("trackLength",j);
primtive->SetFilter(epFilter);

det->Regi sterPrimtive(primtive);

primtive = new APSNof St ep("nStep",j);

primtive->SetFilter(epFilter);

det->Regi sterPrinmtive(primtive);

GASDVvanager : : Get SDVpoi nt er () - >AddNewDet ect or (det) ;
i f(j==0)

{ layerLogical [i]->SetSensitiveDetector(det); }

el se

{ gapLogical[i]->SetSensitiveDetector(det); }

}
}

Each G4THitsMap object can be accessed from G4HCofThisEvent with a unique collection ID number. This
ID number can be obtained from G4SDManager: : GetCollectionl D() with a name of G4Multi Functional Detector
and G4VPrimitiveScorer connected with a slush ("/"). GATHitsMap has a [] operator taking the key value as an
argument and returning the pointer of the value. Please note that the [] operator returnsthe pointer of the value.
If you get zero from the [] operator, it does not mean the value is zero, but that the provided key does not exist.
The value itself is accessible with an astarisk ("*"). It is advised to check the validity of the returned pointer
before accessing the value. GATHitsMap aso has a += operator in order to accumulate event data into run data.
Example 4.16 shows the use of G4ATHitsMap.

Example 4.16. An example of accessing to GATHitsMap objects.

#i ncl ude "ExNO7Run. hh"

#i ncl ude "&AEvent. hh"

#i ncl ude " G4HCof Thi sEvent . hh"
#i ncl ude "&4SDMvanager . hh"

ExNO7Run: : EXNO7Run()
{
GAString det Nane[6] = {"Cal or-A abs", "Cal or-A _gap", "Cal or-B_abs", "Cal or-B_gap",
"Cal or-C _abs","Cal or-C gap"};
GAString prinmNaneSun{ 6] = {"eDep", "nGanma", "nEl ectron", "nPosi tron", "trackLength", "nStep"};
GAString prinmNameM n[3] = {"m nEki nGanma", " m nEki nEl ectron", " m nEki nPositron"};

G4SDvanager * SDVan = GASDManager : : Get SDVpoi nter () ;
GAString ful | Nane;
for(size_t i=0;i<6;i++)

138

Detector Definition and Response

for(size t j=0;j<6;j++)

full Name = det Nane[i]+"/"+pri mNameSunij];
col IDSun{i][j] = SDMan->Get Col | ecti onl D(ful | Nane) ;

for(size_t k=0;k<3; k++)

full Nane = det Nanme[i]+"/"+pri mNameM n[k] ;
col IDMn[i][k] = SDwvan->Get Col | ecti onl D(ful | Nane) ;
}
}
}

voi d ExNO7Run: : Recor dEvent (const (AEvent* evt)

{
GAHCof Thi sEvent* HCE = evt - >CGet HCof Thi sEvent () ;
if(!'HCE) return;
nunber O Event ++;
for(size_t i=0;i<6;i++)
{

for(size_t j=0;j<6;j++)

GATH t sMap<GAdoubl e>* evt Map = (ATH t sMap<GHAdoubl e>*) (HCE- >Get HC(col I DSunfi][j]1));
mapSun{i][j] += *evtMap;

}
for(size_t k=0; k<3; k++)

GATHI t sMap<G4doubl e>* evt Map = (GATH t sMap<G4doubl e>*) (HCE- >Get HC(col IDM n[i][Kk]));
std:: map<4i nt, GAdoubl e*>: :iterator itr = evtMap->Cet Map()->begin();
for(; itr !'= evt Map->Get Map()->end(); itr++)
{
Aint key = (itr->first);
G4doubl e val = *(itr->second);
GAdoubl e* mapP = mapM n[i][k][key];
if(mapP && (val >*mapP)) conti nue;
mapM n[i][Kk].set(key,val);
}
}
}
}

4.4.6. Concrete classes of G4VPrimitiveScorer

With Geant4 version 8.0, several concrete primitive scorer classes are provided, al of which are derived from the
G4VPrimitiveScorer abstract base class and which are to be registered to G4AMultiFunctional Detector. Each of
them contains one G4THitsMap object and scores a simple double value for each key.

Track length scorers

G4PSTrackLength
The track length is defined as the sum of step lengths of the particles inside the cell. Bt default, the track
weight is not taken into account, but could be used asamultiplier of each step length if the Weighted() method
of this class object isinvoked.

GA4PSPassageTrackL ength
The passage track length is the same as the track length in G4PSTrackLength, except that only tracks which
pass through the volume are taken into account. It means newly-generated or stopped tracks inside the cell
are excluded from the calculation. By default, the track weight is not taken into account, but could be used as
amultiplier of each step length if the Weighted() method of this class object is invoked.

Deposited energy scorers
GA4PSEnergyDeposit

This scorer stores asum of particles energy deposits at each step inthe cell. The particle weight ismultiplied
at each step.

139

Detector Definition and Response

GA4PSDoseDeposit
In some cases, dose is a more convenient way to evaluate the effect of energy deposit in a cell than simple
deposited energy. The dose deposit is defined by the sum of energy deposits at each step in acell divided by
the mass of the cell. The massis calculated from the density and volume of the cell taken from the methods
of G4Volid and G4LogicalVolume. The particle weight is multiplied at each step.

Current and flux scorers

There are two different definitions of a particle's flow for a given geometry. One is a current and the other isa
flux. In our scorers, the current is simply defined as the number of particles (with the particlesweight) at a certain
surface or volume, while the flux takes the particle'sinjection angle to the geometry into account. The current and
flux are usually defined at a surface, but volume current and volume flux are also provided.

GA4PSFlatSurfaceCurrent
Flat surface current is a surface based scorer. The present implementation is limited to scoring only at the -Z
surface of aG4Box solid. The quantity isdefined by the number of tracksthat reach the surface. The user must
choose adirection of the particle to be scored. The choicesare fCurrent_In, fCurrent_Out, or fCurrent_InOut,
one of which must be entered as the second argument of the constructor. Here, fCurrent_In scores incoming
particles to the cell, while fCurrent_Out scores only outgoing particles from the cell. fCurrent_InOut scores
both directions. The current is multiplied by particle weight and is normalized for a unit area.

GA4PSSphereSurfaceCurrent
Sphere surface current is a surface based scorer, and similar to the G4PSFlatSurfaceCurrent. The only differ-
ence is that the surface is defined at the inner surface of a G4Sphere solid.

GA4PSPassageCurrent
Passage current is a volume-based scorer. The current is defined by the number of tracks that pass through
the volume. A particle weight is applied at the exit point. A passage current is defined for avolume.

GA4PSFlatSurfaceFlux
Flat surfaceflux isasurface based flux scorer. The surfaceflux isdefined by the number of tracksthat reach the
surface. The expression of surfaceflux isgiven by the sum of W/cos(t)/A, where W, t and A represent particle
weight, injection angle of particle with respect to the surface normal, and area of the surface. The user must
enter one of the particle directions, fFlux_In, fFlux_Out, or fFlux_InOut in the constructor. Here, fFlux_In
scores incoming particles to the cell, while fFlux_Out scores outgoing particles from the cell. fFlux_InOut
scores both directions.

GAPSCel IFlux
Cdl flux is a volume based flux scorer. The cell flux is defined by atrack length (L) of the particle inside
avolume divided by the volume (V) of this cell. The track length is calculated by a sum of the step lengths
in the cell. The expression for cell flux is given by the sum of (W*L)/V, where W is a particle weight, and
ismultiplied by the track length at each step.

G4PSPassageCelIFlux
Passage cell flux is avolume based scorer similar to G4PSCellFlux. The only difference is that tracks which
passthrough acell are taken into account. It means generated or stopped tracksinside the volume are excluded
from the calculation.

Other scorers

G4PSMinKinEAtGeneration
This scorer records the minimum kinetic energy of secondary particlesat their production point in the volume
in an event. This primitive scorer does not integrate the quantity, but records the minimum quantity.

GA4PSNof Secondary
This class scores the number of secondary particles generated in the volume. The weight of the secondary
track is taken into account.

140

Detector Definition and Response

G4PSNof Step
This class scores the number of stepsin the cell. A particle weight is not applied.

GA4PSCelICharge
This class scored the total charge of particles which has stoped in the volume.

4.4.7. GAVSDFilter and its derived classes

G4VSDFilter is an abstract class that represents a track filter to be associated with G4VSensitiveDetector or
GA4VPrimitiveScorer. It defines a virtual method

G4bool Accept (const (AStep*)

that should returntrueif this particular step should be scored by the G4VSensitiveDetector or G4VPrimitiveScorer.

While the user can implement his’her own filter class, Geant4 version 8.0 provides the following concrete filter
classes:

G4SDChargedFilter
All charged particles are accepted.

GA4SDNeutral Filter
All neutral particles are accepted.

G4SDParticleFilter
Particle species which are registered to this filter object by Add("particle_name") are accepted. More than
one species can be registered.

GA4SDKineticEnergyFilter
A track with kinetic energy greater than or equal to EKmin and smaller than EKmin is accepted. EKmin and
EKmax should be defined as arguments of the constructor. The default values of EKmin and EKmax are zero
and DBL_MAX.

GA4SDParticleWithEnergyFilter
Combination of G4SDParticleFilter and G4SDParticleWithEnergyFilter.

The use of the G4SDParticleFilter class is demonstrated in Example 4.15, where filters which accept gamma,
electron, positron and electron/positron are defined.

4.4.8. Scoring for Event Biasing

Scoring for Event Biasing (described in Section 3.7) isavery specific use case whereby particle weightsand fluxes
through importance cells are required. The goals of the scoring technique are to:

 appraise particle quantities related to special regions or surfaces,
» beapplicableto al "cells' (physical volumes or replicas) of a given geometry,
* be customizable.

Standard scoring must be provided for quantities such as tracks entering a cell, average weight of entering tracks,
energy of entering tracks, and collisions inside the cell.

A number of scorers have been created for this specific appliction:
G4PSNofCollision
This scorer records the number of collisions that occur within a scored volume/cell. There is the additional

possibility to take into account the track weight whilst scoring the number of collisions, via the following
command:

G4PSNof Col | i si on* scorerl = new GAPSNof Col | i si on(psNanme="Col | Wi ght");

141

Detector Definition and Response

scorer 1- >\Wi ght ed(t rue) ;

G4PSPopulation
This scores the number of tracks within in agiven cell per event.

GA4PSTrackLength
Thetrack lengths within a cell are measured and if, additionally, the result is desired to be weighted then the
following code has to be implemented:

GAPSTr ackLengt h* scorer5 = new APSTrackLengt h(psName="SLW) ;
scor er 5- >Wei ght ed(true);

Further if the energy track flux is required then the following should be implemented:

GAPSTr ackLengt h* scorer6 = new GAPSTrackLengt h(psName="SLVE") ;
scor er 6- >Wei ght ed(true);

scorer6->Mil tipl yKi neti cEnergy(true);

MFDet - >Regi sterPrim tive(scorer6);

Alternatively to measure the flux per unit velocity then:

GAPSTr ackLengt h* scorer7 = new APSTrackLengt h(psName="SLW V") ;
scorer 7- >\Wei ght ed(t rue) ;

scorer 7->Di vi deByVel oci ty(true);

MrFDet - >Regi sterPrim tive(scorer7);

Finally to measure the flux energy per unit velocity then:

GAPSTr ackLengt h* scorer8 = new GAPSTrackLengt h(psName="SLVE_V") ;
scor er 8- >Wei ght ed(t rue);

scorer8->Mul ti pl yKi neti cEnergy(true);

scor er 8- >Di vi deByVel oci ty(true);

MFDet - >Regi sterPrim tive(scorer8);

4.5. Digitization
4.5.1. Digi

A hit is created by a sensitive detector when a step goes through it. Thus, the sensitive detector is associated to
the corresponding G4Logical Volume object(s). On the other hand, adigit is created using information of hits and/
or other digits by a digitizer module. The digitizer module is not associated with any volume, and you have to
implicitly invokethe Di gi ti ze() method of your concrete G4VDigitizerModule class.

Typical usages of digitizer module include:

» simulate ADC and/or TDC
» simulate readout scheme
 generate raw data

e simulate trigger logics

e simulate pile up

GA4VDigi

G4VDigi isan abstract base class which represents adigit. Y ou have to inherit this base class and derive your own
concrete digit class(es). The member data of your concrete digit class should be defined by yourself. G4VDigi has
two virtual methods, Dr aw() and Print ().

G4TDigiCollection

GA4TDigiCollection is a template class for digits collections, which is derived from the abstract base class
G4VDigiCollection. G4Event has a G4DCofThisEvent object, which is a container class of collections of digits.

142

Detector Definition and Response

The usages of G4VDigi and G4TDigiCollection are almost the same as G4VHit and G4THitsCollection, respec-
tively, explained in the previous section.

4.5.2. Digitizer module

G4VDigitizerModule

G4VDigitizerModule is an abstract base class which represents a digitizer module. It has a pure virtua method,
Digitize().A concrete digitizer module must have an implementation of this virtual method. The Geant4
kernel classesdo not havea "built-in" invocationtothe Di gi ti ze() method. Y ou haveto implement your code
to invoke this method of your digitizer module.

In the Di gitize() method, you construct your G4VDigi concrete class objects and store them to your
GA4TDigiCollection concrete class object(s). Your collection(s) should be associated with the G4ADCofThisEvent
object.

G4DigiManager
G4DigiManager is the singleton manager class of the digitizer modules. All of your concrete digitizer modules

should be registered to G4DigiManager with their unique names.

GADi gi Manager * fDM = GAD gi Manager : : Get D\vpoi nter () ;
My/Di giti zer * nyDM = new MyDi gi ti zer("/ nyDet/ nyCal / nyEMIi gi Mod");
f DM >AddNewMbdul e(myDM) ;

Y our concrete digitizer module can be accessed from your code using the unique module name.

G4ADi gi Manager * fDM = 4D gi Manager : : Get DMVpoi nter();
M/Digitizer * nyDM = f DM >Fi ndDi gi ti zer Modul e("/ myDet / nyCal / myEMIi gi Mbd");
nyDM >Digi ti ze();

Also, G4DigiManager has a Digitize() method which takes the unique module name.

GADi gi Manager * fDM = GAD gi Manager : : Get D\vpoi nter () ;
M/Digitizer * nyDM = fDM >Digitize("/ nyDet/nyCal/nyEMIi gi Mod");

How to get hitsCollection and/or digiCollection

G4DigiManager has the following methods to access to the hits or digi collections of the currently processing
event or of previous events.

First, you have to get the collection ID number of the hits or digits collection.

GADi gi Manager * fDM = GAD gi Manager : : Get D\vpoi nter () ;
Gdint nyHitsColl 1D = fDM >Get HitsCol | ectionl D("hits_col |l ecti on_nane");
Gint nyDigiCollI D= fDMV>CetDigiCollectionlD("digi_collection_nane");

Then, you can get the pointer to your concrete GATHitsCollection object or GATDigiCollection object of the
currently processing event.

M/Hi tsCol | ection * HC = fDM >Cet Hi tsCol | ection(nyH tsCollID);
M/Di gi Col | ection * DC = f DM >Get Di gi Col | ection(nyDigiCollID);

In case you want to access to the hits or digits collection of previous events, add the second argument.

M/Hi tsCol ection * HC = fDM >CGet HitsCol | ection(nyHi tsCollID, n);
MyDi gi Col | ection * DC = f DM >Cet Di gi Col | ection(nyDigiCollID, n);

where, n indicates the hits or digits collection of the nt previous event.

143

Detector Definition and Response

4.6. Object Persistency
4.6.1. Persistency in Geant4

Object persistency is provided by Geant4 as an optional category, so that the user may run Geant4 with or without
an object database management system (ODBMYS).

When a usual (transient) object is created in C++, the object is placed onto the application heap and it ceases to
exist when the application terminates. Persistent objects, on the other hand, live beyond the termination of the
application process and may then be accessed by other processes (in some cases, by processes on other machines).

i Database Fnw ronrmett
persistent ohied

‘ mnstrudnr

destrictar

Figure4.9. Persistent object.

C++ does not have, as an intrinsic part of the language, the ability to store and retrieve persistent objects. Geant4
provides an abstract framework for persistency of hits, digits and events.

Two examples demonstrating an implementation of object persistency using one of the tools accessible through
the available interface, is provided in exanpl es/ ext ended/ per si st ency.

4.6.2. Using Reflex for persistency of Geant4 objects

Object persistency of Geant4 objects is also possible by the mean of the Reflex library. Reflex provides, in a
non-intrusive way, reflection capabilities to C++ classes by generating "dictionary information™ for them. Those
dictionaries can then be loaded in memory allowing direct persistency of the given objects without any instrumen-
tation of the code. The Reflex library is aso part of ROOT (sincereleasev5. 08).

The basic steps that one needsto do in order to use Reflex with ROOT 1/O for arbitrary C++ classesis:

1. Generate the dictionary for the given classes using the genr ef | ex tool from ROOT (this usually is done by
adding the appropriate command to the makefile)

2. Addinitiaization of ROOT I/O and loading of the generated dictionary for the given classesin the appropriate
part of the code

3. Whenever the objects to be persistified are available, call the Wi t eQbj ect method of TFi | e with the
pointer to the appropriate object as argument (usually it is some sort of container, like st d: : vect or con-
taining the collection of objects to be persistified)

The two examples (P01 and P02) provided in exanpl es/ ext ended/ per si st ency demonstrate how to
perform object persistency using the Reflex mechanism in ROOT 1/0O for storing hits and geometry description.

4.7. Parallel Geometries

4.7.1. A parallel world

Occasionaly, it is not straightforward to define geometries for sensitive detectors, importance geometries or en-
velopes for shower parameterization to be coherently assigned to volumes in the tracking (mass) geometry. The

144

http://cern.ch/seal-reflex/
http://root.cern.ch/

Detector Definition and Response

parallel navigation functionality introduced since release 8.2 of Geant4, allows the user to define more than one
worlds simultaneously. The G4Tr ansport at i on processwill see all worlds simultaneously; stepswill be lim-
ited by both boundaries of the mass and parallel geometries.

In aparallel world, the user can define volumes in arbitrary manner with sensitivity, regions, shower parameteri-
zation setups, and/or importance weight for biasing. Volumes in different worlds can overlap.

Here are restrictions to be considered for the parallel geometry:

» Materials, production thresholds and EM field are used only from the mass geometry. Even if such physical
quantities are defined in a parallel world, they do not affect to the simulation.

« Although all worlds will be comprehensively taken care by the GATr anspor t at i on processfor the naviga-
tion, each parallel world must have its own process assigned to achieve its purpose. For example: in case the
user defines a sensitive detector to a parallel world, a process dedicated to the parallel world is responsible to
invoke this detector. The G4St eppi ngManager treats only the detectors in the mass geometry. For this case
of detector sensitivity defined in a parallel world, a G4Par al | el Wor | dScor i ngPr ocess process must
be defined in the physics list (see Section 4.7.3).

4.7.2. Defining a parallel world

A parallel world should be defined in the Const ruct () virtual method of the user's class derived from the
abstract base class G4VUserParallelWorld.

Example4.17. An example header file of a concrete user parallel world class.

#i f ndef MyParal |l el Worl d_h
#define MyParallelWrld_h 1

#i ncl ude "gl obal s. hh"
#i ncl ude "&VUser Par al | el Wor | d. hh"

class MyParallelWrld : public GAVUser Parall el Worl d

public:
M/Par al | el Wor | d(AAString worl dNang) ;
virtual ~MyParallel Wrld();

public:
virtual void Construct();
=

#endi f

A paralel world must have its unique name, which should be set to the G4VUser Par al | el Wr | d base class
as an argument of the base class constructor.

The world physical volume of the parallel world is provided by the GARunManager as a clone of the mass
geometry. In the Const ruct () virtual method of the user's class, the pointer to this cloned world physical
volumeis available through the Get Wor | d() method defined in the base class. The user should fill the volumes
in the parallel world by using this provided world volume. For alogical volume in a parallel world, the material
pointer canbe 0. Evenif specified avalid material pointer, it will not be taken into account by any physics process.

Example 4.18. An example source code of a concrete user parallel world class.

#i ncl ude "MyParall el Wrld. hh"
#i ncl ude "ALogi cal Vol une. hh"
#i ncl ude " &AVPhysi cal Vol une. hh"
#i ncl ude " &4Box. hh"

#i ncl ude "APVPl acenent . hh"

MW Paral | el Wor | d: : MyParal | el Worl d(&G4String wor | dNane)
: AVUser Par al | el Wor | d(wor | dNanre)

{i}

MParal | el Worl d: : ~MyParal | el Wr | d()

145

Detector Definition and Response

{:}

voi d MyParall el Worl d: : Construct ()

{
GAVPhysi cal Vol une* ghostWorld = GetWorld();

G4Logi cal Vol une* wor | dLogi cal = ghost Wor| d- >Get Logi cal Vol une() ;

/] place volunes in the parallel world here. For exanple ...
/1
G4Box * ghostSolid = new GABox(" Ghost dBox", 60.*cm 60.*cm 60.*cnm);
GALogi cal Vol ume * ghost Logi cal

= new GALogi cal Vol une(ghost Solid, 0, "ChostlLogical", 0, 0, 0);
new APVPI acenent (0, GAThreeVector (), ghostLogical,

" Chost Physi cal ", worldLogical, 0, 0);
}

In case the user needs to define more than one parallel worlds, each of them must be implemented through its
dedicated class. Each parallel world should be registered to the mass geometry class using the method Regi s-

terParal | el Wrl d() available through the class G4VUser Det ect or Const r uct i on. Theregistration
must be done -before- the mass world is registed to the GARunManager .

Example 4.19. Typical implementation in themai n() to definea parallel world.

/1 RunManager construction
Il
GARunManager * runManager = new GARunManager;

/1 mass world
Il
MyDet ect or Const ructi on* massWorl d = new MyDet ect or Const ruct i on;

/] parallel world
Il
massWor | d- >Regi st er Paral | el Wor| d(new MyPar al | el Wor | d(" Paral | el Scori ngWorld"));

/] set mass world to run nanager
Il
runManager - >Set User I ni ti al i zati on(massWor | d) ;

4.7.3. Detector sensitivity in a parallel world

Any kind of (AVSensi ti veDet ect or object can be defined in volumes in a parallel world, exactly at the
same manner for the mass geometry. Once the user defines the sensitive detector in a parallel world, he/she must
define a process which takes care of these detectors.

The G4Par al | el Wor | dScor i ngProcess is the class provided for this purpose. This process must
be defined to all kinds of particles which need to be "detected". This process must be ordered just
after G4Transporati on and prior to any other physics processes. The name of the parallel world
where the G4Paral | el Wor | dScori ngProcess is responsible for, must be defined through the
method Set Paral | el Wr| d() available from the class GAPar al | el Wor | dScori ngProcess. If
the user has more than one parallel worlds with detectors, for each of the parallel worlds, dedicated
APar al | el Wor | dScor i ngPr ocess objects must be instantiated with the name of each parallel world re-
spectively and registered to the particles.

Example 4.20. Define APar al | el Wor | dScor i ngPr ocess.

// Add parallel world scoring process
/Il
GAPar al | el Wor | dScor i ngProcess* t heParal | el Wrl dScori ngProcess
= new AParal | el Wr | dScori ngProcess("ParaWr| dScori ngProc");
thePar al | el Wor | dScori ngProcess->Set Paral | el Wr | d("Paral | el Scori ngWorl d");

theParticlelterator->reset();
while((*theParticlelterator)())

GAParticleDefinition* particle = theParticlelterator->value();
if (!particle->IsShortLived())
{

146

Detector Definition and Response

GAProcessManager * pmanager = particl e->Get ProcessManager () ;

prmanager - >AddPr ocess(t hePar al | el Wor | dScor i ngPr ocess) ;

pmanager - >Set ProcessOr der i ngToLast (t hePar al | el Wor | dScor i ngPr ocess, i dxAt Rest);
prmanager - >Set ProcessOr deri ng(t heParal | el Wr | dScori ngProcess, i dxAl ongStep, 1);
pmanager - >Set ProcessOr der i ngToLast (t hePar al | el Wor | dScor i ngPr ocess, i dxPost St ep) ;

}
}

At the end of processing an event, al hits collections made for the paralel world are stored in
GAHCof Thi sEvent aswell asthose for the mass geometry.

4.8. Command-based scoring
4.8.1. Introduction

Command-based scoring in Geant4 utilizes parallel navigation in a parallel world volume as descibed in the pre-
vious sections. Through interactive commands, the user can define :

» A parald world for scoring and three-dimensional mesh in it
 Arbitrary number of physics quantities to be scored and filters

After scoring (i.e. arun), the user can visualize the score and dump scoresinto afile. All available Ul commands
arelistedin List of built-in commands.

Command-based scoring is an optional functionality and the user has to explicity defineits usein the mai n() .
To do this, the method G4Scor i ngManager : : Get Scor i ngManager () must be invoked right after the
instantiation of GARunManager .

Example4.21. A user mai n() to usethe command-based scoring

#i ncl ude "&ARunManager . hh"
#i ncl ude "&4Scori ngManager . hh"

int main(int argc,char** argv)

/] Construct the run manager
GARunManager * runManager = new G4ARunManager ;

/] Activate command- based scorer
GAScor i ngManager : : Get Scori ngManager () ;

}
4.8.2. Defining a scoring mesh

To define a scoring mesh, the user has to specify the followings.

» Shape and name of the 3D scoring mesh. Currently, box is the only available shape.

* Size of the scoring mesh. Mesh size must be specified as "half width" similar to the arguments of G4Box.

» Number of binsfor each axes. Note that too hugh number causes immense memory consumption.

» Optionaly, position and rotation of the mesh. If not specified, the mesh is positioned at the center of the world
volume without rotation.

For ascoring mesh the user can have arbitrary number of quantitiesto be scored for each cell of the mesh. For each
scoring quantity, the use can set one filter. Please note that / scor e/ fi | t er affects on the preceding scorer.
Names of scorers and filters must be unique for the mesh. It is possible to define more than one scorer of same
kind with different names and, likely, with different filters.

Defining a scoring mesh and scores in the mesh should terminate with the/ scor e/ cl ose command. The fol-
lowing sample Ul commands define a scoring mesh named boxMesh_1, size of whichis2m* 2m* 2m, and

147

./AllResources/Control/UIcommands/_score_.html

Detector Definition and Response

dliced into 30 cells along each axes. For each cell energy deposition, number of steps of gamma, number of steps

of electron and number of steps of positron are scored.

Example 4.22. Ul commandsto define a scoring mesh and scorers

define scoring nmesh

#
#

E
€ T » o +
o mgu n O
C o 5
- o rMeHr
o (] — (]
1SS 882o=h2
— Lo Q. Q.
| e._HeFe._H
< . — 0
29 1) i&m&u&s
—_ [%2] c =}
£3 & SBLEBLZIB?2
X O - accgc=cl
o .m — m (=] (] (]
ol e) — o o o
mw y— >0 00 00O
< (@2} — — —
Seo m H&C&C&C
288 & 266z
X = D C o C o C o
owv c %] —~—= O — ©— @©
O X . —_ S>> >Qa
— onm D = =~ =~ =~
L o C —_ e 1 s
— e~~~ o == O - O = O
© c (&) C C wmw C = C =
oo o G888l gl
rmm S5 3 = 3= 3 =
o Q T T 4w T4 Ty
~ ~ ~ c ~ e~~~ —~ —
L 0o — O OO0V OVOO
me e o R R s s
o O O Q O OO OO0 O O
[SRNS RG] © [SRNS RN NSNS NS ING]
w n un nw n nnonunon
———

Once scores arefilled, it is possible to visualize the scores. The score is drawn on top of the mass geometry with

/ scor el cl ose
4.8.3. Drawing scores
the current visualization settings.

#
#

%
3
g
£
£
3
)
H
4
2
2
5
2
&
>

viewer-0 (OpenGLimmediateX)

in G4Def aul t Li near Col or Map class, and registered to G4Scor i ngManager with the color map name
"def aul t Li near Col or Map" . The user may aternate color map by implementing a customised color map

class derived from G4VScor eCol or Map and register it to G4Scor i ngManager . Then, for each dr aw com-

mand, one can specify the preferred color map.
(/ score/ dunpAl | Quantiti esToFi | e command) to afile. The default file format isthe smple CSV. To

By default, entries are linearly mapped to colors (gray - blue - green - red). This color mapping is implemented
It ispossible to dump ascoreinamesh (/ scor e/ dunpQuant i t yToFi | e command) or all scoresin amesh

Scored data can be visualized using the commands"/ scor e/ dr awPr oj ecti on" and"/ scor e/ dr awCol -

Figure 4.10. Drawing scoresin slices (left) and projection (right)
um". For details, see examples/extended/runAndEvent/REQ3.

4.8.4. Writing scores to afile

148

Detector Definition and Response

alternatethefileformat, one should overwrite G4VScor eW i t er classandregisteritto G4Scor i ngManager .
Pleaserefer to/ exanpl es/ ext ended/ r unAndEvent / REO3 for details.

149

Chapter 5. Tracking and Physics

5.1. Tracking
5.1.1. Basic Concepts

Philosophy of Tracking

All Geant4 processes, including the transportation of particles, are treated generically. In spite of the name "track-
ing", particles are not transported in the tracking category. G4TrackingManager is an interface class which bro-
kers transactions between the event, track and tracking categories. An instance of this class handles the message
passing between the upper hierarchical object, which is the event manager, and lower hierarchica objects in the
tracking category. The event manager is a singleton instance of the G4EventManager class.

The tracking manager receives atrack from the event manager and takes the actions required to finish tracking it.
G4TrackingManager aggregates the pointers to G4SteppingManager, G4Trajectory and G4User TrackingAction.
Alsothereisa"use" relation to G4Track and G4Step.

G4SeppingManager plays an essential role in tracking the particle. It takes care of all message passing between
objects in the different categories relevant to transporting a particle (for example, geometry and interactions in
matter). Its public method St eppi ng() steers the stepping of the particle. The algorithm to handle one step is
given below.

1. If the particle stop (i.e. zero kinetic energy), each active atRest process proposes a step length in time based on
the interaction it describes. And the process proposing the smallest step length will be invoked.

2. Each active discrete or continuous process must propose a step length based on the interaction it describes. The
smallest of these step lengthsis taken.

3. The geometry navigator calculates " Safety", the distance to the next volume boundary. If the minimum physi-
cal-step-length from the processes is shorter than " Safety", the physical-step-length is selected as the next step
length. In this case, no further geometrical calculations will be performed.

4. If the minimum physical-step-length from the processesis longer than " Safety", the distance to the next bound-
ary isre-calculated.

5. The smaller of the minimum physical-step-length and the geometric step length is taken.

6. All active continuous processes are invoked. Note that the particle's kinetic energy will be updated only after
all invoked processes have completed. The change in kinetic energy will be the sum of the contributions from
these processes.

7. Thecurrent track properties are updated before discrete processes are invoked. In the same time, the secondary
particles created by processes are stored in SecondaryL ist. The updated properties are:
 updating the kinetic energy of the current track particle (note that 'sumEnergyChange’ is the sum of the

energy difference before and after each process invocation)
* updating position and time

8. The kinetic energy of the particle is checked to see whether or not it has been terminated by a continuous
process. If the kinetic energy goes down to zero, atRest processes will be applied at the next step if applicable.

9. The discrete processisinvoked. After the invocation,

« the energy, position and time of the current track particle are updated, and
* the secondaries are stored in SecondaryL.ist.

10.Thetrack is checked to see whether or not it has been terminated by the discrete process.

11."Safety" is updated.

12.If the step was limited by the volume boundary, push the particle into the next volume.

13.Invoke the user intervention G4User SteppingAction.

14 Handle hit information.

15.Save data to Trajectory.

16.Update the mean free paths of the discrete processes.

17.1f the parent particle is till alive, reset the maximum interaction length of the discrete process which has
occurred.

18.0ne step compl eted.

150

Tracking and Physics

What is a Process?

Only processes can change information of G4Track and add secondary tracks via Parti cl eChange.
G4VProcess is a base class of al processes and it has 3 kinds of Dol t and Get Physi cal I nt eracti on
methodsin order to describe interactions generically. If auser want to modify information of G4Track, he (or she)
SHOULD create a special process for the purpose and register the process to the particle.

What is a Track?

GA4Track keeps "current' information of the particle. (i.e. energy,momentum, position ,time and so on) and has 'sta-
tic'information (i.e. mass, charge, lifeand so on) also. Note that G4Track keepsinformation at the beginning of the
step while the Al ongSt epDol t s are being invoked for the step in progress.After finishing al Al ongSt ep-

Dol t s, GATrack is updated. On the other hand, G4Track is updated after each invocation of aPost St epDol t .

What is a Step?

GA4Step stores the transient information of a step. This includes the two endpoints of the step, Pr eSt epPoi nt
and Post St epPoi nt , which contain the points' coordinates and the volumes containing the points. G4tep also
storesthe change in track properties between the two points. These properties, such as energy and momentum, are
updated as the various active processes are invoked.

What is a ParticleChange?

Processes do NOT change any information of G4Track directly intheir Dol t . Instead, they proposes changesasa
result of interactionsby using Par t i cl eChange. AftereachDol t ,Parti cl eChange updatesPost St ep-

Poi nt based on proposed changes. Then, G4Track is updated after finishing all Al ongSt epDol t s and after
each Post St epDol t .

5.1.2. Access to Track and Step Information

How to Get Track Information

Track information may be accessed by invoking various Get methods provided in the G4Track class. For details,
see the Softwar e Reference Manual. Typical information available includes:

* (xy.2)

 Global time (time since the event was created)

 Local time (time since the track was created)

» Proper time (timein its rest frame since the track was created)
* Momentum direction (unit vector)

 Kinetic energy

» Accumulated geometrical track length

e Accumulated true track length

* Pointer to dynamic particle

* Pointer to physical volume

e Track ID number

» Track ID number of the parent

» Current step number

» Track status

* (x,y,2) at the start point (vertex position) of the track

e Momentum direction at the start point (vertex position) of the track
 Kinetic energy at the start point (vertex position) of the track

* Pinter to the process which created the current track

How to Get Step Information

Step and step-point information can be retrieved by invoking various Get methods provided in the G4Step/
G4SepPoint classes. For details, see the Softwar e Reference Manual.

151

Tracking and Physics

Information in G4tep includes:

» Pointersto Pr eSt ep and Post St epPoi nt

» Geometrical step length (step length before the correction of multiple scattering)

» True step length (step length after the correction of multiple scattering)

* Increment of position and time between Pr eSt epPoi nt and Post St epPoi nt

* Increment of momentum and energy between Pr eSt epPoi nt and Post St epPoi nt . (Note: to get the en-
ergy deposited in the step, you cannot use this 'Delta energy'. Y ou have to use 'Total energy deposit' as below.)

 Pointer to G4Tr ack

» Total energy deposited during the step - this is the sum of

« the energy deposited by the energy loss process, and
« the energy lost by secondaries which have NOT been generated because each of their energies was below
the cut threshold
» Energy deposited not by ionization during the step
» Secondary tracks created during tracking for the current track.

* NOTE: al secondaries are included. NOT only secondaries created in the CURRENT step.

Information in G4StepPoint (Pr eSt epPoi nt and Post St epPoi nt) includes:

* (X, y! Z, t)

* (px, py, pz, EK)

* Momentum direction (unit vector)

 Pointersto physical volumes

o Safety

» Beta, gamma

» Polarization

o Step status

« Pointer to the physics process which defined the current step and its Dol t type
« Pointer to the physics process which defined the previous step and its Dol t type
» Total track length

» Global time (time since the current event began)

 Local time (time since the current track began)

 Proper time

How to Get "particle change"

Particle change information can be accessed by invoking various Get methods provided in the G4ParticleChange
class. Typical information available includes (for details, see the Softwar e Reference Manual):

« final momentum direction of the parent particle

« final kinetic energy of the parent particle

« final position of the parent particle

« final global time of the parent particle

* final proper time of the parent particle

« final polarization of the parent particle

* status of the parent particle (G4TrackSatus)

* true step length (thisis used by multiple scattering to store the result of the transformation from the geometrical
step length to the true step length)

* local energy deposited - this consists of either

 energy deposited by the energy loss process, or
« the energy lost by secondaries which have NOT been generated because each of their energies was below
the cut threshold.
» number of secondaries particles

152

Tracking and Physics

« list of secondary particles (list of G4Track)

5.1.3. Handling of Secondary Particles

Secondary particles are passed as G4Tracks from a physics process to tracking. G4ParticleChange provides the
following four methods for a physics process:

» AddSecondary(ATrack* aSecondary)

» AddSecondary(ADynam cParticl e* aSecondary)

e AddSecondary(ADynami cParticl e* aSecondary, GAThreeVector position)
* AddSecondary(ADynami cParticle* aSecondary, GAdouble tine)

In all but the first, the construction of G4Track is done in the methods using information given by the arguments.

5.1.4. User Actions

There are two classes which alow the user to intervene in the tracking. These are:

» G4UserTrackingAction, and
» GA4User SeppingAction.

Each provides methods which allow the user access to the Geant4 kernel at specific points in the tracking. For
details, see the Softwar e Reference Manual.

Note-1: Users SHOULD NOT (and CAN NOT) change G4Track in User St eppi hgAct i on. Only the excep-
tionisthe Tr ack St at us.

Note-2: Users have to be cautious to implement an unnatural/unphysical action in these user actions. See the
section Killing Tracksin User Actions and Energy Conservation for more details.

5.1.5. Verbose Outputs

The verbose information output flag can be turned on or off. The amount of information printed about the track/
step, from brief to very detailed, can be controlled by the value of the verbose flag, for example,

G4Ul manager* U = AUl nanager: : Get Ul poi nter();

Ul - >Appl yConmand("/t r acki ng/ ver bose 1");

5.1.6. Trajectory and Trajectory Point

G4Trajectory and G4TrajectoryPoint

GATrajectory and GATrajectoryPoint are default concrete classes provided by Geant4, which are derived from
the G4VTrajectory and G4VTrajectoryPoint base classes, respectively. A G4Trajectory class object is created by
G4TrackingManager when a G4Track is passed from the G4EventManager. G4Trajectory has the following data
members:

* ID numbers of the track and the track's parent
* particle name, charge, and PDG code
 acollection of G4TrajectoryPoint pointers

G4TrajectoryPoint corresponds to a step point along the path followed by the track. Its position is given by a
GA4ThreeVector. A GATrajectoryPoint class object is created in the AppendStep() method of G4Trajectory and this
method isinvoked by G4TrackingManager at theend of each step. Thefirst point is created when the G4Trajectory
is created, thus the first point isthe original vertex.

153

Tracking and Physics

Thecreation of atrajectory can be controlled by invoking G4TrackingManager : : SetSoreTrajectory(G4bool). The
Ul command /tracking/storeTrajectory _bool _does the same. The user can set this flag for each individual track
from his’her G4User TrackingAction: : PreUser TrackingAction() method.

The user should not create trajectories for secondaries in a shower due to the large amount of memory
consumed.

All the created trgjectoriesin an event are stored in G4TrajectoryContainer class object and this object will be kept
by G4Event. Todraw or print trgjectoriesgenerated in an event, the user may invokethe DrawTrajectory() or Show-
Trajectory() methods of G4VTrajectory, respectively, from his’/her G4User EventAction:: EndOfEventAction().
The geometry must be drawn before the tragjectory drawing. The color of the drawn trajectory depends on the
particle charge:

* negative: red
 neutra: green
* positive: blue

Due to improvements in G4Navigator, a track can execute more than one turn of its spiral trgjectory
without being broken into smaller steps as long as the trajectory does not cross a geometrical boundary.
Thus a drawn tragjectory may not be circular.

Customizing trajectory and trajectory point

GA4Track and G4Sep are transient classes; they are not available at the end of the event. Thus, the concrete
classes G4VTrajectory and G4VTrajectoryPoint are the only ones a user may employ for end-of-event analy-
sis or for persistency. As mentioned above, the default classes which Geant4 provides, i.e. G4Trajectory and
G4TrajectoryPoint, have only very primitive quantities. The user can customize his’her own trgjectory and trajec-
tory point classes by deriving directly from the respective base classes.

To use the customized trajectory, the user must construct a concrete trajectory class object in the
G4User TrackingAction: : PreUser TrackingAction() method and make its pointer availableto G4TrackingManager
by using the SetTrajectory() method. The customized trajectory point class object must be constructed in the Ap-
pendSep() method of the user'simplementation of the trgjectory class. This AppendStep() method will be invoked
by G4TrackingManager.

To customize trgjectory drawing, the user can override the DrawTrajectory() method in his’her own trajectory
class.

When a customized version of G4Trajectory declares any new class variables, operator new and operator delete
must be provided. It isalso useful to check that the allocation sizein operator new isequal to sizeof(G4Trajectory).
These two points do not apply to G4VTrajectory because it has no operator new or operator delete.

5.2. Physics Processes

Physics processes describe how particlesinteract with amaterial. Seven major categories of processesare provided
by Geant4:

. electromagnetic,

. hadronic,

decay,

. photolepton-hadron ,
optical,

. parameterization, and
. transportation.

No A WNR

The generalization and abstraction of physics processesisakey issuein the design of Geant4. All physics process-
es are treated in the same manner from the tracking point of view. The Geant4 approach enables anyone to cre-

154

Tracking and Physics

ate a process and assign it to a particle type. This openness should allow the creation of processes for novel, do-
main-specific or customised purposes by individuals or groups of users.

Each process has two groups of methods which play an important role in tracking, Get Physi cal | nt er ac-

ti onLengt h (GPIL) and Dol t . The GPIL method gives the step length from the current space-time point to
the next space-time point. It does this by calculating the probability of interaction based on the process's cross
section information. At the end of this step the Dol t method should be invoked. The Dol t method implements
the details of the interaction, changing the particle's energy, momentum, direction and position, and producing
secondary tracks if required. These changes are recorded as G4VParticleChange objects(see Particle Change).

G4VProcess

G4VProcess is the base class for all physics processes. Each physics process must implement virtual methods of
G4VProcess which describe the interaction (Dolt) and determine when an interaction should occur (GPIL). In
order to accommodate various types of interactions G4VProcess providesthree Dol t methods:

e AVParticl eChange* Al ongSt epDolt(const ATrack& track, const GASt ep& st ep-
Data)

This method isinvoked while G4SteppingManager istransporting a particle through one step. The correspond-
ing Al ongSt epDol t for each defined processis applied for every step regardless of which process produces
the minimum step length. Each resulting changeto the track information isrecorded and accumul ated in G4Step.
After all processes have been invoked, changes due to Al ongSt epDol t are applied to G4Track, including
the particle relocation and the safety update. Note that after theinvocation of Al ongSt epDol t , the endpoint
of the G4Track object isin a new volume if the step was limited by a geometric boundary. In order to obtain
information about the old volume, G4Step must be accessed, since it containsinformation about both endpoints
of astep.
» AVParticl eChange* Post StepDolt(const (ATrack& track, const GASt ep& step-

Data)

Thismethod isinvoked at the end point of astep, only if its process has produced the minimum step length, or if
the processis forced to occur. GATrack will be updated after each invocation of Post St epDol t , in contrast
tothe Al ongSt epDol t method.

e AVParticl eChange* AtRestDolt(const (ATrack& track, const GAStep& step-
Data)

This method is invoked only for stopped particles, and only if its process produced the minimum step length
or the processisforced to occur.

For each of the above Dol t methods G4VProcess provides a corresponding pure virtual GPIL method:

* (Adoubl e Post St epGet Physi cal I nteracti onLength(const G4Track& track,
(Adoubl e previ ousSt epSi ze, AForceCondition* condition)

This method generates the step length allowed by its process. It also provides a flag to force the interaction to
occur regardless of its step length.

» (4doubl e Al ongSt epGet Physi cal I nteracti onLength(const &ATrack& track,
Adoubl e previousStepSi ze, Adouble currentM ni nunttep, GAdouble& pro-
posedSaf ety, (AGPI LSel ection* selection)

This method generates the step length allowed by its process.
* ((4doubl e At Rest Get Physi cal I nteracti onLengt h(const ATrack& track,
GAFor ceCondi tion* condition)

This method generates the step length in time allowed by its process. It also provides a flag to force the inter-
action to occur regardless of its step length.

Other pure virtual methods in G4VProcess follow:

* virtual 4bool [|sApplicable(const G4Particl eDefinition&)

155

Tracking and Physics

returns true if this process object is applicable to the particle type.
e virtual void PreparePhysicsTabl e(const GiParticl eDefinition&) and
e virtual void Buil dPhysicsTabl e(const (AParticl eDefinition&)

ismessaged by the process manager, whenever cross section tables should be prepared and rebuilt due to chang-
ing cut-off values. It is not mandatory if the process is not affected by cut-off values.

e virtual void StartTracking() and

e virtual void EndTracking()

are messaged by the tracking manager at the beginning and end of tracking the current track.

Other base classes for processes

Specialized processes may be derived from seven additional virtual base classes which are themselves derived
from G4VProcess. Three of these classes are used for simple processes:

G4VRestProcess
Processes using only the At Rest Dol t method.

example: neutron capture

GA4VDiscreteProcess
Processes using only the Post St epDol t method.

example: compton scattering, hadron inelastic interaction
The other four classes are provided for rather complex processes:

G4V ContinuousDiscreteProcess
Processes using both Al ongSt epDol t and Post St epDol t methods.

example: transportation, ionisation(energy loss and deltaray)

G4VRestDiscreteProcess
Processes using both At Rest Dol t and Post St epDol t methods.

example: positron annihilation, decay (both in flight and at rest)

G4VRestContinuousProcess
Processes using both At Rest Dol t and Al ongSt epDol t methods.

G4VRestContinuousDi screteProcess
Processesusing At Rest Dol t , Al ongSt epDolt and PostStepDolt methods.

Particle change

G4VParticleChange and its descendants are used to store the final state information of the track, including sec-
ondary tracks, which has been generated by the Dol t methods. The instance of G4VParticleChange is the only
object whose information is updated by the physics processes, hence it is responsible for updating the step. The
stepping manager collects secondary tracks and only sends requests via particle change to update G4Step.

G4VParticleChange is introduced as an abstract class. It has a minimal set of methods for updating G4Step
and handling secondaries. A physics process can therefore define its own particle change derived from
G4VParticleChange. Three pure virtual methods are provided,

e virtual G4Step* Updat eStepFor At Rest (A4St ep* step),
 virtual GAStep* Updat eStepFor Al ongSt ep(GAStep* step) and
e virtual G4Step* Updat eStepFor Post Step(G4St ep* step),

which correspond to thethree Dol t methods of G4VProcess. Each derived class should implement these methods.

156

Tracking and Physics

5.2.1. Electromagnetic Interactions

This section summarizes the el ectromagnetic (EM) physics processes which are provided with Geant4. Extended
information are avalable at EM web pages. For details on the implementation of these processes please refer to
the Physics Reference Manual.

To use the electromagnetic physics data files are needed. The user should set the environment variable
GALEDATA to the directory with this files. These files are distributed together with Geant4 and can be obtained
via Geant4 download web page. For Geant4 version 9.6 GAEMLOW6.32 data set is required.

5.2.1.1. Electromagnetic Processes
Thefollowing is a summary of the electromagnetic processes available in Geant4.

 Photon processes
e Gamma conversion (also called pair production, class name G4GammaConversion)
 Photo-€lectric effect (class name G4PhotoEl ectricEffect)
« Compton scattering (class name G4ComptonScattering)
« Rayleigh scattering (class name G4RayleighScattering)
e Muon pair production (class name G4GammaConversionToMuons)
« Electron/positron processes
« lonisation and deltaray production (class name G4el onisation)
« Bremsstrahlung (class name G4eBremsstrahlung)
« Multiple scattering (class name G4eMultipleScattering)
 Positron annihilation into two gammas (class name G4eplusAnnihilation)
 Positron annihilation into two muons (class name G4AnnihiToMuPair)
 Positron annihilation into hadrons (class name G4eeToHadrons)
e Muon processes
« lonisation and deltaray production (class name G4Mul onisation)
« Bremsstrahlung (class name G4MuBremsstrahlung)
e et+e- pair production (class name G4MuPair Production)
« Multiple scattering (class name G4MuMultipleScattering)
» Hadron/ion processes
« lonisation (class name G4hlonisation)
« lonisation for ions (class name G4ionl onisation)
« lonisation for heavy exotic particles (class name G4hhlonisation)
« lonisation for classical magnetic monopole (class name G4mpllonisation)
« Multiple scattering (class name G4hMultipleScattering)
« Bremsstrahlung (class name G4hBremsstrahlung)
e et+e- pair production (class name G4hPairProduction)
» Coulomb scattering processes
« Alternative process for simulation of single Coulomb scattering of all charged particles (class name
G4CoulombScattering)
e Alternative process for simulation of single Coulomb scattering of ions (class name
G4creenedNucl ear Recoil)
 Processes for smulation of polarized electron and gamma beams
e Compton scattering of circularly polarized gamma beam on polarized target (class name
G4PolarizedCompton)
« Pair production induced by circularly polarized gamma beam (class name G4PolarizedGammaConversion)
e Photo-electric effect induced by circularly polarized gamma beam (class name
G4PolarizedPhotoEl ectricEffect)
« Bremsstrahlung of polarized electrons and positrons (class name G4ePolarizedBremsstrahlung)
« lonisation of polarized electron and positron beam (class name G4ePolarizedl onisation)
< Annihilation of polarized positrons (class name G4eplusPolarizedAnnihilation)
 Processes for smulation of X-rays and optical protons production by charged particles
« Synchrotron radiation (class name G4SynchrotronRadiation)
 Transition radiation (class name G4TransitionRadiation)
« Cerenkov radiation (class name G4Cerenkov)

157

http://geant4.web.cern.ch/geant4/collaboration/EMindex.shtml
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf

Tracking and Physics

 Scintillations (class name G4cintillation)

The processes described above use physics model classes, which may be combined according to particle energy.
It is possible to change the energy range over which different models are valid, and to apply other models
specific to particle type, energy range, and G4Region. The following alternative models are available in the
standard EM sub-library:

« lonisation in thin absorbers (class name G4PAIModel)

« lonisation in low-density media (class name G4BragglonGasModel)

« lonisation in low-density media (class name G4BetheBlochlonGasModel)

« Multiple scattering (class name G4Wentzel VIModel)

« Multiple scattering (class name G4UrbanMscModel 93)

It isrecommended to use physics constructor classes provided with rederence physicslists ($G4INSTALL/source/
physics lists/builders):

default EM physics (class name GAEmStandar dPhysics)

optional EM physics providing fast but less acurate el ectron transport due to " Simple" method of step limitation
by multiple scattering, reduced step limitation by ionisation process and enabled "ApplyCuts" option; use Ur-
banM scM odel 93 for multiple scattering of el ectronsand positrons (class name GAEmStandardPhysics_optionl)
Experimental EM physics with enabled "ApplyCuts’ option, alternative model G4KleinNishinaModel
for Compton scattering, G4UrbanMscModel93 for multiple scattering of electrons and positrons,
and alternative model G4Generator2BS of bremsstrahlung gamma angular distribution (class name
G4EmSandardPhysics_option2)

EM physics for simulation with high accuracy due to "UseDistanceToBoundary” multiple scattering step
limitation, reduced finalRange parameter of stepping function optimized per particle type, alternative model
G4KleinNishinaModel for Compton scattering, Rayleigh scattering, and G4lonParameterisedLossModel for
ion ionisation (class name G4EmStandardPhysics_option3)

Combination of best EM models for simulation with high accuracy includes "UseDistanceTo-
Boundary" multiple scattering step limitation, reduced finalRange parameter of stepping func-
tion optimized per particle type, low-energy sub-library models GA4LivermorePhotoElectricModel,
G4LowEPComptonModel, G4PenelopeGammaConversionMaodel, G4Penelopel onisationModel below 100
keV, and G4lonParameterisedLossModel for ion ionisation (class name G4EmSandardPhysics_option4)
Models based on Livermore data bases for electrons and gamma (G4EmLivermorePhysics);

Models for smulation of linear polarized gamma based on Livermore data bases for electrons and gamma
(G4EmLiver morePolarizedPhysics);

Models based on Livermore data bases and new model for Compton scattering G4LowEPComptonModel
(G4EmLowEPPhysics);

Penel ope2008 models for electrons, positrons and gamma (G4EmPenel opePhysics);

Low-energy DNA physics (GAEMDNAPhysics).

Examples of the registration of these physics constructor and construction of aternative combinations of op-
tions are shown in basic, extended and advanced examples ($G4INSTAL L/examples/basic, $G4INSTALL/exam-
ples/extended/el ectromagnetic and $G4INSTA LL/examples/advanced). Examples illustrating the use of electro-
magnetic processes are available as part of the Geant4 release.

Optionsare available for steering of electromagnetic processes. These options may be invoked either by Ul com-
mands or by the interface class GAEmProcessOptions. This class has the following public methods:

SetL ossFluctuations(G4bool)
SetSubCutoff(G4bool, const G4Region* r=0)
Setlntegral (G4bool)
SetMinSubRange(G4double)
SetMinEnergy(G4double)
SetMaxEnergy(G4double)

SetM axEnergyForCSDA Range(G4double)
SetM axEnergyForMuons(G4double)
SetDEDXBinning(G4int)
SetDEDXBinningForCSDA Range(G4int)
Setl ambdaBinning(G4int)

158

http://geant4.web.cern.ch/geant4/support/download.shtml

Tracking and Physics

 SetStepFunction(G4double, G4doubl€)

» SetRandomStep(G4bool)

* SetApplyCuts(G4bool)

» SetSpling(G4bool)

 SetBuildCSDARange(G4bool)

» SetVerbose(G4int, const G4String name= "all")

* Setl ambdaFactor(G4double)

» SetLinearLossLimit(G4double)

 SetDeexcitationActiveRegion(const G4String& regionName, G4bool Fluo, G4bool Auger, G4bool PIXE)

* SetFluo(G4bool val)

» SetAuger(G4bool val)

* SetPIXE(G4bool val)

» SetPIXECrossSectionM odel (const G4String&)

* SetPI X EElectronCrossSectionM odel (const G4Sring&)

e SetMscStepLimitation(G4AM scStepLimitType val)

» SetMscL ateral Displacement(G4bool val)

» SetSkin(G4double)

» SetMscRangeFactor(G4double)

» SetMscGeomFactor(G4double)

» Setl PMFlag(G4bool)

» SetSplineFlag(G4bool)

» SetBremsstrahlungTh(G4double€)

 SetPolarAngleLimit(G4double)

» SetFactorForAngleLimit(G4double)

 SetProcessBiasingFactor(const G4String& procName, G4double factor, G4bool)

 ActivateForcedinteraction(const G4String& procName, G4double length, const G4String& regionName,
G4double factor, G4bool)

» ActivateSecondaryBiasing(const G4String& procName, const G4String& regionName, G4double factor,
G4double energy)

 ActivateSecondaryBiasingForGamma(const G4String& procName, const G4String& regionName, G4double
factor, G4double energy)

The corresponding Ul command can be accessed in the Ul subdirectories "/process/el oss', "/process’em", and "'/
process/msc”. The following types of step limitation by multiple scattering are available:

» fSimple - simplified step limitation (used in _EMV and _EMX Physics Lists)

o fUseSafety - default

 fUseDistanceToBoundary - advance method of step limitation used in EM examples, required parameter skin
> 0, should be used for setup without magnetic field

G4EmCalculator isaclass which provides access to cross sections and stopping powers. This class can be used
anywhere in the user code provided the physics list has already been initialised (G4State Idle). GAEmCalculator
has "Get" methods which can be applied to materials for which physics tables are aready built, and "Compute"
methods which can be applied to any material defined in the application or existing in the Geant4 internal database.
The public methods of this class are:

» GetDEDX (kinEnergy,particle material,G4Region region=0)

» GetRangeFromRestrictedDEDX (kinEnergy,particlematerial, G4Region* region=0)
» GetCSDARange(kinEnergy,particle material, GARegion* region=0)

» GetRange(kinEnergy,particle,material,G4Region* region=0)

» GetKinEnergy(range,particlematerial,G4Region* region=0)

» GetCrosSectionPerV olume(kinEnergy,particle material,GARegion* region=0)

* GetShelllonisationCrossSectionPerAtom(particle,Z,shell kinEnergy)

» GetMeanFreePath(kinEnergy,particle material,G4Region* region=0)

» PrintDEDXTable(particle)

 PrintRangeTable(particle)

159

Tracking and Physics

* PrintinverseRangeT able(particle)

» ComputeDEDX (kinEnergy,particle,process,material,cut=DBL_MAX)

» ComputeElectronicDEDX (kinEnergy,particlematerial,cut=DBL_MAX)
» ComputeNuclearDEDX (kinEnergy,particle,material,cut=DBL_MAX)

» ComputeTotal DEDX (kinEnergy,particle,material,cut=DBL_MAX)

» ComputeCrossSectionPerV olume(kinEnergy,particle,process,material ,cut=0)
» ComputeCrossSectionPerAtom(kinEnergy,particle,process,Z,A,cut=0)

e ComputeGammaA ttenuationL ength(kinEnergy,material)

» ComputeShelll oni sationCrossSectionPerAtom(particle,Z,shell kinEnergy)
» ComputeM eanFreePath(kinEnergy,particle,process,material ,cut=0)

» ComputeEnergyCutFromRangeCut(range,particle,material)

* FindParticle(const G4String&)

* Findlon(G4int Z, G4int A)

» FindMateria(const G4String&)

 FindRegion(const G4String&)

» FindCouple(const GAMaterial*, const G4Region* region=0)

» SetVerbose(G4int)

For these interfaces, particles, materials, or processes may be pointers or strings with names.

5.2.1.2. Low Energy Electromagnetic Library

A physical interactionisdescribed by aprocess classwhich can handle physicsmodels, described by model classes.
The following is a summary of the Low Energy Electromagnetic physics models available in Geant4. Further
information is available in the web pages of the Geant4 Low Energy Electromagnetic Physics Working Group,
accessible from the Geant4 web site, “who we are” section, then “working groups”’.

The physics content of these models is documented in the Geant4 Physics Reference Manual. They are based on
the Livermore data library, on the ICRU73 data tables or on the Penelope2008 Monte Carlo code. They adopt the
same software design as the "standard” Geant4 electromagnetic models.

Examples of the registration of physics constructor with low-energy electromagnetic models are shown in
Geant4 extended examples (341 NSTALL/ exanpl es/ ext ended/ el ect r onagnet i ¢). Advanced exam-
ples (341 NSTALL/ exanpl es/ advanced) illustrate alternative instantiation of these processes. Both are
available as part of the Geant4 release.

5.2.1.3. Production Cuts

Remember that production cuts for secondaries can be specified asrange cuts, which are converted at initialisation
time into energy thresholds for secondary gamma, electron, positron and proton production.

A range cut valueis set by default to 0.7 mm in Geant4 reference physics lists. This value can be specified in the
optional SetCuts() method of the user Physicslist or viaUl commands. For eg. to set arange cut of 10 micrometers,
one can Use:

/run/setCut 0.01 nmm
or, for agiven particle type (for eg. electron),

/run/ set Cut For AG venParticle e- 0.01 mm

If arange cut equivalent to an energy lower than 990 eV is specified, the energy cut is still set to 990 €V. In order
to decrease this value (for eg. down to 250 eV, in order to simulate low energy emission lines of the fluorescence
spectrum), one may use the following Ul command before the "/run/initialize" command:

160

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html

Tracking and Physics

/ cut s/ set LowEdge 250 eV
or aternatively directly in the user Physicslist, in the optional SetCuts() method, using:
G4Pr oduct i onCut sTabl e: : Get Product i onCut sTabl e() - >Set Ener gyRange(250*eV, 1*GeV);

5.2.1.4. Angular Generators

For part of EM processes it is possible to factorise out sampling of secondary energy and direction. Using an
interface GAVEmMModel base class SetAngular Distribution(G4VEmANgular Distribution*) it is possible to substi-
tute default angular generator of amodel. Angular generatorsin standard and lowenergy sub-packages follow the
same abstract interface.

For photoelectric models several angular generators are available:

» G4SauterGavrilaAngularDistribution (default);
» G4PhotoElectricAngularGenerator Sauter Gavril g;
» G4PhotoElectricAngularGeneratorPol ari zed.

For bremsstrahlung models following angular generators are available:

» G4DipBustGenerator (default);
GAModifiedTsai;

GAGenerator2BS;

G4Generator2BN;

G4Penel opeBremsstrahlungAngular.

5.2.1.5. Electromagnetics secondary biasing

It may be useful to create more than one secondary at an interaction. For example, electrons incident on a target
in amedical linac produce photons through bremsstrahlung. The variance reduction technigque of bremsstrahlung
splitting involves choosing N photons from the expected distribution, and assigning each aweight of 1/N.

Similarly, if the secondaries are not important, one can kill them with asurvival probability of 1/N. The weight of
the survivorsisincreased by afactor N. Thisis known as Russian roulette.

Neither biasing techniqueis applied if the resulting daughter particles would have aweight below 1/N, in the case
of brem splitting, or above 1, in the case of Russian roulette.

These techniques can be enabled in Geant4 el ectromagnetics with the macro commands

| process/ enl set SecBi asi ng processNane Regi on factor energyLinmit energyUnit

where: processName is the name of the process to apply the biasing to; Region is the region in which to apply
biasing; factor isthe inverse of the brem splitting or Russian roulette factor (1/N); energyLimit energyUnit isthe
high energy limit. If the first secondary has energy above thislimit, no biasing is applied.

For example,

/ process/ em set SecBi asi ng eBrem target 10 100 MeV

will result in electrons undergoing bremsstrahlung in the target region being split 10 times (if the first photon
sampled has an energy less than 100 MeV).

161

Tracking and Physics

Note that the biasing needs to be specified for each processindividually. To apply Russian Roulette to daughter
electrons from interactions of photons, issue the macro command for the processes phot, compt, conv.

Reference: BEAMnrc UsersManual, D.W.O Rogers, B. Walters, |. Kawrakow. NRCC Report PIRS-0509(A)revL,
available at http://www.irs.inms.nrc.calinms/irs'BEAM/beamhome.html

5.2.1.6. Livermore Data Based Models

* Photon models
« Photo-electric effect (class GALivermorePhotoElectricModel)
* Polarized Photo-electric effect (class G4LivermorePolarizedPhotoElectricModel)
« Compton scattering (class G4LivermoreComptonModel)
¢ Compton scattering (class G4LowEPComptonModel)
 Polarized Compton scattering (class G4LivermorePolarizedComptonModel)
« Rayleigh scattering (class G4LivermoreRayleighModel)
* Polarized Rayleigh scattering (class G4LivermorePolarizedRayleighModel)
* Gamma conversion (also called pair production, class G4LivermoreGammaConversionModel)
« Nuclear gamma conversion (class G4LivermoreNuclear GammaConversionModel)
 Radiative correction for pair production (class G4Liver moreGammaConversionModel RC)
* Polarized gamma conversion (class G4Liver morePolarizedGammaConver sionModel)
 Electron models
« Bremsstrahlung (class G4LivermoreBremsstrahlungModel)
* lonisation and deltaray production (class G4Liver morelonisationModel)

5.2.1.7. ICRU73 Based lon Model

lonisation and delta ray production (class G4l onParametrisedL ossModel)

The ion model uses ICRU 73 stopping powers, if corresponding ion-material combinations are covered by the
ICRU 73 report (up to 1 GeV/nucleon), and otherwise applies a Bethe-Bloch based formalism. For compounds,
ICRU 73 stopping powers are employed if the material name coincides with the name of Geant4 NIST materials
(e.g. G4_WATER). Elemental materials are matched to the corresponding ICRU 73 stopping powers by means
of the atomic number of the material. The material name may be arbitrary in this case. For alist of applicable
materials, the user isreferred to the ICRU 73 report.

Themodel requiresdatafilesto be copied by the user to his’her code repository. These filesare distributed together
with the Geant4 release. The user should set the environment variable GALEDATA to the directory where he/
she has copied thefiles.

The model is dedicated to be used with the Gdionlonisation process and its applicability is restricted to
G4Genericlon particles. Theion model is not used by default by this process and must be instantiated and regis-
tered by the user:

G4i onl oni sati on* ionloni = new G4i onl oni sation();
ionloni -> SetEnivbdel (new G4l onPar anet ri sedLossMdel ());

5.2.1.8. Penelope2008 Based Models

» Photon models
« Compton scattering (class G4Penel opeComptonModel)
» Rayleigh scattering (class G4Penel opeRayleighModel)
* Gamma conversion (also called pair production, class GPenelopeGammaConversionModel)
« Photo-€lectric effect (class G4Penel opePhotoEl ectricModel)
» Electron models
« Bremsstrahlung (class G4Penel opeBremsstrahlungModel)
« lonisation and deltaray production (class G4Penel opel onisationModel)
» Positron models
« Bremsstrahlung (class G4Penel opeBremsstrahlungModel)
« lonisation and deltaray production (class G4Penel opel onisationModel)

162

Tracking and Physics

 Positron annihilation (class class G4Penel opeAnnihilationModel)

All Penelope models can be applied up to amaximum energy of 100 GeV, although it is advisable not to use them
above afew hundreds of MeV.

Options are available in the all Penelope Models, allowing to set (and retrieve) the verbosity level of the model,
namely the amount of information which is printed on the screen.

» SetVerbositylL evel (G4int)
* GetVerbosityLevel()

The default verbosity level is O (namely, no textual output on the screen). The default value should be used in
genera for normal runs. Higher verbosity levels are suggested only for testing and debugging purposes.

The verbosity scale defined for all Penelope processes is the following:

0= no printout on the screen (default)

» 1=issuewarningsonly in the case of energy non-conservation in the final state (should never happen)
» 2 =reportsfull details on the energy budget in the final state

» 3 =writes also informations on cross section calculation, data file opening and sampling of atoms

* 4 = jssues messages when entering in methods

5.2.1.9. Very Low energy Electromagnetic Processes (Geant4-DNA
extension)

The Geant4 low energy €lectromagnetic Physics package has been extended down to energies of afew electron-
Volts suitable for the simulation of radiation effectsin liquid water for applications in microdosimetry at the cel-
lular and sub-cellular level. These devel opmentstake placein the framework of the on-going Geant4-DNA project
(see morein the Geant4-DNA web pages or in the web pages of the Geant4 Low Energy Electromagnetic Physics
Working Group).

The Geant4-DNA process and model classes apply to electrons, protons, hydrogen, alphaparticlesand their charge
states.

Electron processes and models

* Elastic scattering :
¢ process classis GADNAElastic
e two aternative model classes are : GADNAScreenedRutherfordElasticModel (default) or
GADNA ChampionElasticM odel
» Excitation
e process class is GADNAEXxcitation
* model classis GADNABornExcitationMaodel
* lonisation
 process classis GADNAIonisation
» model classis G4ADNABornlonisationM odel
» Attachment
* process classis GADNA Attachment
* model classis GADNAMeltonAttachmentM odel
Vibrational excitation
* process classis GADNAVibExcitation
« model classis GADNA SancheExcitationM odel

Proton processes and models

» Excitation
 process class is GADNAEXxcitation
e two complementary model classes are GADNAMillerGreenExcitationModel (below 500 keV) and
GADNABornExcitationModel (above)

163

http://geant4-dna.org
http://geant4.web.cern.ch/geant4/collaboration/working_groups/LEelectromagnetic/
http://geant4.web.cern.ch/geant4/collaboration/working_groups/LEelectromagnetic/

Tracking and Physics

* lonisation
 process classis GADNAIonisation
e two complementary model classes are G4DNARuddionisationMode (below 500 keV) and
GADNABornlonisationModel (above)
» Charge decrease
* process classis GADNA ChargeDecrease
« model classis GADNADingfelderChargeDecreaseM odel

Hydrogen processes and models

» Excitation
 process classis GADNAEXxcitation
* model classis GADNAMillerGreenExcitationM odel
* lonisation
* process classis GADNAIlonisation
¢ model classis GADNARuddlonisationM odel
» Chargeincrease
* process class is G4ADNAChargel ncrease
* model classis GADNADingfelderChargel ncreaseM odel

Helium (neutral) processes and models

» Excitation
 process class is GADNAExcitation
* model classis GADNAMillerGreenExcitationModel
* lonisation
 process classis GADNAIonisation
* model classis G4ADNA Ruddl onisationM odel
e Chargeincrease
* process classis GADNA Chargel ncrease
« model classis GADNADingfelderChargel ncreaseModel

Helium+ (ionized once) processes and models

» Excitation
 process classis GADNAEXxcitation
« model classis GADNAMillerGreenExcitationModel
* lonisation
* process classis GADNAIlonisation
* model classesis GADNARuddlonisationModel
» Chargeincrease
* process class is G4ADNAChargel ncrease
¢ model classes is GADNADingfelderChargel ncreaseM odel
e Charge decrease
 process class is G4ADNAChargeDecrease
« model classesis GADNA DingfelderChargeDecreaseM odel

Helium++ (ionised twice) processes and models

» Excitation
e process class is GADNAEXxcitation
* model classesis GADNAMillerGreenExcitationM odel
* lonisation
* process classis GADNAlonisation
* model classes is GADNARuddlonisationModel
» Charge decrease
e process classis GADNAChargeDecrease
* model classesis GADNA DingfelderChargeDecreaseM odel

164

Tracking and Physics

C, N, O, Fe processes and models

* |onisation
* process classis GADNAIlonisation
* model classis G4ADNA Ruddl onisationExtendedM odel

An example of the registration of these processes in a physicslist is given in the GAEmDNA Physics constructor
(in $G4INSTALL/source/physics_listg/builders). An example of the usage of this constructor in a physics list is
given in the"dnaphysics' advanced example, which explains how to extract basic information from Geant4-DNA
Physics processes.

The "microdosimetry" advanced example illustrates how to combine Geant4-DNA processes with Standard el ec-
tromagnetic processes (combination of discrete and condensed history Geant4 electromagnetic processes at dif-
ferent scales).

To run the Geant4-DNA extension, data files need to be copied by the user to hisher code repository. These files
are distributed together with the Geant4 release. The user should set the environment variable G4LEDATA to the
directory where he/she has copied thefiles.

A full list of publications regarding Geant4-DNA is directly available from the Geant4-DNA website or from the
Geant4@IN2P3 web site).

5.2.1.10. Atomic Deexcitation

A unique interface named G4V AtomicDeexcitation is available in Geant4 for the simulation of atomic deexcita-

tion using Standard, Low Energy and Very Low Energy electromagnetic processes. Atomic deexcitation includes

fluorescence and Auger electron emission induced by photons, electrons and ions (PIXE); see more detailsin:
PIXE Simulation in Geant4X-Ray Spec.

It can be activated for processes producing vacancies in atomic shells. Currently these processes are the photo-
electric effect, ionization and Compton scattering.

Activation of atomic deexcitation

The activation of atomic deexcitation in continuous processes in a user physics list can be done through the fol-
lowing G4EmProcessOptions class methods, respectively to activate deexcitation processes, Auger effect and de-
excitation from ions (PIXE):

GAEnPr ocessOpt i ons: : Set Fl uo(G4bool) ;
GAEnPr ocessOpt i ons: : Set Auger (4bool) ;
GAEnPr ocessOpt i ons: : Set Pl XE(G4bool) ;

Please note that in order to have Auger emission it is mandatory to activate Auger electron production for the
region in which it is needed (World region included):

GAEnProcessOpt i ons: : Set Deexci tati onActi veRegi on(const G4String& , Gibool, Gibool, HAbool);

The same methods can be accessed interactively via Ul commands:

/run/initialize

/ process/ enf deexcitation region true true true
/ process/em fluo true

/ process/ enf auger true

/ process/ enl pi xe true

Note that fluorescence from photons and electrons is activated by default in Livermore and Penelope physics
constructors, while Auger production and PIXE are not.

165

http://geant4-dna.org
http://geant4.in2p3.fr/spip.php?rubrique12&lang=en/
http://dx.doi.org/10.1002/xrs.1301

Tracking and Physics

How to change ionisation cross section models ?

The user can also select which cross section model to use in order to calculate shell ionisation cross sections for
generating PIXE. Again, it is possible to use methods of the G4EmProcessOptions classin the user Physics list:

GAEnProcessOpt i ons: : Set Pl XECr ossSect i onMbdel (const GAString&) ;

where the string can be "Empirical", "ECPSSR_FormFactor" or "ECPSSR_Analytical", or aternatively with the
following Ul commands:

/ process/ em pi xeXSnodel val ue

where value is equal to Empirical or ECPSSR_FormFactor or ECPSSR_Analytical.

Different shell cross sections models are available : "ECPSSR_Analytical" models derive from an analytical cal-
culation of the ECPSSR theory (see A. Mantero et al., X-Ray Spec.40 (2011) 135-140) and it reproduces K and
L shell cross sections over a wide range of energies, "ECPSSR_FormFactor" models derive from A. Taborda et
al. calculations (see A. Taborda et al., X-Ray Spec. 40 (2011) 127-134) of ECPSSR values directly form Form
Factorsand it coversK, L shellson therange 0.1-100 MeV and M shellsin the range 0.1-10 MeV; the "empirical”
models are from Paul "reference values' (for protons and alphas for K-Shell) and Orlic empirical model for L
shells (only for protons and ions with Z>2). The later ones are the models used by default. Out of the energy
boundaries, "ECPSSR_Analytical" model is used. We recommend to use default settingsif not sure what to use.

Example

The TestEm5 extended/electromagetic example shows how to simulate atomic deexcitation (see for eg. the
pixe.mac macro).

5.2.1.11. Very Low energy Electromagnetic Processes in Silicon for
microelectronics application (Geant4-MuElec extension)

The Geant4 low energy €lectromagnetic Physics package has been extended down to energies of afew electron-
Volts suitable for the smulation of radiation effectsin highly integrated microel ectronic components.

The Geant4-MuElec process and model classes apply to electrons, protons and heavy ionsin silicon.

Electron processes and models

 Elastic scattering :
¢ process class is GAMuElastic
e model classis GAMuElecElasticM odel
* lonization
¢ process classis GAMuEleclnelastic
* model classis GAMuEleclnelasticM odel

Proton processes and models

 |onisation
 process classis GAMUEleclnelastic
* model classis G4AMuEleclnelasticM odel

Heavy ion processes and models

* |onization
e process class is GAMUuEleclnelastic
* model classis G4MuEleclnelasticM odel

166

Tracking and Physics

A full list of publications regarding Geant4-MuElec is directly available from the Geant4-MuElec website.

5.2.1.12. New Compton model by Monash U., Australia

A new Compton scattering model for unpolarised photons has been developed in the rel ativistic impul se approx-
imation. The model was developed as an aternative to low energy electromagnetic Compton scattering models
developed from Ribberfors Compton scattering framework (Livermore, Penelope Compton models). The model
classis named named G4L owEPComptonModel.

G4L owEPComptonModel has been added to the physics constructor GAEmStandardPhysics _option4, containing
the most accurate models from the Standard and Low Energy Electromagnetic physics working groups.

5.2.1.13. Multi-scale Processes

5.2.1.13.1. Hadron Impact lonisation and PIXE

The G4hlmpactlonisation process deals with ionisation by impact of hadrons and alpha particles, and the
following generation of PIXE (Particle Induced X-ray Emission). This process and related classes can be found
in sour ce/processes/el ectromagnetic/pii .

Further documentation about PIXE simulation with this processis available here.

A detailed description of the related physics features can be found in:
PIXE Simulation with Geant4lEEE Trans. Nucl. Sci.

A brief summary of the related physics features can be found in the Geant4 Physics Reference Manual.

An example of how to use this process is shown below. A more extensive example is available in the eRosita
Geant4 advanced example (see examples/advanced/eRosita in your Geant4 installation source).

#i ncl ude " &4hl npact | oni sati on. hh"
[...]

voi d eRosi t aPhysi csLi st:: Construct Process()

{
[...1]

theParticlelterator->reset();
while((*theParticlelterator)())
{
GAParticleDefinition* particle = theParticlelterator->val ue();
GAProcessManager * processManager = particl e->Get ProcessManager () ;
GAString particleNane = particle->GetParticl eNanme();

if (particleName == "proton")
{
/1 Instantiate the G4hl npact|oni sati on process
G4hl npact | oni sati on* hloni sati on = new G4hl npact | oni sation();

/] Select the cross section nodels to be applied for K, L and M shell vacancy creation
/1 (here the ECPSSR nodel is selected for K, L and Mshell; one can m x and match

/] different nodels for each shell)

hl oni sat i on- >Set Pi xeCr ossSect i onK("ecpssr");

hl oni sat i on- >Set Pi xeCr ossSecti onL("ecpssr");

hl oni sat i on- >Set Pi xeCr ossSecti onM "ecpssr");

/] Register the process with the processManager associated w th protons
processManager -> AddProcess(hlonisation, -1, 2, 2);

}
Available cross section model options

The following cross section model options are available:

167

https://twiki.cern.ch/twiki/bin/view/Geant4/LoweMuElec
http://www.ge.infn.it/geant4/physics/pixe/index.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5341442&tag=1
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html
http://www.ge.infn.it/geant4/physics/pixe/erosita.html

Tracking and Physics

* protons

e K shdll
e ecpssr (based onthe ECPSSR theory)
* ecpssr_hs (based onthe ECPSSR theory, with Hartree-Sater correction)
e ecpssr_ua (based onthe ECPSSR theory, with United Atom Hartree-Sater correction)
e ecpssr_he (based onthe ECPSSR theory, with high energy correction)
e pwba (plane wave Born approximation)
e paul (based onthe empirical model by Paul and Sacher)
e kahoul (based onthe empirical model by Kahoul et al.)

o L shell
e ecpssr
e ecpssr_ua
* pwba
e myagawa (based ontheempirical model by Miyagawa et al.)
e orlic (basedontheempirical model by Orlic et al.)
* sow (based onthe empirical model by Sow et al.)

* M shel
e ecpssr
e pwba

» aphaparticles

e K shdll
e ecpssr
e ecpssr_hs
* pwba
e paul (based onthe empirical model by Paul and Bolik)

o L shell
e ecpssr
* pwba

* M shell
e ecpssr
* pwba

PIXE data library
The G4hlmpactlonisation processusesa PIXE DataLibrary.

The PIXE Data Library is distributed in the Geant4 GA4PI1 data set, which must be downloaded along with
Geant4 source code.

The G4PIIDATA environment variable must be defined to refer to the location of the G4PII PIXE datalibrary
in your filesystem; for instance, if you use a c-like shell:

setenv (APl | DATA pat h_t o_where_GA4PI | _has_been_downl oaded
Further documentation about the PIXE Data Library is available here.
5.2.2. Hadronic Interactions

This section briefly introduces the hadronic physics processes installed in Geant4. For details of the implementa-
tion of hadronic interactions available in Geant4, please refer to the Physics Reference Manual.

5.2.2.1. Treatment of Cross Sections

Cross section data sets

Each hadronic process object (derived from G4HadronicProcess) may have one or more cross section data sets
associated with it. The term "data set” is meant, in a broad sense, to be an object that encapsulates methods and
data for calculating total cross sections for a given process. The methods and data may take many forms, from a

168

http://geant4.web.cern.ch/geant4/support/download.shtml
http://www.ge.infn.it/geant4/physics/pixe/index.html
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html

Tracking and Physics

simple equation using afew hard-wired numbers to a sophisticated parameterisation using large datatables. Cross
section data sets are derived from the abstract class G4VCrossSectionDataSet, and are required to implement the
following methods:

G4bool 1sApplicabl e(const ADynam cParticle*, const GAEl ement*)

This method must return Tr ue if the data set is able to calculate a total cross section for the given particle and
material, and Fal se otherwise.

Adoubl e Get CrossSection(const GADynanicParticl e*, const GAEl enent*)

This method, which will beinvoked only if Tr ue wasreturned by | sAppl i cabl e, must return a cross section,
in Geant4 default units, for the given particle and material.

voi d Bui | dPhysi csTabl e(const GAParticl eDefinition&)

This method may be invoked to request the data set to recalculate its internal database or otherwise reset its state
after achange in the cuts or other parameters of the given particle type.

voi d DunpPhysi csTabl e(const GAParticleDefinition&) =0

This method may be invoked to request the data set to print its internal database and/or other state information,
for the given particle type, to the standard output stream.

Cross section data store

Cross section data sets are used by the process for the calculation of the physical interaction length. A given cross
section data set may only apply to a certain energy range, or may only be able to calculate cross sections for a
particular type of particle. The class GACrossSectionDataStor e has been provided to allow the user to specify, if
desired, a series of data sets for a process, and to arrange the priority of data sets so that the appropriate one is
used for a given energy range, particle, and material. It implements the following public methods:

GACr ossSect i onDat aSt or e()

~GACr ossSect i onDat aSt or e()

and

GHAdoubl e Get CrossSection(const G4DynamicParticle*, const GAEl enent*)

For a given particle and material, this method returns a cross section value provided by one of the collection of
Cross section data sets listed in the data store object. If there are no known data sets, a GAExcept i on isthrown
and DBL_M N is returned. Otherwise, each data set in the list is queried, in reverse list order, by invoking its
| sAppl i cabl e method for the given particle and material. The first data set object that responds positively
will then be asked to return a cross section value via its Get Cr ossSect i on method. If no data set responds
positively, aGAExcept i on isthrown and DBL_M Nis returned.

voi d AddDat aSet (GAVCrossSecti onDat aSet* aDat aSet)

This method adds the given cross section data set to the end of the list of data sets in the data store. For the
evaluation of cross sections, the list hasa LIFO (Last In First Out) priority, meaning that data sets added later to
the list will have priority over those added earlier to the list. Another way of saying this, is that the data store,
when given aGet Cr ossSect i on request, doesthe | sAppl i cabl e queriesin the reverse list order, starting
with the last data set in the list and proceeding to the first, and the first data set that responds positively is used
to calculate the cross section.

169

Tracking and Physics

voi d Bui | dPhysi csTabl e(const G4Particl eDefinition& aParticl eType)

Thismethod may beinvoked to indicate to the data store that there has been achangein the cuts or other parameters
of the given particle type. In response, the data store will invoke the Bui | dPhysi csTabl e of each of its data
sets.

voi d DunpPhysi csTabl e(const G4Particl eDefinition&)

This method may be used to request the data store to invoke the DunpPhysi csTabl e method of each of its
data sets.

Default cross sections

The defaults for total cross section data and calculations have been encapsulated in the singleton
class G4HadronCrossSections. Each hadronic process: G4HadronlnelasticProcess, G4AHadronElasticProcess,
G4HadronFissionProcess, and G4HadronCaptureProcess, comes aready equipped with a cross section data
store and a default cross section data set. The data set objects are really just shells that invoke the singleton
G4HadronCrossSections to do the real work of calculating cross sections.

The default cross sections can be overridden in whole or in part by the user. To this end, the base class
G4HadronicProcess has a "get" method:

GACr ossSect i onDat aSt or e* Get CrossSecti onDat aSt or e()

which gives public access to the data store for each process. The user's cross section data sets can be added to the
data store according to the following framework:

G4Hadron. . . Process aProcess(...)
M/Cr ossSect i onDat aSet nyDataSet (...)

aProcess. Get CrossSect i onDat aSt or e() - >AddDat aSet (&WDat aSet)

The added data set will override the default cross section data whenever so indicated by its | sAppl i cabl e
method.

In addition to the *"get" method, G4HadronicProcess a so has the method

voi d Set CrossSecti onDat aSt ore(G4CrossSecti onDat aSt ore*)
which allows the user to completely replace the default data store with a new data store.

It should be noted that a process does not send any information about itself to its associated data store (and hence
data set) objects. Thus, each data set is assumed to be formulated to calculate cross sections for one and only one
type of process. Of course, this does not prevent different data sets from sharing common data and/or calculation
methods, asin the case of the G4HadronCrossSections class mentioned above. Indeed, G4VCrossSectionDataSet
specifies only the abstract interface between physics processes and their data sets, and leaves the user free to
implement whatever sort of underlying structure is appropriate.

The current implementation of the data set G4HadronCrossSections reusesthetotal cross-sectionsfor inelastic and
elastic scattering, radiative capture and fission as used with GHEISHA to provide cross-sections for calculation
of the respective mean free paths of a given particlein a given material.

Cross-sections for low energy neutron transport
The cross section data for low energy neutron transport are organized in a set of files that are read in by

the corresponding data set classes at time zero. Hereby the file system is used, in order to alow highly gran-
ular access to the data. The “‘root" directory of the cross-section directory structure is accessed through an

170

Tracking and Physics

environment variable, Neut r onHPCr ossSect i ons, which is to be set by the user. The classes access-
ing the total cross-sections of the individual processes, i.e., the cross-section data set classes for low energy
neutron transport, are G4NeutronHPElasticData, G4NeutronHPCaptureData, G4NeutronHPFissionData, and
G4NeutronHPInelasticData.

For detailed descriptions of the low energy neutron total cross-sections, they may be registered by the user as
described above with the data stores of the corresponding processes for neutron interactions.

It should be noted that using these total cross section classes does not require that the neutron_hp models also be
used. It is up to the user to decide whethee thisis desirable or not for his particular problem.

A prototype of the compact version of neutron cross sections derived from HP database are provided with new
classes G4NeutronHPElasticData, G4NeutronCaptureXs, G4NeutronElasticXS, and G4NeutronlnelasticXS

5.2.2.2. Hadrons at Rest

List of implemented "Hadron at Rest" processes
The following process classes have been implemented:

* pi- absorption (class name G4PionMinusAbsor ptionAtRest or G4PiMinusAbsor ptionAtRest)

* kaon- absorption (class name G4KaonMinusAbsor ptionAtRest or G4KaonMinusAbsor ption)

* neutron capture (class name G4NeutronCaptur eAtRest)

* anti-proton annihilation (class name G4Anti ProtonAnnihilationAtRest)

« anti-neutron annihilation (class name G4Anti NeutronAnnihilationAtRest)

* mu- capture (class name G4MuonMinusCaptureAtRest)

« dternative CHIPS model for any negativly charged particle (class name G4QCaptur eAtRest)

Obviously the last process does not, strictly speaking, deal with a ““hadron at rest". It does, nonetheless, share
common features with the others in the above list because of the implementation model chosen. The differences
between the alternative implementation for kaon and pion absorption concern the fast part of the emitted parti-
cle spectrum. G4PiMinusAbsorptionAtRest, and G4KaonMinusAbsorptionAtRest focus especially on agood de-
scription of this part of the spectrum.

Implementation Interface to Geant4

All of these classes are derived from the abstract class G4VRestProcess. In addition to the constructor and de-
structor methods, the following public methods of the abstract class have been implemented for each of the above
SiX processes:

» At Rest Get Physi cal | nteracti onLength(const G4Track& G4ForceCondition*)

Thismethod returnsthetimetaken before theinteraction actually occurs. In all processeslisted above, except for
muon capture, avalue of zero isreturned. For the muon capture process the muon capture lifetime is returned.
* AtRestDolt(const (ATrack& const (AStep&)

This method generates the secondary particles produced by the process.
e I sApplicable(const AParticleDefinition&)

This method returns the result of a check to see if the processis possible for a given particle.
Example of how to use a hadron at rest process

Including a ~“hadron at rest" process for a particle, a pi- for example, into the Geant4 system is straightforward
and can be done in the following way:

* Create aprocess:

t heProcess = new GAPi onM nusAbsor pti onAt Rest () ;

171

Tracking and Physics

* register the process with the particle's process manager:

theParticl eDef = GAPi onM nus: : Pi onM nus();
GAProcessManager * pman = theParti cl eDef - >Get ProcessManager () ;
pman- >AddRest Process(t heProcess);

5.2.2.3. Hadrons in Flight

What processes do you need?

For hadrons in motion, there are four physics process classes. Table 5.1 shows each process and the particles for
which it isrelevant.

G4HadronElasticProcess pi+, pi-, K*, K%, K%, K, p, p-bar, n, n-bar, lambda,
lambda-bar, Sigma", Sigma’, Sigma'-bar, Sigma-bar,
Xi®, Xi", Xi%bar, Xi™-bar

G4Hadronl nelasticProcess pi+, pi-, K*, K%, K°., K", p, p-bar, n, n-bar, lambda,
lambda-bar, Sigma’, Sigma’, Sigma’-bar, Sigma-bar,
Xi®, Xi", Xi%bar, Xi™-bar

G4HadronFissionProcess al

GACaptureProcess n, n-bar
Table5.1. Hadronic processes and relevant particles.

How to register Models

To register an inelastic process model for a particle, a proton for example, first get the pointer to the particle's
process manager:

GAParticl eDefinition *theProton = GAProton: : ProtonDefinition();
G4ProcessManager *t heProt onProchMan = t heProt on- >Get ProcessManager () ;

Create an instance of the particle'sinelastic process:

G4Pr ot onl nel asti cProcess *theProtonl EProc = new G4Prot onl nel asti cProcess();
Create an instance of the model which determines the secondaries produced in the interaction, and calcul ates the
momenta of the particles:

GALEProt onl nel astic *theProtonl E = new GALEPr ot onl nel astic();

Register the model with the particle'sinelastic process:

t hePr ot onl EPr oc- >Regi ster Me(theProtonl E);

Finally, add the particle'sinelastic process to the list of discrete processes:

t hePr ot onPr ocMan- >AddDi scr et eProcess(theProtonl EProc);

The particles inelastic process class, G4ProtoninelasticProcess in the example above, derives
from the G4HadroniclnelasticProcess class, and simply defines the process name and cals the
G4HadroniclnelasticProcess constructor. All of the specific particle inelastic processes derive from the
G4HadroniclnelasticProcess class, which callsthe Post St epDol t function, which returns the particle change
object from the G4HadronicProcessfunction Gener al Post St epDol t . Thisclassa so getsthe mean free path,
builds the physics table, and gets the microscopic cross section. The G4HadroniclnelasticProcess class derives

172

Tracking and Physics

from the G4HadronicProcess class, which is the top level hadronic process class. The G4HadronicProcess class
derives from the G4VDiscreteProcess class. The inelastic, elastic, capture, and fission processes derive from the
G4HadronicProcess class. This pure virtual class also provides the energy range manager object and the Reg-

i st er Me access function.

A sample case for the proton's inelastic interaction model class is shown in Example 5.1, where
GALEPr ot onl nel ast i c. hh isthe name of theincludefile:

Example5.1. An example of a proton inelastic interaction model class.

----------------------------- include file ---------mmm

#include "G4l nel asticlnteraction. hh"
cl ass ALEProtonlnel astic : public Gi4lnelasticlnteraction

{
public:
GALEProtonl nel astic() : GAlnelasticlnteraction()
Set M nEnergy(0.0);
Set MaxEnergy(25.*CGeV);
}
~GALEProtonlnelastic() { }
G4Parti cl eChange *Appl yYoursel f(const GATrack &aTrack,
GANucl eus &t ar get Nucl eus) ;
private:
voi d CascadeAndCal cul at eMonent a(required argunents);
IE

----------------------------- source file -----cmmmmmm

#i ncl ude "GALEPr ot onl nel asti c. hh"
GAParticl eChange *
GALEProton | nel astic:: Appl yYoursel f(const ATrack &aTrack,
G4Nucl eus &t ar get Nucl eus)
{

theParticl eChange. I nitialize(aTrack);

const ADynami cParticle *incidentParticle = aTrack. Get Dynam cParticle();
/] create the target particle

GADynami cParticle *targetParticle = targetNucl eus. ReturnTargetParticle();
CascadeAndCal cul at eMonent a(requi red argunents)

{ ...}

return &t heParticl eChange;

}

The CascadeAndCal cul at eMonent a function isthe bulk of the model and isto be provided by the model's
creator. It should determine what secondary particles are produced in the interaction, calculate the momenta for
all the particles, and put this information into the ParticleChange object which is returned.

The G4LEProtonl nelastic class derives from the G4l nelasticl nteraction class, which isan abstract base classsince
the pure virtual function Appl yYour sel f is not defined there. G4lnelasticlnteraction itself derives from the
G4Hadroniclnteraction abstract base class. This class is the base class for all the model classes. It sorts out the
energy range for the models and provides class utilities. The G4Hadroniclnteraction class provides the Set /

Get M nEner gy and the Set / Get MaxEner gy functions which determine the minimum and maximum ener-
gy range for the model. An energy range can be set for a specific element, a specific material, or for general

applicability:

voi d Set M nEnergy(G4doubl e anEnergy, AEl enent *anEl enent)
voi d Set M nEnergy(G4doubl e anEnergy, AMaterial *aMaterial)
voi d Set M nEnergy(const (Adoubl e anEnergy)
voi d Set MaxEner gy(GAdoubl e anEnergy, GAEl enent *anEl enent)
voi d Set MaxEner gy(G4doubl e anEnergy, GAMaterial *aMaterial)
voi d Set MaxEner gy(const (4doubl e anEnergy)

Which models are there, and what are the defaults

In Geant4, any model can be run together with any other model without the need for theimplementation of aspecial
interface, or batch suite, and the ranges of applicability for the different models can be steered at initialisation

173

Tracking and Physics

time. Thisway, highly specialised models (valid only for one material and particle, and applicable only in avery
restricted energy range) can be used in the same application, together with more general code, inacoherent fashion.

Each model has an intrinsic range of applicability, and the model chosen for a ssimulation depends very much on
the use-case. Consequently, there are no “defaults’. However, physics lists are provided which specify sets of
models for various purposes.

Threetypes of hadronic shower models have been implemented: parametrisation driven models, data driven mod-
els, and theory driven models.

» Parametrisation driven models are used for all processes pertaining to particles coming to rest, and interacting
with the nucleus. For particlesin flight, two sets of modelsexist for inelastic scattering; low energy, and high en-
ergy models. Both setsare based originally onthe GHEI SHA package of Geant3.21, and the original approaches
to primary interaction, nuclear excitation, intra-nuclear cascade and evaporation is kept. The models are located
in the sub-directories hadr oni cs/ nodel s/ | ow_ener gy and hadr oni cs/ nodel s/ hi gh_ener gy.
The low energy models are targeted towards energies below 20 GeV; the high energy models cover the ener-
gy range from 20 GeV to O(TeV). Fission, capture and coherent elastic scattering are also modeled through
parametrised models.

» Datadriven models are available for the transport of low energy neutrons in matter in sub-directory hadr on-
i cs/ nodel s/ neut r on_hp. Themodeling isbased on the dataformats of ENDF/B-VI, and al distributions
of this standard data format are implemented. The data sets used are selected from data libraries that conform
to these standard formats. The file systemisused in order to allow granular access to, and flexibility in, the use
of the cross sections for different isotopes, and channels. The energy coverage of these modelsis from thermal
energiesto 20 MeV.

» Theory driven models are available for inelastic scattering in a first implementation, covering the full energy
range of LHC experiments. They are located in sub-directory hadr oni cs/ nodel s/ gener at or . The cur-
rent philosophy implies the usage of parton string models at high energies, of intra-nuclear transport models at
intermediate energies, and of statistical break-up models for de-excitation.

5.2.3. Particle Decay Process

This section briefly introduces decay processes installed in Geant4. For details of the implementation of particle
decays, please refer to the Physics Reference Manual.

5.2.3.1. Particle Decay Class

Geant4 provides a G4Decay class for both “at rest” and “"in flight" particle decays. G4Decay can be applied to
all particles except:

massless particles, i.e.,
HAParticleDefinition::thePD@Vass <= 0

particles with ““negative' lifetime, i.e.,
HAParticleDefinition::thePDGifeTine < 0

shortlived particles, i.e.,
HAParticleDefinition::fShortLivedFlag = True

Decay for some particles may be switched on or off by using
HAParticleDefinition:: Set PDGStabl e() as well as ActivateProcess() and | nActi -
vat eProcess() methods of G4ProcessManager.

G4Decay proposes the step length (or step time for At Rest) according to the lifetime of the particle unless
Pr eAssi gnedDecayPr oper Ti e isdefined in G4DynamicParticle.

The G4Decay classitself does not define decay modes of the particle. Geant4 provides two ways of doing this:

 using G4DecayChannel in G4DecayTable, and
e usingt hePr eAssi gnedDecayPr oduct s of G4ADynamicParticle

174

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html

Tracking and Physics

The G4Decay class calculates the Physi cal | nt er act i onLengt h and boosts decay products created by
G4VDecayChanndl or event generators. See below for information on the determination of the decay modes.

An object of G4Decay can be shared by particles. Registration of the decay process to particles in the Con-
st ruct Physi cs method of PhysicsList (see Section 2.5.3) is shown in Example 5.2.

Example5.2. Registration of the decay processto particlesin the Const r uct Physi cs
method of PhysicsList.

#i ncl ude " G4Decay. hh"
voi d MyPhysi csLi st:: Construct General ()
{
/] Add Decay Process
G4Decay* theDecayProcess = new ADecay();
theParticlelterator->reset();
while((*theParticlelterator)()){
GAParticleDefinition* particle = theParticlelterator->val ue();
GAProcessManager* pnanager = particl e->Get ProcessManager () ;
if (theDecayProcess->|IsApplicable(*particle)) {
pmanager ->AddProcess(theDecayProcess);
/] set ordering for PostStepDolt and AtRest Dol t
pmanager ->Set ProcessOrdering(theDecayProcess, i dxPost Step);
prmanager ->Set ProcessOrderi ng(theDecayProcess, i dxAtRest);
}
}
}

5.2.3.2. Decay Table

Each particle has its G4DecayTable, which stores information on the decay modes of the particle. Each de-
cay mode, with its branching ratio, corresponds to an object of various “decay channel” classes derived from
G4VDecayChannel. Default decay modes are created in the constructors of particle classes. For example, the de-
cay table of the neutral pion has G4PhaseSpaceDecayChannel and G4DalitzDecayChannel as follows:

/| create a decay channel

G4VDecayChannel * node;

/] pi0 -> gamma + ganmmma

node = new 4PhaseSpaceDecayChannel ("pi 0", 0. 988, 2, "gamm", "ganma") ;
t abl e- >l nsert (node) ;

/] pi0 -> gama + e+ + e-

node = new (4Dal i t zDecayChannel (" pi 0", 0.012, "e-", "e+");

t abl e- >l nsert (node) ;

Decay modes and branching ratios defined in Geant4 are listed in Section 5.3.2.

Branching ratios and life time can be set in tracking time.

/] set lifetine

G4Neut ron: : Neut ron() - >Set PDCLi f eTi ne(885. 7*second) ;
/1 allow neutron decay

G4Neut ron: : Neut ron() - >Set PDGSt abl e(f al se) ;

Branching ratios and life time can be modified by using user commands, also.

Example: Set 100% br for dalitz decay of piO

Idle> /particlelselect piO

Idle> /particlelproperty/decay/sel ect 0
Idl e> /particlelproperty/decay/br 0

Idle> /particlelproperty/decay/sel ect 1
Idl e> /particlelproperty/decay/br 1

Idle> /particl el property/decay/ dunp

G4DecayTabl e: pi 0
0: BR 0 [Phase Space] : gamma ganma

175

Tracking and Physics

1: BR 1 [Dalitz Decay] : gamma e- e+
5.2.3.3. Pre-assigned Decay Modes by Event Generators

Decays of heavy flavor particles such as B mesons are very complex, with many varieties of decay modes and
decay mechanisms. There are many models for heavy particle decay provided by various event generators and it
isimpossibleto define all the decay modes of heavy particles by using G4VDecayChannel. In other words, decays
of heavy particles cannot be defined by the Geant4 decay process, but should be defined by event generators or
other external packages. Geant4 providestwo waysto do this: pr e- assi gned decay node andext er nal
decayer.

In the latter approach, the class GAVExtDecayer is used for the interface to an external package which defines
decay modes for a particle. If an instance of G4VExtDecayer is attached to G4Decay, daughter particles will be
generated by the external decay handler.

In the former case, decays of heavy particles are ssimulated by an event generator and the primary event contains
the decay information. G4VPrimaryGenerator automatically attaches any daughter particlesto the parent particle
as the PreAssignedDecayProducts member of G4DynamicParticle. G4Decay adopts these pre-assigned daughter
particles instead of asking G4VDecayChannel to generate decay products.

In addition, theuser may assign apr e- assi gned decay timefor aspecific track initsrest frame (i.e. decay time
is defined in the proper time) by using the G4PrimaryParticle: : SetProper Time() method. G4VPrimaryGener ator
sets the PreAssignedDecayProperTime member of G4DynamicParticle. G4Decay uses this decay time instead of
the life time of the particle type.

5.2.4. Gamma-nuclear and Lepto-nuclear Processes

Gamma-nuclear and lepto-nuclear reactions are handled in Geant4 as hybrid processes which typically require
both electromagnetic and hadronic models for their implementation. While neutrino-induced reactions are not
currently provided, the Geant4 hadronic framework is general enough to include their future implementation as
ahybrid of weak and hadronic models.

The general scheme followed is to factor the full interaction into an electromagnetic (or weak) vertex, in which
avirtual particle is generated, and a hadronic vertex in which the virtual particle interacts with a target nucleus.
In most cases the hadronic vertex is implemented by an existing Geant4 model which handles the intra-nuclear
propagation.

The cross sections for these processes are parameterizations, either directly of data or of theoretical distributions
determined from the integration of lepton-nucleon cross sections double differential in energy loss and momentum
transfer.

For the most part gammas can be treated as hadrons and in fact they interact that way with the nucleus when
the Bertini-style cascade G4Cascadel nterface and QGSP models are used. These models may be assigned to
G4PhotoNuclear Process as shown in the following partial code:

ATheoFSGener at or* t heHEMbdel = new G4TheoFSGener at or ;
AQGSModel * theStringMdel = new GAQGSMbdel <GAGanmaPar ti ci pant s>;
G4Exci tedStringDecay* theStringDecay =

new AExcitedStri ngDecay(theFragnent ati on=new GAQGSM-r agnent ati on) ;
t heSt ri nghbdel - >Set Fr agnent at i onModel (theStri ngDecay) ;

t heHEMbdel - >Set Hi ghEner gyGener at or (t heSt ri nghodel) ;
t heHEMbdel - >Set Tr ansport (new GAGener at or Pr econpoundl nt er f ace) ;
t heHEMbdel - >Set M nEner gy(8*GeV) ;

(ACascadel nterface* theLEModel = new ACascadel nterface;
t heLEMbdel - >Set MaxEner gy(10* GeV) ;

APhot oNucl ear Process* t hePhot oNucl ear Process = new (4Phot oNucl ear Process;
t hePhot oNucl ear Process- >Regi st er Me(t heLEMbdel) ;
t hePhot oNucl ear Pr ocess- >Regi st er Me(t heHEMbdel) ;

GAProcessManager* procMan = AGamma: : Gamme() - >Get Pr ocessManager () ;
pr ocMan- >AddDi scr et eProcess(t hePhot oNucl ear Process) ;

176

Tracking and Physics

Electro-nuclear reactions in Geant4 are handled by the classes G4ElectronNuclearProcess and
G4PositronNuclear Process, which are both implmented by G4ElectroVDNuclearModel. This model consists of
three sub-models: code which generates the virtual photon from the lepton-nucleus vertex, the Bertini-style cas-
cade to handle the low and medium energy photons, and the FTFP model to handle the high energy photons.

Muon-nuclear reactions are handled similarly. The process G4AMuonNuclearProcess can be assigned the
G4MuonVDNuclearModel which in turn is implemented by three sub-models. virtual gamma generation code,
Bertini-style cascade and the FTFP model.

5.2.5. Optical Photon Processes

A photon is considered to be optical when its wavelength is much greater than the typical atomic spacing. In
GEANTA4 optical photons are treated as a class of particle distinct from their higher energy gamma cousins. This
implementation allows the wave-like properties of electromagnetic radiation to be incorporated into the optical
photon process. Because this theoretical description breaks down at higher energies, there is no smooth transition
as afunction of energy between the optical photon and gamma particle classes.

For the simulation of optical photons to work correctly in GEANT4, they must be imputed a linear polarization.
Thisisunlike most other particlesin GEANT4 but is automatically and correctly done for optical photonsthat are
generated as secondaries by existing processes in GEANT4. Not so, if the user wishesto start optical photons as
primary particles. In this case, the user must set the linear polarization using particle gun methods, the General
Particle Source, or his’/her PrimaryGeneratorAction. For an unpolarized source, the linear polarization should be
sampled randomly for each new primary photon.

The GEANTA4 catalogue of processes at optical wavelengths includes refraction and reflection at medium bound-
aries, bulk absorption, Mie and Rayleigh scattering. Processeswhich produce optical photonsinclude the Cerenkov
effect and scintillation. Optical photons are generated in GEANT4 without energy conservation and their energy
must therefore not be tallied as part of the energy balance of an event.

The optical properties of the medium which are key to the implementation of these types of processes are stored
as entries in a GAMat eri al Properti esTabl e which is linked to the GAMat eri al in question. These
properties may be constants or they may be expressed as a function of the photon's energy. This table is a pri-
vate data member of the GAMat eri al class. The G4AMat eri al Properti esTabl e isimplemented as a
hash directory, in which each entry consists of a value and a key. The key is used to quickly and efficiently re-
trieve the corresponding value. All values in the dictionary are either instantiations of G4doubl e or the class
GAMat eri al PropertyVect or, and all keysare of type G4St ri ng.

A AMat eri al PropertyVect or is atypedef of G4PhysicsOrderedFreeVector. The entries are a pair of
numbers, which in the case of an optical property, are the photon energy and corresponding property value. It is
possible for the user to add as many material (optical) properties to the material as he wishes using the methods
supplied by the G4AMat eri al Properti esTabl e class. An example of thisis shown in Example 5.3. In this
example the interpolation of the G4Material PropertyVector is to be done by a spline fit. The default is a linear
interpolation.

Example 5.3. Optical properties added to a GAMat eri al Properti esTabl e and
linked toaG4AMat eri al

const 4i nt NUMENTRI ES = 32;

GAdoubl e ppckov[NUMENTRI ES] = {2.034*eV,, 4.136*eV};
GAdoubl e rindex] NUMENTRIES] = {1.3435,, 1.3608};
G4doubl e absorpti on[NUMENTRI ES] = {344.8*cm, 1450. O*cnj ;

GAMateri al PropertiesTabl e *MPT = new GAMateri al Properti esTabl e();
MPT -> AddConst Property("SCl NTI LLATI ONYI ELD", 100. / MeV) ;

MPT -> AddProperty(" Rl NDEX", ppckov, ri ndex, NUMENTRI ES} - >Set Spl i ne(true);
MPT -> AddProperty("ABSLENGTH', ppckov, absor pti on, NUVMENTRI ES} - >Set Spl i ne(true);

scintillator -> SetMaterial PropertiesTabl e(MPT);

177

Tracking and Physics

5.2.5.1. Generation of Photons in processes/ el ectr omagnet -
I ¢/ xrays - Cerenkov Effect

The radiation of Cerenkov light occurs when a charged particle moves through a dispersive medium faster than
the group velocity of light in that medium. Photons are emitted on the surface of a cone, whose opening angle
with respect to the particle's instantaneous direction decreases as the particle slows down. At the same time, the
frequency of the photons emitted increases, and the number produced decreases. When the particle velocity drops
below the local speed of light, the radiation ceases and the emission cone angle collapses to zero. The photons
produced by this process have an inherent polarization perpendicular to the cone's surface at production.

The flux, spectrum, polarization and emission of Cerenkov radiation in the Al ongSt epDol t method of the
class (ACer enkov follow well-known formulae, with two inherent computational limitations. The first arises
from step-wise ssimulation, and the second comes from the requirement that numerical integration calculate the
average number of Cerenkov photons per step. The process makes use of a G4Physi csTabl e which contains
incremental integrals to expedite this calculation.

The time and position of Cerenkov photon emission are calculated from quantities known at the beginning of a
charged particle's step. The step is assumed to be rectilinear even in the presence of amagnetic field. The user may
[imit the step size by specifying amaximum (average) number of Cerenkov photons created during the step, using
the Set MaxNunPhot onsPer St ep(const 4i nt NunmPhot ons) method. The actual number generated
will necessarily be different due to the Poissonian nature of the production. In the present implementation, the
production density of photons is distributed evenly along the particle's track segment, even if the particle has
slowed significantly during the step. The step can aso be limited with the Set MaxBet aChangePer St ep
method, where the argument is the allowed change in percent).

Thefrequently very large number of secondaries produced in asingle step (about 300/cm in water), compelled the
ideain GEANT3.21 of suspending the primary particle until al its progeny have been tracked. Despite the fact
that GEANT4 employs dynamic memory allocation and thus does not suffer from the limitations of GEANT3.21
with itsfixed large initial ZEBRA store, GEANT4 nevertheless provides for an analogous functionality with the
public method Set Tr ackSecondar i esFi rst. An example of the registration of the Cerenkov process is
given in Example 5.4.

Example5.4. Registration of the Cerenkov processin Physi csLi st .

#i ncl ude " &ACer enkov. hh"

voi d Expt Physi csLi st:: Construct Op() {
GACer enkov* t heCer enkovProcess = new GACer enkov(" Cer enkov");
G4i nt MaxNumPhot ons = 300;

t heCer enkovPr ocess- >Set TrackSecondari esFirst (true);
t heCer enkovPr ocess- >Set MaxBet aChangePer St ep(10. 0) ;
t heCer enkovPr ocess- >Set MaxNunPhot onsPer St ep(MaxNunPhot ons) ;

theParticlelterator->reset();
while((*theParticlelterator)()){
HAParticlebDefinition* particle = theParticlelterator->val ue();
GAProcessManager * pmanager = particl e->Get ProcessManager () ;
AString particleName = particle->GetParticl eNanme();
if (theCerenkovProcess->lsApplicable(*particle)) {
prmanager - >AddPr ocess(t heCer enkovPr ocess) ;
prmanager - >Set Pr ocessOr der i ng(t heCer enkovPr ocess, i dxPost St ep) ;
}
}
}

5.2.5.2. Generation of Photons in processes/ el ect r omagnet -
| ¢/ xrays - Scintillation

Every scintillating material has a characteristic light yield, SCI NTI LLATI ONYI ELD, and an intrinsic resolu-
tion, RESOLUTI ONSCALE, which generally broadens the statistical distribution of generated photons. A wider

178

Tracking and Physics

intrinsic resolution is due to impurities which are typical for doped crystals like Nal(Tl) and Csl(Tl). On the
other hand, the intrinsic resolution can also be narrower when the Fano factor plays a role. The actual num-
ber of emitted photons during a step fluctuates around the mean number of photons with a width given by
Resol uti onScal e*sqrt (MeanNunber O Phot ons) . The average light yield, MeanNunber O Pho-
t ons, has alinear dependence on the local energy deposition, but it may be different for minimum ionizing and
non-minimum ionizing particles.

A scintillator is also characterized by its photon emission spectrum and by the exponential decay of itstime spec-
trum. In GEANTA4 the scintillator can have afast and aslow component. Therelative strength of the fast component
asafraction of total scintillation yield isgiven by the YI ELDRATI O. Scintillation may be simulated by specifying
these empirical parameters for each material. It is sufficient to specify in the user's Det ect or Const ructi on
class arelative spectral distribution as a function of photon energy for the scintillating material. An example of
thisis shown in Example 5.5

Example5.5. Specification of scintillation propertiesin Det ect or Const ruct i on.

const G4int NUMENTRIES = 9;
G4doubl e Scnt _PP[NUMENTRIES] = { 6.6*eV, 6.7*eV, 6.8*eV, 6.9*eV,

7.0*eV, 7.1*eV, 7.2*eV, 7.3*eV, 7.4*eV },;
GAdoubl e Scnt _FAST[NUMENTRI ES] = { 0.000134, 0.004432, 0.053991, 0.241971,
0.398942, 0.000134, 0.004432, 0.053991,
0. 241971 };
0. 000010, 0.000020, 0.000030, 0.004000,
0. 008000, 0.005000, 0.020000, 0.001000,
0. 000010 };

G4doubl e Scnt SLON NUVENTRI ES] = {

HAMat erial * Scnt ;
GAMat eri al Properti esTabl e* Scnt _MPT = new GAMateri al Properti esTabl e();

Scnt _MPT- >AddPr opert y(" FASTCOVWONENT", Scnt_PP, Scnt_FAST, NUMVENTRI ES);
Scnt _MPT- >AddPr opert y(" SLOANCOVPONENT", Scnt_PP, Scnt_SLON NUMENTRI ES);

Scnt _MPT- >AddConst Propert y(" SClI NTI LLATI ONYI ELD", 5000./ MeV);
Scnt _MPT- >AddConst Property(" RESOLUTI ONSCALE", 2.0);

Scnt _MPT- >AddConst Property(" FASTTI MECONSTANT", 1.*ns);

Scnt _MPT- >AddConst Property(" SLOMI MECONSTANT", 10.*ns);

Scnt _MPT- >AddConst Property(" Yl ELDRATI O', 0.8);

Scnt - >Set Mat eri al Properti esTabl e(Scnt _MPT) ;

In cases where the scintillation yield of a scintillator depends on the particle type, different scintillation processes
may be defined for them. How this yield scalesto the one specified for the material is expressed with the Sci n-
tillationYiel dFactor intheuser's Physi csLi st asshown in Example 5.6. In those cases where the
fast to slow excitation ratio changes with particle type, the method Set Sci nti | | ati onExcitati onRati o
can be called for each scintillation process (see the advanced underground_physics example). This overwrites the
Yi el dRat i o obtained fromthe AMat eri al Properti esTabl e.

Example 5.6. Implementation of the scintillation processin Physi csLi st.

GAScintillation* theMionSci nt Process = new G4Scintillation("Scintillation");

t heMuonSci nt Process- >Set Tr ackSecondari esFi rst (true);
t heMuonSci nt Process->Set Scintill ationYi el dFactor (0. 8);

theParticlelterator->reset();
while((*theParticlelterator)()){
GA4ParticleDefinition* particle = theParticlelterator->val ue();
GAProcessManager * pmanager = particl e->Cet ProcessManager () ;
GAString particleNane = particle->CGetParticleNane();
if (theMionSci nt Process->IsApplicable(*particle)) {
if (particleName == "nu+") {
prmanager - >AddPr ocess(t heMuonSci nt Process) ;
pmanager - >Set ProcessOr der i ngToLast (t heMionSci nt Process, i dxAt Rest);
prmanager - >Set Pr ocessOr der i ngToLast (t heMuonSci nt Process, i dxPost St ep);

}
}

179

Tracking and Physics

}

A Gaussian-distributed number of photons is generated according to the energy lost during the
step. A resolution scale of 1.0 produces a dtatistical fluctuation around the average yield set with
AddConst Property(" SCl NTI LLATI ONYI ELD") , while values > 1 broaden the fluctuation. A value of
zero produces no fluctuation. Each photon's frequency is sampled from the empirical spectrum. The photons orig-
inate evenly along the track segment and are emitted uniformly into 44y with arandom linear polarization and at
times characteristic for the scintillation component.

When there are multiple scintillatorsin the simulation and/or when the scintillation yield isanon-linear function of
the energy deposited, the user can also define an array of total scintillation light yields as a function of the energy
deposited and particle type. The available particles are protons, electrons, deuterons, tritons, alphas, and carbon
ions. These are the particles known to significantly effect the scintillation light yield, of for example, BC501A
(NE213/EJ301) liquid organic scintillator and BC420 plastic scintillator as function of energy deposited.

The method works as follows:

1. Intheuser's physics lists, the user must set a G4bool flag that allows scintillation light emission to depend on
the energy deposited by particle type:

t heSci nt Process->Set Scintillati onByParticl eType(true);

2. The user must aso specify and add, via the AddProperty method of the MPT, the scintillation light yield as
function of incident particle energy with new keywords, for example: PROTONSCINTILLATIONYIELD etc.
and pairs of protonEnergy and scintLightYield.

5.2.5.3. Generation of Photons in pr ocesses/ opti cal - Wave-
length Shifting

Wavelength Shifting (WLS) fibers are used in many high-energy particle physics experiments. They absorb light
at one wavelength and re-emit light at a different wavelength and are used for several reasons. For one, they tend
to decrease the self-absorption of the detector so that as much light reaches the PMTs as possible. WL S fibers are
also used to match the emission spectrum of the detector with the input spectrum of the PMT.

A WLS materia is characterized by its photon absorption and photon emission spectrum and by a possible time
delay between the absorption and re-emission of the photon. Wavelength Shifting may be simulated by specifying
these empirical parameters for each WLS material in the simulation. It is sufficient to specify in the user's De-
t ect or Const ruct i on classarelative spectral distribution as afunction of photon energy for the WL S mate-
rid. WLSABSLENGTH isthe absorption length of the material as afunction of the photon's energy. WL SCOM-
PONENT is the relative emission spectrum of the material as a function of the photon's energy, and WLSTIME-
CONSTANT accounts for any time delay which may occur between absorption and re-emission of the photon.
An exampleis shown in Example 5.7.

Example5.7. Specification of WL S propertiesin Det ect or Const ruct i on.

const G4int nEntries = 9;

GAdoubl e Phot onEnergy[nEntries] = { 6.6*eV, 6.7*eV, 6.8%*eV, 6.9*eV,
7.0%eV, 7.1*eV, 7.2*eV, 7.3%eV, 7.4*eV };

GAdoubl e RI ndexFi ber[nEntries] =

{ 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60 };
GAdoubl e AbsFi ber[nEntries] =

{0.1*mm 0. 2*mm 0. 3*nm 0. 4*cm 1. 0*cm 10*cm 1. 0*m 10. 0*m 10. 0*n} ;
G4doubl e Emi ssi onFi ber[nEntries] =

{0.0, 0.0, 0.0, 0.1, 0.5, 1.0, 5.0, 10.0, 10.0 };

GAMateri al * WLSFi ber ;
GAMat eri al Properti esTabl e* MPTFi ber = new GAMateri al Properti esTabl e();

MPTFi ber - >AddPr oper t y(" Rl NDEX", Phot onEner gy, Rl ndexFi ber, nEntri es) ;
MPTFi ber - >AddPr oper t y(" W.SABSLENGTH", Phot onEner gy, AbsFi ber, nEntri es);

180

Tracking and Physics

MPTFi ber - >AddPr oper t y(" W.SCOMPONENT" , Phot onEner gy, Emi ssi onFi ber, nEntri es);
MPTFi ber - >AddConst Pr opert y(" W.STI MECONSTANT", 0. 5*ns);

WLSFi ber - >Set Mat eri al Properti esTabl e(MPTFi ber) ;

The process is defined in the PhysicsList in the usual way. The process class name is G4OpWLS. It should be
instantiated with theWL SProcess = new G40OpWL S("OpWLS") and attached to the process manager of the optical
photon as a DiscreteProcess. The way the WLSTIMECONSTANT is used depends on the time profile method
chosen by the user. If in the PhysicsList theWL SProcess->UseTimeGenerator("exponential®) option is set, the
time delay between absorption and re-emission of the photon is sampled from an exponentia distribution, with the
decay term equal to WLSTIMECONSTANT. If, on the other hand, theWL SProcess->UseTimeGenerator("delta')
is chosen, the time delay is a delta function and equal to WLSTIMECONSTANT. The default is "delta” in case
the GAOpWL S::UseTimeGenerator(const G4String name) method is not used.

5.2.5.4. Tracking of Photons in processes/ opti cal

Absorption

The implementation of optical photon bulk absorption, GAOQpAbsor pt i on, istrivia in that the process merely
kills the particle. The procedure requires the user to fill the relevant GAMat er i al Properti esTabl e with
empirical datafor the absorption length, using ABSLENGTH as the property key in the public method AddPr op-
erty. The absorption length is the average distance traveled by a photon before being absorpted by the medium,;
i.e. it isthe mean free path returned by the Get MeanFr eePat h method.

Rayleigh Scattering

The differential cross section in Rayleigh scattering, d#/d#, is proportional to 1+cosz(9) where g is the polar of
the new polarization vector with respect to the old polarization vector. The G4AOpRay| ei gh scattering process
samples this angle accordingly and then calculates the scattered photon's new direction by requiring that it be
perpendicular to the photon's new polarization in such away that the final direction, initial and final polarizations
are dl in one plane. This process thus depends on the particle's polarization (spin). The photon's polarization is
a data member of the G4Dynani cParti cl e class.

A photon which is not assigned a polarization at production, either via the Set Pol ari zati on method
of the APri maryParti cl e class, or indirectly with the Set Parti cl ePol ari zati on method of the
AParti cl e@un class, may not be Rayleigh scattered. Optical photons produced by the A Cer enkov process
have inherently a polarization perpendicular to the cone's surface at production. Scintillation photons have a ran-
dom linear polarization perpendicular to their direction.

TheprocessrequiresaAMat er i al Properti esTabl e tobefilled by theuser with Rayleigh scattering length
data. The Rayleigh scattering attenuation length is the average distance traveled by a photon beforeit is Rayleigh
scattered inthe medium and it isthe distancereturned by the Get MeanFr eePat h method. TheG4OpRay! ei gh
classprovidesaRay! ei ghAt t enuat i onLengt hGener at or method which cal cul ates the attenuation coef-
ficient of a medium following the Einstein-Smoluchowski formula whose derivation requires the use of statistical
mechanics, includes temperature, and depends on the isothermal compressibility of the medium. This generator is
convenient when the Rayleigh attenuation length is not known from measurement but may be cal culated from first
principles using the above material constants. For amedium named Water and no Rayleigh scattering attenutation
length specified by the user, the program automatically callsthe Rayl ei ghAt t enuat i onLengt hGener a-
t or which calculatesit for 10 degrees Celsiusliquid water.

Mie Scattering

Mie Scattering (or Mie solution) is an analytical solution of Maxwell's equations for scattering of optical photons
by spherical particles. It is significant only when the radius of the scattering object is of order of the wave length.
Theanalytical expressionsfor Mie Scattering are very complicated since they are a series sum of Bessel functions.
One common approximation madeiscall Henyey-Greenstein (HG). Theimplementation in Geant4 followsthe HG
approximation (for details see the Physics Reference Manual) and the treatment of polarization and momentum
are similar to that of Rayleigh scattering. We require the final polarization direction to be perpendicular to the
momentum direction. We aso require the final momentum, initial polarization and final polarization to be in the
same plane.

181

Tracking and Physics

The process requires a G4M aterial PropertiesTable to be filled by the user with Mie scattering length data (entered
with the name: MIEHG) analogous to Rayleigh scattering. The Mie scattering attenuation length is the average
distance traveled by a photon before it is Mie scattered in the medium and it is the distance returned by the Get-
MeanFreePath method. In practice, the user not only needs to provide the attenuation length of Mie scattering, but
also needs to provide the constant parameters of the approximation: g_f, g b, and r_f. (with AddConstProperty
and with the names: MIEHG_FORWARD, MIEHG_BACKWARD, and MIEHG_FORWARD_RATIO, respec-
tively; see Novice Example N06.)

Boundary Process
Reference: E. Hecht and A. Zajac, Optics[Hecht1974 |

For the simple case of a perfectly smooth interface between two dielectric materials, all the user needs to provide
are the refractive indices of the two materials stored in their respective G4AMat er i al Properti esTabl e. In
all other cases, the optical boundary process design relies on the concept of surfaces. The information is splitinto
two classes. Oneclassinthe material category keepsinformation about the physical properties of the surfaceitself,
and a second class in the geometry category holds pointers to the relevant physical and logical volumesinvolved
and has an association to the physical class. Surface objects of the second type are stored in a related table and
can be retrieved by either specifying the two ordered pairs of physical volumes touching at the surface, or by the
logical volume entirely surrounded by thissurface. Theformer iscalled aborder surfacewhilethelatter isreferred
to asthe skin surface. This second type of surface is useful in situations where avolume is coded with a reflector
and is placed into many different mother volumes. A limitation is that the skin surface can only have one and
the same optical property for all of the enclosed volume's sides. The border surface is an ordered pair of physical
volumes, so in principle, the user can choose different optical propertiesfor photons arriving from the reverse side
of the same interface. For the optical boundary process to use a border surface, the two volumes must have been
positioned with GAPVPI acenent . The ordered combination can exist at many places in the simulation. When
the surface concept is not needed, and a perfectly smooth surface exists beteen two dielectic materias, the only
relevant property is the index of refraction, a quantity stored with the material, and no restriction exists on how
the volumes were positioned.

The physical surface object also specifies which model the boundary process should use to simulate interactions
with that surface. In addition, the physical surface can have amaterial property table all its own. The usage of this
table allows all specular constants to be wavel ength dependent. In case the surface is painted or wrapped (but not a
cladding), the table may include the thin layer'sindex of refraction. This allowsthe simulation of boundary effects
at the intersection between the medium and the surface layer, as well as the Lambertian reflection at the far side
of the thin layer. This occurs within the process itself and does not invoke the &4 Navi gat or . Combinations of
surface finish properties, such as polished or ground and front painted or back painted, enumerate the different
situations which can be simulated.

When a photon arrives at a medium boundary its behavior depends on the nature of the two materials that join at
that boundary. Medium boundaries may be formed between two dielectric materials or a dielectric and a metal.
In the case of two dielectric materiass, the photon can undergo total internal reflection, refraction or reflection,
depending on the photon's wavel ength, angle of incidence, and the refractive indices on both sides of the boundary.
Furthermore, reflection and transmission probabilites are sensitive to the state of linear polarization. In the case of
an interface between a dielectric and a metal, the photon can be absorbed by the metal or reflected back into the
dielectric. If the photon is absorbed it can be detected according to the photoel ectron efficiency of the metal.

Asexpressed in Maxwell's equations, Fresnel reflection and refraction are intertwined through their relative prob-
abilities of occurrence. Therefore neither of these processes, nor total internal reflection, are viewed as individual
processes deserving separate class implementation. Nonethel ess, an attempt was made to adhere to the abstraction
of having independent processes by splitting the code into different methods where practicable.

One implementation of the G4OpBoundar yPr ocess class employs the UNIFIED model [A. Levin and C.
Moisan, A More Physical Approach to Model the Surface Treatment of Scintillation Countersand its Implementa-
tioninto DETECT, TRIUMF Preprint TRI-PP-96-64, Oct. 1996] of the DETECT program [G.F. Knall, T.F. Knall
and T.M. Henderson, Light Collection Scintillation Detector Composites for Neutron Detection, |EEE Trans. Nu-
cl. Sci., 35 (1988) 872.]. It applies to dielectric-dielectric interfaces and tries to provide a realistic simulation,
which deals with all aspects of surface finish and reflector coating. The surface may be assumed as smooth and
covered with a metallized coating representing a specular reflector with given reflection coefficient, or painted

182

http://geant4.slac.stanford.edu/UsersWorkshop/G4Lectures/Peter/moisan.ps

Tracking and Physics

with a diffuse reflecting material where Lambertian reflection occurs. The surfaces may or may not bein optical
contact with another component and most importantly, one may consider a surface to be made up of micro-facets
with normal vectors that follow given distributions around the nominal normal for the volume at the impact point.
For very rough surfaces, it is possible for the photon to inversely aim at the same surface again after reflection
of refraction and so multiple interactions with the boundary are possible within the process itself and without the

need for relocation by GANavi gat or .

UNIFIED MODEL FOR OPTICAL SURFACES

Dielectric_dielectric

v

v

v

PolishedBackPainted

GroundFrontPainted

The Polished refers to the wrapping. It

‘ Palished ‘ ‘ Ground ‘ PolishedFrontPainted
Reflectivity is used to Only Reflection or
determine whether Absorption; No
Y refraction;

Snell's Law is applied
based on Refractive
index of the two
media
But Before this
Reflectivity is used to
determine whether
photon is absorbed |
Strictly speaking hera
reflectivity is not the
reflection coefficient,
it is 1 minus the
absorption
coefficient)

photon is absorbed {
Strictly speaking here
reflectivity is not the
reflection coefficient,
itis 1 minus the
absorption
coefficient)

First, FacetNormal is

sampled using Sigma
Alpha

12

Now, Snell's Law is

Figure5.1. Diagram of the UNIFIED Model for Optical Surfaces (courtesy A. Shankar)

The UNIFIED model (Figure 5.1) provides for a range of different reflection mechanisms. The specular lobe
constant represents the reflection probability about the normal of a micro facet. The specular spike constant, in
turn, illustrates the probability of reflection about the average surface normal. The diffuse lobe constant is for the
probability of internal Lambertian reflection, and finally the back-scatter spike constant is for the case of several
reflections within a deep groove with the ultimate result of exact back-scattering. The four probabilities must
add up to one, with the diffuse lobe constant being implicit. The reader may consult the reference for a thorough

description

applied with respect
to this facet normal

v

implies the wrapping is a perfectly smooth

Only Reflection or Absorption; No y . . .
mirror with only specular spike reflection

Reflection probability set refraction; taking place.
by Reflectivity. Reflection probability set by . .
o fl .
1f reflected, then it is Reflectivity. Reflection off the wrapper set by Reflectivity.

Specular Spike reflection. Only Lambertian reflection

The Sigma Alpha value specified refers to the
crystal-air gap interface. Snell's law is applied

If Snell’s law results in
reflection, then one of
the four (specular spike,
specular lobe,
backscatter, lambertian)
takes place with respect
to FacetMormal
according to assigned
probabilities

of the model.

ry after sampling the FacetNormal, and if

Polished

GroundBackPainted

h 4

The Ground refers to the wrapping. It
implies the wrapping is a ground mirror
with only Lambertian reflection taking
place.
Reflection off the wrapper set by
Reflectivity.
The Sigma Alpha value specified refers to
the crystal-air gap interface. Snell's law is
applied after sampling the FacetNormal,
and if reflection takes place, one of the
four (specular spike, specular lobe,
backscatter, lambertian) takes place with
respect to FacetNormal according to
assigned probabilities

reflection takes place, one of the four
Dielectric_metal

(specular spike, specular lobe, backscatter,
lambertian) takes place with respect to
Only Reflection or Absorption; No refraction;
Reflection probability set by Reflectivity.

FacetNormal according to assigned
probabilities
If reflected, one of the four specular spike,
backscatter, lambertian, or specular lobe
reflection with respect to a FacetNormal, takes
place according to assigned probabilities.

NOTE: Applying Snell's Law includes applying Fresnel's
equations of reflection and refraction, and these combined
may result in Fresnel Refraction or Total Internal Reflection or

Fresnel Reflection

Example5.8. Dielectric-dielectric surface properties defined via the G4Optical Surface.

GAVPhysi cal Vol une* vol unel;
GAVPhysi cal Vol ume* vol une2;

GAOpti cal Surface* OpSurface =

GALogi cal Bor der Sur face* Surface =

new AOpti cal Surface("name");

new

G4Logi cal Bor der Sur f ace(" nane", vol unel, vol une2, OpSur f ace) ;

GAdoubl e s

OpSur f ace
OpSur f ace
OpSur f ace
OpSur f ace

i gma_al pha =

0.1;

-> Set Type(di el ectric_dielectric);
-> Set Mbdel (unified);

-> Set Fi ni sh(groundbackpai nt ed) ;
-> Set Si gmaAl pha(si gma_al pha) ;

183

Tracking and Physics

const 4int NUM = 2;

G4doubl e pp[NUM = {2.038*eV, 4.144*eV};
GAdoubl e specul arl obe[NUM = {0.3, 0.3};
G4doubl e specul arspi ke[NUM = {0.2, 0.2};
GAdoubl e backscatter[NUM = {0.1, 0.1};
G4doubl e rindex[NUM = {1.35, 1.40};
GAdoubl e reflectivity[NUM = {0.3, 0.5};
G4doubl e efficiency[NUM = {0.8, 0.1};

GAMateri al PropertiesTabl e* SMPT = new GAMateri al PropertiesTabl e();

SMPT -> AddProperty("RI NDEX", pp, ri ndex, NUM ;

SMPT -> AddPropert y(" SPECULARLOBECONSTANT", pp, specul ar | obe, NUM ;
SMPT -> AddProperty(" SPECULARSPI KECONSTANT", pp, specul ar spi ke, NUM ;
SMPT -> AddPropert y(" BACKSCATTERCONSTANT", pp, backscatter, NUM ;
SMPT -> AddProperty("REFLECTI VI TY", pp, reflectivity, NUM;

SMPT -> AddProperty("EFFI Cl ENCY", pp, ef fi ci ency, NUM ;

QpSur face -> SetMaterial Properti esTabl e(SMPT) ;

Theoriginal GEANT3.21 implementation of thisprocessisalso availableviathe GLISUR methodsflag. [GEANT
Detector Description and Simulation Tool, Application Software Group, Computing and Networks Division,
CERN, PHY S260-6 tp 260-7.].

Example5.9. Dielectric metal surface properties defined via the G4Optical Surface.

ALogi cal Vol ume* vol une_| og;
GAOpti cal Surface* OpSurface = new GAOpti cal Surface("nane");

(ALogi cal Ski nSur face* Surface = new
G4Logi cal Ski nSur f ace(" nanme", vol une_| og, OpSur f ace) ;

QpSur face -> Set Type(dielectric_netal);
OpSur face -> Set Fi ni sh(ground);
QpSur face -> Set Mbdel (glisur);

GAdoubl e polish = 0.8;
GAMat eri al PropertiesTabl e *OpSurfaceProperty = new GAMateri al Properti esTabl e();

QpSur f aceProperty -> AddProperty("REFLECTIVITY", pp,reflectivity, NUM;
OpSur f aceProperty -> AddProperty("EFFI Cl ENCY", pp, ef fi ci ency, NUM ;

OpSur face -> SetMaterial PropertiesTabl e(OpSurfaceProperty);

Thereflectivity off ametal surface can aso be calculated by way of acomplex index of refraction. Instead of stor-
ing the REFLECTIVITY directly, the user stores the real part (REALRINDEX) and the imaginary part (IMAGI-
NARY RINDEX) as afunction of photon energy separately in the G4Material Property Table. Geant4 then calcu-
lates the reflectivity depending on theincident angle, photon energy, degree of TE and TM polarization, and this
complex refractive index.

The program defaults to the GLISUR model and polished surface finish when no specific model and sur-
face finish is specified by the user. In the case of a dielectric-metal interface, or when the GLISUR model is
specified, the only surface finish options available are polished or ground. For dielectric-metal surfaces, the
A OpBoundar yPr ocess aso defaults to unit reflectivity and zero detection efficiency. In cases where the
user specifies the UNIFIED model (Figure 5.1), but does not otherwise specify the model reflection probability
constants, the default becomes Lambertian reflection.

Martin Janecek and Bill Moses (Lawrence Berkeley National Laboratory) built an instrument for measuring the
angular reflectivity distribution inside of BGO crystals with common surface treatments and reflectors applied.
These results have been incorporate into the Geant4 code. A third class of reflection type besides dielectric_metal
and dielectric_dielectric is added: dielectric LUT. The distributions have been converted to 21 look-up-tables
(LUT); so far for 1 scintillator material (BGO) x 3 surface treatments x 7 reflector materials. The modified code
allows the user to specify the surface treatment (rough-cut, chemically etched, or mechanically polished), the at-
tached reflector (Lumirror, Teflon, ESR film, Tyvek, or TiO2 paint), and the bonding type (air-coupled or glued).
The glue used is MeltMount, and the ESR film used is VM2000. Each LUT consists of measured angular distri-

184

http://wwwasdoc.web.cern.ch/wwwasdoc/geant_html3/node231.html

Tracking and Physics

butions with 4° by 5° resolution in theta and phi, respectively, for incidence angles from 0° to 90° degrees, in 1°-
steps. The code might in the future be updated by adding more LUTS, for instance, for other scintillating materials
(such as LSO or Nal). To use these LUT the user has to download them from Geant4 Software Download and
set an environment variable, GAREAL SURFACEDATA, to the directory of geant 4/ dat a/ Real Sur f acel. 0.
For detailssee: M. Janecek, W. W. Moses, |EEE Trans. Nucl. Sci. 57 (3) (2010) 964-970.

The enumeration G4Optical SurfaceFinish has been extended to include (what follows should be a2 column table):

pol i shedlum rrorair, /1 mechanically polished surface, with lumirror

pol i shedl umi rrorgl ue, /1 mechanically polished surface, with lumrror & neltnount

pol i shedai r, /1 mechanically polished surface

pol i shedt ef | onai r, /1 mechanically polished surface, with teflon

pol i shedti oair, /1 mechanically polished surface, with tio paint

pol i shedt yvekai r, /1 mechanically polished surface, with tyvek

pol i shedvn000ai r, /1 mechanically polished surface, with esr film

pol i shedvn2000g! ue, /1 mechanically polished surface, with esr film & neltnount

etchedlumrrorair, /1 chemcally etched surface, with lumrror

et chedl um rrorgl ue, /1 chemcally etched surface, with lumrror & neltnount

et chedair, /1l chemcally etched surface

et chedt ef | onai r, /1 chemcally etched surface, with teflon

etchedtioair, /1 chem cally etched surface, with tio paint

et chedt yvekair, /1 chemcally etched surface, with tyvek

et chedvnR000ai r, /Il chemcally etched surface, with esr film

et chedvn2000g! ue, /1 chemcally etched surface, with esr film & nel t nount

groundlumirrorair, /'l rough-cut surface, with lumrror

groundl um rrorgl ue, /'l rough-cut surface, with lumrror & neltnount

groundai r, /'l rough-cut surface

groundt efl onair, /'l rough-cut surface, with teflon

groundtioair, /1 rough-cut surface, with tio paint

gr oundt yvekai r, /'l rough-cut surface, with tyvek

gr oundvnR000ai r, /'l rough-cut surface, with esr film

gr oundvn2000g! ue /'l rough-cut surface, with esr film & neltnmount
To use a |ook-up-table, al the user needs to specify for an
HAOptical Surface is. Set Type(diel ectric_LUT), Set Mbdel (LUT) and for example,

Set Fi ni sh(pol i shedtyvekair).

5.2.6. Parameterization

In this section we describe how to use the parameterization or "fast simulation” facilities of GEANT4. Examples
are provided in the examples/novice/NO5 directory.

5.2.6.1. Generalities:

The Geant4 parameterization facilities allow you to shortcut the detailed tracking in a given volume and for given
particle typesin order for you to provide your own implementation of the physics and of the detector response.

Parameterisations are bound to a GARegi on object, which, in the case of fast smulation is also called an enve-
lope. Prior to release 8.0, parameterisations were bound to a G4Logi cal Vol une, the root of a volume hierar-
chy. These root volumes are now attributes of the G4Regi on. Envelopes often correspond to the volumes of
sub-detectors: electromagnetic calorimeters, tracking chambers, etc. With GEANTA4 it is also possible to define
envelopes by overlaying aparalel or "ghost" geometry as discussed in Section 5.2.6.7.

In GEANT4, parameterisations have three main features. Y ou must specify:

* the particle types for which your parameterisation is valid;

» the dynamics conditions for which your parameterisation is valid and must be triggered;

* the parameterisation itself: where the primary will be killed or moved, whether or not to create it or create
secondaries, etc., and where the detector response will be computed.

GEANT4 will message your parameterisation code for each step starting in any root G4L ogicalVolume (including
daughters. sub-daughters, etc. of this volume) of the G4ARegi on. It will proceed by first asking the available
parameterisations for the current particle type if one of them (and only one) wants to issue a trigger. If so it will
invoke its parameterisation. In this case, the tracking will not apply physics to the particle in the step. Instead,
the UserSteppingAction will be invoked.

185

http://geant4.web.cern.ch/geant4/support/download.shtml
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5485130&isnumber=5485053

Tracking and Physics

Parameterisations ook like a"user stepping action" but are more advanced because:

 parameterisation code is messaged only in the G4Regi on to which it is bound;

 parameterisation codeis messaged anywhereinthe G4Regi on, thatis, any volumeinwhich thetrack islocated;

* GEANT4 will provide information to your parameterisation code about the current root volume of the
(ARegi on inwhich the track istravelling.

5.2.6.2. Overview of Parameterisation Components
The GEANT4 components which alow the implementation and control of parameterisations are:

HAVFast Si mul ati onhvbdel
Thisisthe abstract class for the implementation of parameterisations. Y ou must inherit from it to implement
your concrete parameterisation model.

AFast Si mul at i onManager
The G4V FastSimulationModel objects are attached to the G4Regi on through a G4FastSimul ationM anager.
This object will manage the list of models and will message them at tracking time.

(ARegi on/ Envel ope
As mentioned before, an envelope in GEANT4 is a (ARegi on. The parameterisation is bound to the
(ARegi on by setting a G4Fast Si nul at i onManager pointer toit.

Thefigure below showshow the GAVFast Si nmul at i onMbdel and AFast Si mul at i onManager ob-
jects are bound to the GARegi on. Then for al root G4LogicalVolume's held by the G4Region, the fast sim-

ulation codeis active.
|r G4Region |

Mmmml % I—)l C4FastSimulationhManager |
i)

vvoluae of hierarchy tree

G4VFastZimulationodel
g etre-/gamma modal

G4V FastZimulationModel
g pion model

| GAVFastSimulationModel

(AFast Si nul at i onManager Pr ocess
ThisisaGAVPr ocess. It provides the interface between the tracking and the parameterisation. It must be
set in the processlist of the particles you want to parameterise.

Ad obal Fast Si nul ati onManager
This a singleton class which provides the management of the G4Fast Si nul at i onManager objects and
some ghost facilities.

5.2.6.3. The AVFast Si nul ati onMbdel Abstract Class

Constructors:
TheAVFast Si nul at i onMbdel classhastwo constructors. The second one allowsyouto get started quickly:

(AVFast Si mul ati onModel (const AString& aNane):
Here aNare identifies the parameterisation model.

AVFast Si nul ati onMbdel (const AString& aNare, ARegi on*, HAbool
| sUni que=fal se):
In addition to the model name, this constructor accepts a G4Region pointer. The needed
G4FastSimulationManager object is constructed if necessary, passing to it the G4Region pointer and
the boolean value. If it aready exists, the model is simply added to this manager. Note that the
G4VFastSmulationModel object will not keep track of the G4Region passed in the constructor. The

186

Tracking and Physics

boolean argument is there for optimization purposes: if you know that the G4Region has a unique root
G4L ogicalVolume, uniquely placed, you can set the boolean value to "true".

Virtual methods:
The G4V FastSimulationModel has three pure virtual methods which must be overriden in your concrete class:

AVFast Si mul ati onMbdel (const G4String& aNane) :
Here aName identifies the parameterisation model.

Abool Model Trigger(const GAFast Track&):
You must return "true" when the dynamic conditions to trigger your parameterisation are ful-
filled. G4FastTrack provides access to the current G4Track, gives simple access to the current root
G4LogicalVolumerelated features (its G4V Solid, and G4AffineTransform references between the global and
the root G4L ogicalVolume local coordinates systems) and simple access to the position and momentum ex-
pressed in the root G4L ogica vV olume coordinate system. Using these quantities and the G4V Solid methods,
you can for example easily check how far you are from the root G4L ogicalVVolume boundary.

HAbool 1sApplicable(const AParticl eDefinition&):
In your implementation, you must return "true” when your model is applicable to the G4ParticleDefinition
passed to thismethod. The G4ParticleDefinition providesall intrinsic particleinformation (mass, charge, spin,
name...).

If you want to implement a model which isvalid only for certain particle types, it is recommended for effi-
ciency that you use the static pointer of the corresponding particle classes.

Asan example, in amodel valid for gammas only, the I1sA pplicable() method should take the form:

#i ncl ude " GAGamma. hh"

Gdbool MyGanmmaModel : : 1 sAppl i cabl e(const AParticl eDefinition& part Def)

{
return &partDef == GAGanma:: GarmaDefini ti on();

}

Abool Model Trigger(const GAFast Track&):
You must return "true" when the dynamic conditions to trigger your parameterisation are fulfilled. The
G4FastTrack provides access to the current G4Track, gives simple access to envelope related features
(G4LogicalVolume, G4V Salid, and G4AffineTransform references between the global and the envelopelocal
coordinates systems) and simple access to the position and momentum expressed in the envelope coordinate
system. Using these quantities and the G4V Solid methods, you can for example easily check how far you are
from the envel ope boundary.

void Dolt(const (AFastTrack&, GAFastStepé&):
Thedetails of your parameterisation will beimplemented in thismethod. The G4FastTrack reference provides
the input information, and the final state of the particles after parameterisation must be returned through the
GAFastStep reference. Tracking for the final state particlesis requested after your parameterisation has been
invoked.

5.2.6.4. The (AFast Si nul ati onManager Class:
G4FastSimulationManager functionnalities regarding the use of ghost volumes are explained in Section 5.2.6.7.

Constructor:

(AFast Si mul at i onManager (G4Regi on *anEnvel ope, (Abool 1sUni que=fal se):
This is the only constructor. You specify the G4Region by providing its pointer. The
G4FastSimulationManager object will bind itself to this G4Region. If you know that this G4Region has a
single root G4L ogicalVolume, placed only once, you can set the IsUnique boolean to "true" to allow some
optimization.

187

Tracking and Physics

Note that if you choose to use the G4V FastSimulationModel (const G4String&, G4Region*, G4bool) con-
structor for your model, the G4FastSimulationManager will be constructed using the given G4Region* and
G4bool values of the model constructor.

G4VFastSimulationModel object management:
The following two methods provide the usual management functions.

* voi d AddFast Si mul ati onMbdel (G4VFast Si mul at i onhbdel *)
* RenoveFast Si mul at i onMbdel (AVFast Si nul ati onMbdel *)

Interface with the G4FastSimulationManagerProcess:

Thisis described in the User's Guide for Toolkit Developers (section 3.9.6)

5.2.6.5. The KAFast Si nul ati onManager Pr ocess Class

This G4V Process serves as an interface between the tracking and the parameterisation. At tracking time, it col-
laborates with the G4FastSimulationManager of the current volume, if any, to alow the models to trigger. If no
manager exists or if no model issues atrigger, the tracking goes on normally.

In the present implementation, you must set this process in the G4ProcessManager of the particles you parame-
terise to enable your parameterisation.

The processes ordering is:

[n-3] ...

[n-2] Multiple Scattering

[n-1] CGAFast Si nul ati onManager Process
[n] ATransportation

This ordering isimportant if you use ghost geometries, since the G4FastSimulationM anagerProcess will provide
navigation in the ghost world to limit the step on ghost boundaries.

The G4FastSimulationM anager must be added to the process list of aparticle as a continuous and discrete process
if you use ghost geometries for this particle. Y ou can add it as a discrete process if you don't use ghosts.

The following code registers the G4FastSimul ationM anagerProcess with all the particles as a discrete and contin-
LOUS Process:

voi d MyPhysi csLi st:: addPar anet eri sati on()

GAFast Si mul ati onManager Pr ocess*

t heFast Si mul at i onManager Process = new (4Fast Si nmul at i onManager Process() ;
theParticlelterator->reset();
while((*theParticlelterator)())

G4ParticleDefinition* particle = theParticlelterator->val ue();

GAProcessManager * pmanager = particl e->Get ProcessManager () ;
prmanager - >AddPr ocess(t heFast Si nul ati onManager Process, -1, 0, 0);

}
}

5.2.6.6. The Ad obal Fast Si mul ati onManager Singleton Class

This classisasingleton which can be accessed as follows:

#i ncl ude "4d obal Fast Si nul ati onManager . hh"

GAd obal Fast Si nul ati onManager * gl obal FSM
gl obal FSM = GAd obal Fast Si mul ati onManager : : get @ obal Fast Si nul at i onManager () ;

188

Tracking and Physics

Presently, you will mainly need to use the Global FastSimulationManager if you use ghost geometries.

5.2.6.7. Parameterisation Using Ghost Geometries

In some cases, volumes of the tracking geometry do not allow envelopes to be defined. This may be the case
with a geometry coming from a CAD system. Since such a geometry is flat, a parallel geometry must be used
to define the envel opes.

Another interesting case involves defining an envel ope which groups the el ectromagnetic and hadronic calorime-
ters of adetector into one volume. This may be useful when parameterizing the interaction of charged pions. You
will very likely not want electrons to see this envel ope, which means that ghost geometries have to be organized
by particle flavours.

Using ghost geometriesimplies some more overhead in the parameterisation mechanism for the particles sensitive
to ghosts, since navigation is provided in the ghost geometry by the G4FastSimulationM anagerProcess. Usually,
however, only a few volumes will be placed in this ghost world, so that the geometry computations will remain
rather cheap.

In the existing implementation (temporary implementation with G4Region but before parallel geometry
implementation), you may only consider ghost G4Regions with just one root G4LogicaVolume. The
GA4Global FastSimulationManager provides the construction of the ghost geometry by making first an empty
"clone" of the world for tracking provided by the construct() method of your G4V UserDetectorConstruction con-
crete class. You provide the placement of the G4Region root G4L ogicalVVolume relative to the ghost world coor-
dinates in the G4FastSimulationManager objects. A ghost G4Region is recognized by the fact that its associated
G4FastSimulationManager retains a non-empty list of placements.

The G4Gl obal FastSimul ationM anager will then use both those placements and the I sApplicable() methods of the
models attached to the G4FastSimulationManager objects to build the flavour-dependant ghost geometries.

Then at the beginning of the tracking of a particle, the appropriate ghost world, if any, will be selected.
The steps required to build one ghost G4Region are:

1. built the ghost G4Region : myGhostRegion;

2. build the root G4L ogical Volume: myGhostLogical, set it to myGhostRegion;

3. build a G4FastSimulationManager object, myGhostFSManager, giving myGhostRegion as argument of the
constructor;

4. give to the G4FastSimulationManager the placement of the myGhostLogical, by invoking for the
G4FastSimulationM anager method:

AddGhost Pl acenent (G4Rot at i onMat ri x*, const GAThreeVector &) ;
or:
AddGhost Pl acenent (G4Tr ansf or nBD*) ;

where the rotation matrix and translation vector of the 3-D transformation describe the placement relative to
the ghost world coordinates.

5. build your G4V FastSimulationModel objects and add them to the myGhostFSManager. The IsApplicable()
methods of your models will be used by the G4Global FastS mulationManager to build the ghost geometries
corresponding to a given particle type.

6. Invoke the G4Global FastSimulationM anager method:

GAd obal Fast Si nul at i onManager : : get @ obal Fast Si nul ati onManager () - >

Cl oseFast Si mul ati on();

189

Tracking and Physics

This last call will cause the G4Global FastSimulationManager to build the flavour-dependent ghost geometries.
This call must be done before the RunManager closes the geometry. (It is foreseen that the run manager in the
future will invoke the CloseFastSimulation() to synchronize properly with the closing of the geometry).

Visualization facilities are provided for ghosts geometries. After the CloseFastSimulation() invocation, it is pos-
sible to ask for the drawing of ghostsin an interactive session. The basic commands are;

* /vig/draw/Ghosts particle_name

which makesthe drawing of the ghost geometry associated with the particle specified by name in the command
line.
* /vis/draw/Ghosts

which draws all the ghost geometries.

5.2.6.8. Gflash Parameterization

This section describes how to use the Gflash library. Gflash is a concrete parameterization which is based on
the equations and parameters of the original Gflash package from H1(hep-ex/0001020, Grindhammer & Peters,
see physics manual) and uses the "fast simulation” facilities of GEANT4 described above. Briefly, whenever a
e-/e+ particle enters the calorimeter, it is parameterized if it has a minimum energy and the shower is expected
to be contained in the calorimeter (or " parameterization envelope”). If this is fulfilled the particle is killed, as
well as all secondaries, and the energy is deposited according to the Gflash equations. An example, provided in
examples/extended/par ametrisation/gflash/, shows how to interface Gflash to your application. The simulation
time is measured, so the user can immediately see the speed increase resulting from the use of Gflash.

5.2.6.9. Using the Gflash Parameterisation

To use Gflash "out of the box" the following steps are necessary:

» Theuser must add the fast simulation process to his process manager:

voi d MyPhysi csLi st:: addPar anet eri sati on()

{

GAFast Si mul at i onManager Pr ocess*

t heFast Si mul at i onManager Process = new (AFast Si mul at i onManager Process() ;
theParticlelterator->reset();
while((*theParticlelterator)())

{

GAParticleDefinition* particle = theParticlelterator->val ue();
GAProcessManager * pnmanager = particl e->Get ProcessManager () ;
pmanager - >AddPr ocess(t heFast Si nul at i onManager Process, -1, 0, 0);

}
}

» The envelope in which the parameterization should be performed must be specified (below: G4Region
m_calo_region) and the GFashShowerModel must be assigned to this region. Furthermore, the class-
es GFlashParticleBounds (which provides thresholds for the parameterization like minimal energy etc.),
GflashHitMaker(a helper class to generate hits in the sensitive detector) and GFlashHomoShowerParamteri-
sation (which does the computations) must be constructed (by the user at the moment) and assigned to the
GFlashShowerModel. Please note that at the moment only homogeneous cal orimeters are supported.

m_t heFast Shower Model
m t heParanetri sation

new GFl ashShower Mbdel (" f ast Shower Mbdel ", m cal o_r egi on) ;

new GFl ashHonoShower Par ant eri sat i on(mat Manager - >get Materi al (mat));
m t heParti cl eBounds new GFl ashParti cl eBounds();

m_t heHvaker new GFl ashHi t Maker () ;

m_ t heFast Shower Mbdel - >Set Par anetri sati on(*m t heParanetri sati on);

m t heFast Shower Model - >Set Par ti cl eBounds(*m t heParti cl eBounds) ;

m_t heFast Shower Mbdel - >Set Hi t Maker (*m_t heHVaker) ;

The user must also set the materia of the calorimeter, since the computation depends on the material.

190

Tracking and Physics

* Itismandatory to use G4V GFlashSensitiveDetector as (additional) base class for the sensitive detector.

class ExGl ashSensitiveDetector: public 4VSensitiveDetector ,public GAVGFl ashSensitiveDetector

Here it is necessary to implement a separate interface, where the GFlash spots are processed.
(ProcessHi t s(GAGHl ashSpot *aSpot , GATouchabl eHi st ory* ROhi st))

A separateinterfaceisused, because the Gflash spots naturally contain lessinformation than the full simulation.

Since the parameters in the Gflash package are taken from fits to full simulations with Geant3, some retuning
might be necessary for good agreement with Geant4 showers. For experiment-specific geometries some retuning
might be necessary anyway. The tuning is quite complicated since there are many parameters (some correl ated)
and cannot be described here (see again hep-ex/0001020). For brave users the Gflash framework already forsees
the possibility of passing a class with the (users) parameters,GV FlashHomoShower Tuning, to the GFlashHo-
moShowerParamterisation constructor. The default parameters are the original Gflash parameters:

GFl ashHonoShower Par anet eri sati on(AMaterial * aMat, GVFI ashHomoShower Tuni ng * aPar = 0);
Now there is also apreliminary implemenation of a parameterization for sasmpling calorimeters.
The user must specify the active and passive material, as well as the thickness of the active and passive layer.

The sampling structure of the calorimeter is taken into account by using an "effective medium" to compute the
shower shape.

All material properties needed are calculated automatically. If tuning is required, the user can pass his own para-
meter set in the class GFlashSamplingShower Tuning. Here the user can also set his calorimeter resolution.

All in all the constructor 1ooks the following:

GFl ashSanpl i ngShower Par ant eri sati on(G4Material * Matl, GAMaterial * Mat2, GAdoubl e d1, GAdoubl e d2,
GVFl ashSanpl i ngShower Tuni ng * aPar = 0);

An implementation of some tools that should help the user to tune the parameterization is forseen.

5.2.7. Transportation Process

To be delivered by J. Apostolakis (<John. Apost ol aki s@er n. ch>).
5.3. Particles

5.3.1. Basic concepts

There are three levels of classes to describe particles in Geant4.

G4ParticleDefinition
defines aparticle

G4DynamicParticle
describes a particle interacting with materials

G4Track
describes a particle traveling in space and time

G4ParticleDefinition aggregates information to characterize a particle's properties, such as name, mass, spin, life
time, and decay modes. G4DynamicParticle aggregates information to describe the dynamics of particles, such as

191

Tracking and Physics

energy, momentum, polarization, and proper time, aswell as " particle definition" information. GATrack includes
all information necessary for tracking in adetector simulation, such astime, position, and step, aswell as™ dynamic
particle" information.

GA4Track has all the information necessary for tracking in Geant4. It includes position, time, and step, as well as
kinematics. Details of G4Track will be described in Section 5.1.

5.3.2. Definition of a particle

There are alarge number of elementary particles and nuclei. Geant4 provides the G4ParticleDefinition class to
represent particles, and various particles, such as the electron, proton, and gamma have their own classes derived
from G4ParticleDefinition.

We do not need to make a classin Geant4 for every kind of particle in the world. There are more than 100 types
of particles defined in Geant4 by default. Which particles should be included, and how to implement them, is
determined according to the following criteria. (Of course, the user can define any particles he wants. Please see
the User's Guide: For ToolKit Developers).

5.3.2.1. Particle List in Geant4

Thislist includes al particlesin Geant4 and you can see properties of particles such as

» PDG encoding

» mass and width

* électric charge

* spin, isospin and parity

e magnetic moment

» quark contents

« lifetime and decay modes

Hereisalist of particles in Geant4. This list is generated automatically by using Geant4 functionality, so listed
values are same as those in your Geant4 application (as far as you do not change source codes).

Categories

* gluon/ quarks/ di-quarks
* leptons

* mesons

* baryons

 ions

» others

5.3.2.2. Classification of particles
1. elementary particles which should be tracked in Geant4 volumes

All particles that can fly afinite length and interact with materials in detectors are included in this category. In
addition, some particles with avery short lifetime are included for user's convenience.
a. stable particles

Stable means that the particle can not decay, or has a very small possibility to decay in detectors, e.g.,
gamma, electron, proton, and neutron.
b. long life (>10™*sec) particles

Particles which may travel afinite length, e.g., muon, charged pions.
c. short life particles that decay immediately in Geant4

For example, pi°, eta
d. K% system

192

./AllResources/TrackingAndPhysics/particleList.src/quarks/index.html
./AllResources/TrackingAndPhysics/particleList.src/leptons/index.html
./AllResources/TrackingAndPhysics/particleList.src/mesons/index.html
./AllResources/TrackingAndPhysics/particleList.src/baryons/index.html
./AllResources/TrackingAndPhysics/particleList.src/ions/index.html
./AllResources/TrackingAndPhysics/particleList.src/others/index.html

Tracking and Physics

KO "decays' immediately into K% or K°_, and then K%/ K°_ decays according to its life time and decay
modes.
e. optical photon

Gamma and optical photon are distinguished in the simulation view, though both are the same particle
(photons with different energies). For example, optical photon is used for Cerenkov light and scintillation
light.

f. geantino/charged geantino

Geantino and charged geantino are virtua particles for simulation which do not interact with materials and
undertake transportation processes only.
. nuclel

Any kinds of nucleus can be used in Geant4, such as alpha(He-4), uranium-238 and excited states of carbon-14.
In addition, Geant4 provides hyper-nuclei. Nuclei in Geant4 are divided into two groups from the viewpoint
of implementation.

a. light nuclei

Light nuclei frequently used in simulation, e.g., apha, deuteron, He3, triton.
b. heavy nuclei (including hyper-nuclei)

Nuclei other than those defined in the previous category.
c. light anti-nuclei

Light anti-nuclei for example anti-alpha.
Note that G4ParticleDefinition represents nucleus state and G4DynamicParticle represents atomic state with
some nucleus. Both apha particle with charge of +2e and helium atom with no charge aggregates the same
"particle definition" of G4Alpha, but different G4DynamicParticle objects should be assigned to them. (Details
can be found below)
. short-lived particles

Particles with very short life time decay immediately and are never tracked in the detector geometry.
These particles are usually used only inside physics processes to implement some models of interactions.
G4VshortLivedParticle is provided as the base class for these particles. All classes related to particlesin this
category can befound inshor t | i ved sub-directory under the parti cl es directory.

a. quarks/di-quarks

For example, all 6 quarks.
b. gluon
c. baryon excited states with very short life

For example, spin 3/2 baryons and anti-baryons
d. meson excited states with very short life

For example, spin 1 vector bosons

5.3.2.3. Implementation of particles

Sngle object created in the initialization : Categories a, b-1

These particles are frequently used for tracking in Geant4. Anindividua classis defined for each particle in these
categories. The object in each classisunique. The user can get pointersto these objects by using static methodsin
their own classes. The unique object for each classis created when its static method is called in the “initialization
phase”.

On-the-fly creation: Category b-2

lons will travel in a detector geometry and should be tracked, however, the number of ions which may be
used for hadronic processes is so huge that ions are dynamically created by requests from processes (and

193

Tracking and Physics

users). Each ion corresponds to one object of the G4lons class. G4lonTable class is a dictionary for ions.
HAParticl eTabl e:: Get 1 on() methodinvokesG4l onTabl e: : Get | on() method to createions on the
fly.

Users can register a G4lsotopeTable to the G4lonTable. G4l sotopeTable describes properties of ions (exited en-
ergy, decay modes, life time and magnetic moments), which are used to create ions.

Processes attached to heavy ions are same as those for G4Genericlon class. In other words, you need to create
G4Genericlon and attach processesto it if you want to use heavy ions.

G4ParticleGun can shoot any heavy ions with /gun/ions command after ““ion" is selected by /gun/particle com-
mand.

Dynamic creation by processes: Category ¢

Particle typesin this category are are not created by default, but will only be created by request from processes or
directly by users. Each shortlived particle correspondsto one object of aclassderived from G4VshortLivedParticle,
and it will be created dynamically during the “initialization phase".

5.3.2.4. GA4ParticleDefinition

The G4ParticleDefinition classhas " “read-only" propertiesto characterizeindividual particles, such asname, mass,
charge, spin, and so on. These properties are set during initialization of each particle. Methods to get these prop-
ertiesarelisted in Table 5.2.

AString GetParticl eNane() particle name

Adoubl e Get PDGAVass() mass

Adoubl e Get PDGW dt h() decay width

Adoubl e Get PDGChar ge() electric charge

Adoubl e Get PDGSpi n() spin

Adoubl e Get PDGVagnet i cMonent () magnetic moment (0: not defined or no magnetic mo-
ment)

HAint GetPDG Parity() parity (0:not defined)

4i nt Get PDG Conj ugati on() charge conjugation (0:not defined)

Adoubl e Get PDA sospi n() iso-spin

Adoubl e Get PDA sospi n3() 3rd-comp0nent of iso-spin

HAint Get PDG GPRarity() G-parity (0:not defined)

AString GetParticl eType() particle type

AString GetParticl eSubType() particle sub-type

i nt Get Lept onNunber () lepton number

4i nt Get Bar yonNunber () baryon number

4i nt Get PDGENcodi ng() particle encoding number by PDG

i nt Get Anti PDGEncodi ng() encoding for anti-particle of this particle

Table5.2. Methodsto get particle properties.

Table 5.3 shows the methods of G4ParticleDefinition for getting information about decay modes and the life time
of the particle.

Abool Get PDGSt abl e() stable flag
HAdoubl e Get PDALi f eTi ne() lifetime
ADecayTabl e* Get DecayTabl e() decay table

Table5.3. Methodsto get particle decay modesand lifetime.

194

Tracking and Physics

Users can modify these properties, though the other properties listed above can not be change without rebuilding
thelibraries.

Each particle has its own G4ProcessManger object that manages a list of processes applicable to the particle.(see
Section 2.5.2)

5.3.3. Dynamic particle

The G4DynamicParticle class has kinematics information for the particle and is used for describing the dynamics
of physics processes. The propertiesin G4DynamicParticle are listed in Table 5.4.

Adoubl e t heDynani cal Mass dynamical mass

AThr eeVect or t heMonment unDi recti on normalized momentum vector

HAParticleDefinition* theParticl eDef- |definition of particle

inition

Adoubl e t heDynani cal Spi n dynamical spin (i.e. total angular momentum as a ion/
atom)

AThreeVector thePol ari zation polarization vector

Adoubl e t heMagnet i cMonent dynamical magnetic moment (i.e. total magnetic mo-
ment as aion/atom)

Adoubl e theKi neti cEner gy kinetic energy

Adoubl e t heProper Ti me proper time

Adoubl e t heDynani cal Char ge dynamical electric charge (i.e. total electric charge asa
ion/atom)

(AEl ect ronQccupancy* t heEl ect ronQccu- |eectron orbitsfor ions

pancy

Table5.4. Methodsto set/get values.

Here, the dynamical mass is defined as the mass for the dynamic particle. For most cases, it is same as the mass
defined in G4ParticleDefinition class (i.e. mass value given by Get PDGVRss() method). However, there are
two exceptions.

* resonance particle
* jons

Resonance particles have large mass width and the total energy of decay products at the center of mass system
can be different event by event.

As for ions, Gd4ParticleDefintion defines a nucleus and G4DynamicParticle defines an atom.
G4ElectronOccupancy describes state of orbital electrons. So, the dynamic mass can be different from the PDG
mass by the mass of electrons (and their binding energy). In addition, the dynamical charge, spin and magnetic
moment are those of the atom/ion (i.e. including nucleus and orbit el ectrons).

Decay products of heavy flavor particlesare givenin many event generators. In such cases, G4VPrimaryGener ator

sets this information in *t hePr eAssi gnedDecayPr oduct s. In addition, decay time of the particle can be
set arbitrarily time by using Pr eAssi gnedDecayPr oper Ti ne.

5.4. Production Threshold versus Tracking Cut

5.4.1. General considerations

We have to fulfill two contradictory requirements. It is the responsibility of each individual process to produce
secondary particles according to its own capabilities. On the other hand, it isonly the Geant4 kernel (i.e., tracking)
which can ensure an overall coherence of the smulation.

195

Tracking and Physics

The general principlesin Geant4 are the following:

1. Each process hasitsintrinsic limit(s) to produce secondary particles.

2. All particles produced (and accepted) will be tracked up to zer o range.

3. Each particle has a suggested cut in range (which is converted to energy for all materials), and defined viaa
Set Cut () method (see Section 2.4.2).

Points 1 and 2 imply that the cut associated with the particle is a (recommended) production threshold of sec-
ondary particles.

5.4.2. Set production threshold (Set Cut methods)

As already mentioned, each kind of particle has a suggested production threshold. Some of the processes will not
use this threshold (e.g., decay), while other processes will use it as a default value for their intrinsic limits (e.g.,
ionisation and bremsstrahlung).

See Section 2.4.2 to see how to set the production threshold.

5.4.3. Apply cut

The Dol t methods of each process can produce secondary particles. Two cases can happen:

» aprocess setsitsintrinsic limit greater than or equal to the recommended production threshold. OK. Nothing
has to be done (nothing can be done!).
e aprocess setsitsintrinsic limit smaller than the production threshold (for instance 0).

Thelist of secondariesis sent to the SeppingManager via a ParticleChange object.

Before being recopied to the temporary stack for later tracking, the particles below the production threshold will
be kept or deleted according to the safe mechanism explained hereafter.

» The ParticleDefinition (or ParticleWithCuts) has a boolean data member: Appl yCut .

* Appl yCut is OFF: do nothing. All the secondaries are stacked (and then tracked later on), regardless of their
initial energy. The Geant4 kernel respects the best that the physics can do, but neglects the overall coherence
and the efficiency. Energy conservation is respected as far as the processes know how to handle correctly the
particles they produced!

» Appl yCut in ON: the TrackingManager checks the range of each secondary against the production threshold
and against the safety. The particleisstacked if range > mi n(cut, safety).

« If not, check if the process has neverthel ess set theflag ““good for tracking” and then stack it (see Section 5.4.4
below for the explanation of the GoodFor Tr acki ng flag).

« If not, recuperate its kinetic energy inthel ocal Ener gyDeposi t,and sett ki n=0.

¢ Then check in the ProcessManager if the vector of ProcessAtRest is not empty. If yes, stack the particle for
performing the " Action At Rest" later. If not, and only in this case, abandon this secondary.

With this sophisticated mechanism we have the global cut that we wanted, but with energy conservation, and we
respect boundary constraint (safety) and the wishes of the processes (via " "good for tracking").

5.4.4. Why produce secondaries below threshold?

A process may have good reasons to produce particles bel ow the recommended threshold:

» checking the range of the secondary versus geometrical quantities like safety may allow one to realize the
possibility that the produced particle, even below threshold, will reach a sensitive part of the detector;

 another example is the gamma conversion: the positron is always produced, even at zero energy, for further
annihilation.

These secondary particles are sent to the ™" Stepping Manager" with aflag GoodFor Tr acki ng to passthe filter
explained in the previous section (even when Appl yCut is ON).

196

Tracking and Physics

5.4.5. Cuts in stopping range or in energy?

The cuts in stopping range allow one to say that the energy has been released at the correct space position, lim-
iting the approximation within a given distance. On the contrary, cuts in energy imply accuracies of the energy
depositions which depend on the material.

5.4.6. Summary

In summary, we do not have tracking cuts; we only have production thresholds in range. All particles produced
and accepted are tracked up to zero range.

It must be clear that the overall coherency that we provide cannot go beyond the capability of processesto produce
particles down to the recommended threshold.

In other words a process can produce the secondaries down to the recommended threshold, and by interrogating
the geometry, or by realizing when mass-to-energy conversion can occur, recognize when particles below the
threshold have to be produced.

5.4.7. Special tracking cuts

One may need to cut given particle typesin given volumes for optimisation reasons. This decision is under user
control, and can happen for particles during tracking as well.

The user must be able to apply these special cutsonly for the desired particles and in the desired volumes, without
introducing an overhead for all the rest.

The approach is asfollows:

» gpecial user cuts are registered in the UserLimits class (or its descendant), which is associated with the logical
volume class.

The current default list is:
« max allowed step size
* max total track length
* max total time of flight
¢ minKkinetic energy

e min remaining range

The user can instantiate a UserLimits object only for the desired logical volumes and do the association.

Thefirst item (max step size) is automatically taken into account by the G4 kernel while the others items must
be managed by the user, as explained below.

Example(see basic/B2/B2a or B2b): in the Tracker region, in order to force the step size not to exceed
one half of the Tracker chamber thickness (chanber W dt h), it is enough to put the following code in
B2aDet ect or Constructi on: : Defi neVol unes():

GAdoubl e maxStep = 0. 5*chanber W dt h;
fStepLimt = new GAUserLi mts(maxStep);
trackerLV->Set UserLimts(fStepLimt);

andinPhysi csLi st , theprocess A4St epLi mi t er needsto be attached to each particle's process manager
where step limitation in the Tracker region is required:

/] Step limtation seen as a process
(AStepLimiter* stepLimiter = new GAStepLimter();
pmanager - >AddDi scr et eProcess(StepLiniter);

197

Tracking and Physics

If aprovided Geant4 physicslistisused, asFTFP_BERT in B2 example, thenthe G4St epLi m t er Bui | der,
which will take care of attaching the G4St epLi m t er process to al particles, can be added to the physics
listinthemai n() function:

GAVMbdul ar Physi csLi st* physi csLi st = new FTFP_BERT;
physi csLi st - >Regi st er Physi cs(new (A4St epLi m terBuil der());
runManager - >Set User I ni ti al i zati on(physi csList);

The G4UserLimits classisin sour ce/ gl obal / nanagenent .

Concerning the others cuts, the user must define dedicaced process(es). He registersthis process (or its descen-
dant) only for the desired particlesin their process manager. He can apply hiscutsinthe Dol t of this process,
since, via G4Track, he can access the logical volume and UserLimits.

An example of such process (called User SpecialCuts) is provided in the repository, but not inserted in any
process manager of any particle.

Example: neutr ons. One may need to abandon the tracking of neutrons after agiven time of flight (or acharged
particlein amagnetic field after agiven total track length ... etc ...).

Example(see basic/B2/B2a or B2b): in the Tracker region, in order to force the total
time of flight of the neutrons not to exceed 10 milliseconds, put the following code in
B2aDet ect or Constructi on: : Defi neVol umes():

G4doubl e maxTine = 10*ns;
fStepLimt = new GAUserLi mit s(DBL_MAX, DBL_MAX, maxTi ne) ;
trackerLV->Set UserLimts(fStepLimt);

and put the following code in a physicslist:

GAProcessManager* pmanager = G4Neutron:: Neut ron- >Get ProcessManager () ;
pmanager - >AddPr ocess(new G4User Speci al Cuts(),-1,-1,1);

If a provided Geant4 physics list is used, then a Speci al Cut sBui | der class can be defined in a similar
way as A St epLi m t er Bui | der and added to the physicslist in the mai n() function:

GAVMbdul ar Physi csLi st* physi csLi st = new FTFP_BERT;
physi csLi st - >Regi st er Physi cs(new Speci al Cut sBui l der());
runManager - >Set User I ni ti al i zati on(physi csList);

(The default G4User SpecialCuts classisin sour ce/ processes/ transport ati on.)

5.5. Cuts per Region
5.5.1. General Concepts

Beginning with Geant4 version 5.1, the concept of aregion has been defined for use in geometrical descriptions.
Details about regions and how to use them are available in Section 4.1.3.1. Asan example, suppose a user defines
three regions, corresponding to the tracking volume, the calorimeter and the bulk structure of a detector. For
performance reasons, the user may not be interested in the detailed development of electromagnetic showersin
the insensitive bulk structure, but wishes to maintain the best possible accuracy in the tracking region. In such a
use case, Geant4 allows the user to set different production thresholds ("cuts") for each geometrical region. This
ability, referred to as "cuts per region”, is also a new feature provided by the Geant4 5.1 release. The general
concepts of production thresholds were presented in the Section 5.4.

Please note that this new feature is intended only for users who

198

Tracking and Physics

1. are simulating the most complex geometries, such as an LHC detector, and
2. are experienced in simulating electromagnetic showers in matter.

We strongly recommend that results generated with this new feature be compared with results using the same
geometry and uniform production thresholds. Setting completely different cut values for individual regions may
break the coherent and comprehensive accuracy of the simulation. Therefore cut values should be carefully opti-
mized, based on a comparison with results obtained using uniform cuts.

5.5.2. Default Region

The world volume is treated as a region by default. A G4Region object is automatically assigned to the world
volume and is referred to as the "default region”. The production cuts for this region are the defaults which are
defined in the UserPhysicsList. Unlessthe user defines different cut valuesfor other regions, the cutsin the default
region will be used for the entire geometry.

Please note that the default region and its default production cuts are created and set automaticaly by
G4RunManager. The user is not allowed to set aregion to the world volume, nor to assign other production cuts
to the default region.

5.5.3. Assigning Production Cuts to a Region

In the Set Cut s() method of the user's physics list, the user must first define the default cuts. Then a
G4ProductionCuts object must be created and initialized with the cut value desired for a given region. This ob-
ject must in turn be assigned to the region object, which can be accessed by name from the G4RegionStore. An
example Set Cut s() code follows.

Example5.10. Setti ng production cuts to a region

voi d MyPhysi csLi st:: Set Cut s()

{
/] default production thresholds for the world vol une
Set Cut sWt hDef aul t () ;

/] Production thresholds for detector regions
GARegi on* regi on;

GAString regNaneg;

GAProduct i onCut s* cuts;

regNane = "tracker";

regi on = ARegi onStore: : Getl nstance() - >Get Regi on(r egNane) ;

cuts = new GAProducti onCuts;

cut s- >Set Producti onCut (0. 01*mm); // sanme cuts for gamm, e- and e+
regi on- >Set Pr oduct i onCut s(cuts);

regNane = "cal orineter";
regi on = ARegi onStore: : Getl nstance() - >Get Regi on(r egNane) ;
cuts = new GAProducti onCuts;
cut s- >Set Product i onCut (0. 01* mm GAPr oduct i onCut s: : Get | ndex (" ganma")) ;
cut s->Set Product i onCut (0. 1* mm G4Pr oducti onCut s: : Get I ndex("e-"));
cut s- >Set Product i onCut (0. 1* mm G4Pr oducti onCut s: : Get | ndex("e+"));
regi on- >Set Pr oduct i onCut s(cuts);
}

5.6. Physics Table
5.6.1. General Concepts

In Geant4, physics processes use many tables of cross sections, energy losses and other physics values. Before the
execution of an event loop, the Bui | dPhysi csTabl e() method of G4VProcessisinvoked for all processes
and as a part of initialisation procedure cross section tables are prepared. Energy loss processes calculate cross
section and/or energy loss values for each material and for each production cut value assigned to each material.
A change in production cut values therefore require these cross sections to be re-calculated. Cross sections for
hadronic processes and gamma processes do not depend on the production cut.

199

Tracking and Physics

The G4PhysicsTable class is used to handle cross section tables. G4PhysicsTable is a collection of instances of
G4PhysicsVector (and derived classes), each of which has cross section values for a particle within agiven energy
rangetraveling in amaterial. By default the linear interpolation is used, aternatively spline may be used if theflag
of splineis activated by SetSpline method of the G4PhysicsVector

5.6.2. Material-Cuts Couple

Users can assign different production cuts to different regions (see Section 5.5). This means that if the same
material isused in regions with different cut values, the processes need to prepare several different cross sections
for that material.

The G4ProductionCutsTable has G4Material CutsCouple objects, each of which consists of a material paired
with a cut value. These G4Material CutsCouples are numbered with an index which is the same as the index
of a G4PhysicsVector for the corresponding G4Material CutsCouplein the G4PhysicsTable. The list of Material-
CutsCouples used in the current geometry setup is updated before starting the event loop in each run.

5.6.3. File I/O for the Physics Table

Calculated physics tables for electromagnetic processes can be stored in files. The user may thus eliminate the
time required for the calculation of physics tables by retrieving them from the files.

Using the built-in user command "stor ePhysicsT able" (see Section 7.1), stores physics tables in files. Informa-
tion on materials and cuts defined in the current geometry setup are stored together with physics tables because
calculated values in the physics tables depend on Material CutsCouple. Note that physics tables are calculated
before the event loop, not in the initidization phase. So, at least one event must be executed before using the
"storePhysicsTable" command.

Calculated physics tables can be retrieved from files by using the "retrievePhysicsTable" command. Materials
and cuts from files are compared with those defined in the current geometry setup, and only physics vectors
corresponding to the Material CutsCouples used in the current setup are restored. Note that nothing happens just
after the "retrievePhysicsTable" command is issued. Restoration of physics tables will be executed in parallel
with the calculation of physicstables.

5.6.4. Building the Physics Table

Inthe ARunManager Kernel : : Runl niti al i zati on() method, after thelist of Material CutsCouplesis
updated, the & VUser Physi csLi st : : Bui | dPhysi csTabl e() methodisinvoked to build physicstables
for al processes.

Initialy, the (AVProcess: : Prepar ePhysi csTabl e() method is invoked. Each process creates
G4PhysicsTable objects as necessary. It then checks whether the Material CutsCouples have been modified after
arun to determine if the corresponding physics vectors can be used in the next run or need to be re-cal cul ated.

Next, the GAVProcess:: RetrievePhysicsTabl e() method is invoked if the
AVUser Physi csLi st:: fRetri evePhysi csTabl e flag is asserted. After checking materials and cuts
in files, physics vectors corresponding to the Material CutsCouples used in the current setup are restored.

Finally,the &AVPr ocess: : Bui | dPhysi csTabl e() methodisinvoked and only physicsvectorswhich need
to be re-calculated are built.

5.7. User Limits
5.7.1. General Concepts

The user can define artificial limits affecting to the Geant4 tracking.

GAUser Li m t s(Adoubl e uSt epMax = DBL_NMAX,

200

Tracking and Physics

GAdoubl e uTrakMax = DBL_NMAX,
G4doubl e uTi mreMax = DBL_NMAX,
GAdoubl e uEkinM n = 0.,
GAdoubl e uRangM n = 0.);
uSt epMax Maximum step length
uTr akMax Maximum total track length
uTi meMax Maximum global time for atrack
uEki nM n Minimum remaining kinetic energy for atrack
uRangM n Minimum remaining range for atrack

Note that uSt epMax is affecting to each step, while all other limits are affecting to a track.

The user can set GAUser Li ni t s to logical volume and/or to a region. User limits assigned to logical volume
do not propagate to daughter volumes, while User limits assigned to region propagate to daughter volumes unless
daughters belong to another region. If both logical volume and associated region have user limits, those of logical
volume win.

5.7.2. Processes co-working with G4UserLimits

In addition to instantiating G4User Li mi t s and setting it to logical volume or region, the user has to assign the
following process(es) to particle types he/she wants to affect. If none of these processesis assigned, that kind of
particleis not affected by GAUser Li mi t s.

Limitation to step (uSt epMax)
(ASt epLi mi t er process must be defined to affected particle types. This process limits a step, but it does
not kill atrack.

Limitationsto track (uTr akMax, uTi meMax, uEki nM n, uRangM n)
HAUser Speci al Cut s process must be defined to affected particle types. This process limits a step and
kills the track when the track comes to one of these limits. Step limitation occurs only for the final step.

Example of GAUser Li m t s can be found in examples/basic/B2 : see B2aDet ect or Constructi on (or
B2bDet ect or Constructi on). The GASt epLi mi t er processis added in the Geant4 physics list via the
(ASt epLi mi t er Bui | der classinthemai n() functioninexanpl eB4a. cc (or exanpl eB4b. cc).

5.8. Track Error Propagation

The error propagation package servesto propagate one particle together with its error from a given trajectory state
until a user-defined target is reached (a surface, avolume, a given track length,...).

5.8.1. Physics

The error propagator package computes the average trajectory that a particle would follow. This means that the
physics list must have the following characteristics:

* No multiple scattering

* No random fluctuations for energy loss
* No creation of secondary tracks

» No hadronic processes

It has also to be taken into account that when the propagation is done backwards (in the direction opposed to the
one the original track traveled) the energy loss has to be changed into an energy gain.

All this is done in the G4ErrorPhysicsList class, that is automaticaly set by
GAEr r or Pr opagat or Manager asthe GEANT4 physicslist. It sets GAEr r or Ener gyLoss asunique elec-

201

Tracking and Physics

tromagnetic process. This process uses the GEANT4 class GAEner gyLossFor Ext r apol at or to compute
the average energy loss for forwards or backwards propagation. To avoid getting too different energy loss calcu-
lation when the propagation is done forwards (when the energy at the beginning of the step is used) or backwards
(when the energy at the end of the step is used, always smaller than at the beginning) GAEr r or Ener gyLoss
computes once the energy loss and then replaces the original energy loss by subtracting/adding half of this value
(what is approximately the same as computing the energy loss with the energy at the middle of the step). In this
way, a better calculation of the energy loss is obtained with a minimal impact on the total CPU time.

The user may use his’her own physics list instead of GAEr r or Physi csLi st . Asit is nhot needed to define a
physics list when running this package, the user may have not realized that somewhere else in his/her application
it has been defined; therefore a warning will be sent to advert the user that he is using a physics list different to
GAEr ror Physi csLi st . If anew physicslistisused, it should also initialize the GAEr r or Messenger with
the classes that serve to limit the step:

GAError Ener gyLoss* elLossProcess = new GAError EnergylLoss;

GAError St epLengt hLi mi t Process* steplLengt hLi mi t Process = new GAError St epLengt hLi mi t Process;
GAErr or MagFi el dLi mi t Process* nagFi el dLi m t Process = new GAErr or MagFi el dLi mi t Process;

new GAError Messenger (stepLengt hLi m t Process, magFi el dLi mi t Process, elLossProcess);

To ease the use of this package in the reconstruction code, the physics list, whether GAEr r or Physi csLi st
or the user's one, will be automatically initialized before starting the track propagation if it has not been done
by the user.

5.8.2. Trajectory state

The user has to provide the particle trajectory state at the initial point. To do thisit hasto create an object of one
of the children classes of GAEr r or Tr aj St at e, providing:

 Particletype
» Position
* Momentum

» Trajectory error matrix

GAErrorTraj State(const GAString& part Type,
const GAPoi nt 3D& pos,
const (4Vect or 3D& nobm
const GAErrorTrajErr& errmat = GAErrorTraj Err(5,0));

A particle trajectory is characterized by five independent variables as a function of one parameter (e.g. the path
length). Among the five variables, one is related to the curvature (to the absolute value of the momentum), two
are related to the direction of the particle and the other two are related to the spatial location.

There are two possible representations of these five parameters in the error propagator package: as
a free trajectory state, class GAError Traj St at eFree, or as a traectory state on a surface, class
AErrorTraj St at eonSur f ace.

5.8.2.1. Free trajectory state

In the free trgjectory state representation the five trajectory parameters are
» G4double fInvP

» G4double fLambda

» G4double fPhi

* G4doublefY Perp

e G4doublefZPerp

202

Tracking and Physics

where f | nvP isthe inverse of the momentum. f Lanbda and f Phi are the dip and azimuthal angles related to
the momentum components in the following way:
p_x = p cos(lanmbda) cos(phi) p_y = p cos(lanbda) sin(phi) p_z = p sin(lanbda)

thatis, | anbda = 90 - t het a, wheret het a isthe usual angle with respect to the Z axis.

f Yper p and f Zper p are the coordinates of the trajectory in alocal orthonormal reference frame with the X axis
along the particle direction, the Y axis being parallel to the X-Y plane (obtained by the vectorial product of the
global Z axis and the momentum).

5.8.2.2. Trajectory state on a surface

In the trajectory state on a surface representation the five trgjectory parameters are
* Gd4double finvP

» Gd4double fPV

» Gd4double fPW

* G4doublefV

» Gd4double fwW

wheref | nvP isthe inverse of the momentum; f PV and f PWare the momentum components in an orthonormal
coordinate system with axis U, V and W; f V and f Ware the position components on this coordinate system.

For this representation the user has to provide the plane where the parameters are calculated. This can be done by
providing two vectors, V and W, contained in the plane:

GAError SurfaceTraj State(const AString& partType,
const GAPoi nt 3D& pos,
const GAVect or 3D& nom
const (4Vect or 3D& vecV,
const GAVect or 3D& vecW
const GAErrorTrajErr& errmat = GAErrorTraj Err(5,0));

or by providing a plane

GAError SurfaceTraj State(const GAString& partType,
const GAPoi nt 3D& pos,
const G4Vect or 3D& npm
const GAPlI ane3D& pl ane,
const GAErrorTrajErr& errmat = GAErrorTraj Err(5,0));

In this second case the vector V is calculated as the vector in the plane perpendicular to the global vector X (if the
plane normal is equal to X, Z is used instead) and W is calculated as the vector in the plane perpendicular to V.

5.8.3. Trajectory state error

The 5X5 error matrix should also be provided at the creation of the trajectory state as a GAError Traj Err
object. If it is not provided a default object will be created filled with null values.

Currently the G4Error Traj Err isa GAErr or Synivat ri x, asimplified version of CLHEP HepSyniva-
trix.

The error matrix is given in units of GeV and cm. Therefore you should do the conversion if your code is using
other units.

5.8.4. Targets

The user has to define up to where the propagation must be done: the target. The target can be a surface
AError SurfaceTar get, which is not part of the GEANT4 geometry. It can aso be the surface of a

203

Tracking and Physics

GEANT4 volume AEr r or GeonVol uneTar get , so that the particle will be stopped when it enters this
volume. Or it can be that the particle is stopped when a certain track length is reached, by implementing a
AError TrackLengt hTar get .

5.8.4.1. Surface target

When the user chooses a AEr r or Sur f aceTar get as target, the track is propagated until the surface is
reached. This surface is not part of GEANT4 geometry, but usually traverses many GEANT4 volumes. The class
GAError Navi gat or takes care of the double navigation: for each step the step length is calculated as the min-
imum of the step length in the full geometry (up to a GEANT4 volume surface) and the distance to the user-de-
fined surface. Todoit, GAEr r or Navi gat or inheritsfrom &4Navi gat or and overwrites the methods Com

put eSt ep() and Conput eSaf et y() . Two types of surface are currently supported (more types could be
easily implemented at user request): plane and cylindrical.

5.8.4.1.1. Plane surface target
GAEr r or Pl aneSur f aceTar get implements an infinite plane surface. The surface can be given as the four
coefficients of the plane equation ax+by+cz+d = O:

GAError Pl aneSur f aceTar get (4doubl e a=0,
G4doubl e b=0,
GAdoubl e ¢=0,
GAdoubl e d=0);

or as the normal to the plane and a point contained in it:

GAEr r or Pl aneSur f aceTar get (const G4Nor mal 3D &n,
const (4Poi nt 3D &p) ;

or as three points contained in it:

GAError Pl aneSur f aceTar get (const G4Poi nt 3D &p1l,
const (4Poi nt 3D &p2,
const G4Poi nt 3D &p3) ;

5.8.4.1.2. Cylindrical surface target
AError Cyl Sur f aceTar get implementsan infinite-length cylindrical surface (acylinder without end-caps).
The surface can be given as the radius, the trandation and the rotation

GAError Cyl SurfaceTarget (const GAdoubl e& radi us,
const (AThreeVector & trans=G4AThr eeVect or (),
const GARotati onMatri x& rot nFG4Rot ati onMatri x());

or asthe radius and the affine transformation

GAError Cyl SurfaceTarget (const GAdoubl e& radi us,
const AAffineTransfornm& trans);

5.8.4.2. Geometry volume target

When the user choosesaGAEr r or GeonVol uneTar get astarget, thetrack is propagated until the surface of a
GEANT4 volumeisreached. User can choose if the track will be stopped only when the track enters the volume,
only when the track exits the volume or in both cases.

The object has to be instantiated giving the name of alogical volume existing in the geometry:

GAErr or GeonVol uneTar get (const (AString& nane);

5.8.4.3. Track Length target

When the user chooses a GAEr r or Tr ackLengt hTar get as target, the track is propagated until the given
track length is reached.

204

Tracking and Physics

The object has to be instantiated giving the value of the track length:

GAError Tr ackLengt hTar get (const (Adoubl e maxTrkLength);

It isimplemented as a AVDi scr et ePr ocess and it limits the step in Post St epGet Physi cal | nt er -
act i onLengt h. To easeits use, the processis registered to all particles in the constructor.

5.8.5. Managing the track propagation

The user needs to propagate just one track, so there is no need of run and events. neither of
GAVPri mar yCGener at or Acti on. AEr r or Pr opagat or createsatrack from theinformation given in the
HAError Traj St at e and manages the step propagation. The propagation is done by the standard GEANT4
methods, invoking G4St eppi ngManager : : St eppi ng() to propagate each step.

After one step is propagated, AEr r or Pr opagat or takes cares of propagating the track errors for this step,
what isdoneby GAEr r or Tr aj St at eFr ee: : Propagat eEr r or () . The equations of error propagation are
only implemented in therepresentation of AEr r or Tr aj St at eFr ee. Thereforeif the user hasprovided instead
aGAError Traj St at eOnSur f ace object, it will be transformed into a GA4Er r or Tr aj St at eFr ee at the
beginning of tracking, and at the end it is converted back into GAEr r or Tr aj St at eOnSur f ace on the target
surface (on the normal plane to the surface at the final point).

The user AVUser Tracki ngActi on: : PreUser Tr acki ngAction(const GATrack*) and
AVUser Tracki ngActi on: : PreUser Tr acki ngActi on(const GA4Track*) areasoinvoked at
the beginning and at the end of the track propagation.

GAEr r or Propagat or stopsthe tracking when one of the three conditionsistrue:

 Energy isexhausted

» World boundary is reached

» User-defined target is reached

In case the defined target is not reached, GAEr r or Pr opagat or : : Propagat e() returns a negative value.

The propagation of a trajectory state until a user defined target can be done by invoking the method of
GAEr r or Propagat or Manager

G4int Propagate(AErrorTraj State* currentTS, const GAErrorTarget* target,
GAErr or Mode node = GAErr or Mode_PropForwards);

Y ou can get the pointer to the only instance of GAEr r or Pr opagat or Manager with

GAEr r or Propagat or Manager * gd4engr = GAError Propagat or Manager : : Get Err or Pr opagat or Manager () ;

Another possibility is to invoke the propagation step by step, returning control to the user after each step. This
can be done with the method

G4i nt Propagat eOneStep(G4ErrorTraj State* currentTS,
GAError Mode node = GAErr or Mode_PropForwards);

In this case you should register the target first with the command

GAEr r or Propagat or Dat a: : Get GAEr r or Propagat or Dat a() - >Set Target (t heG4eTarget);

5.8.5.1. Error propagation

Asinthe GEANT3-based GEANE package, the error propagation is based on the equati ons of the European Muon
Collaboration, that take into account:

205

Tracking and Physics

« Error from curved trajectory in magnetic field
* Error from multiple scattering
 Error from ionization

The formulas assume propagation along an helix. This means that it is necessary to make steps small enough to
assure magnetic field constantness and not too big energy loss.

5.8.6. Limiting the step

There are three ways to limit the step. The first one is by using a fixed length value. This can be set by invoking
the user command :

G4U manager : : Get Ul poi nt er () - >Appl yCommand("/ geant 4e/limts/stepLength MY_VALUE MY_UNIT");

The second one is by setting the maximum percentage of energy loss in the step (or energy gain is propagation is
backwards). This can be set by invoking the user command :

AUl nanager : : Get Ul poi nt er () - >Appl yCommand("/ geant 4e/ | i m ts/ energyLoss MY_VALUE");

Thelast oneis by setting the maximum difference between the value of the magnetic field at the beginning and at
the end of the step. Indeed what is limited is the curvature, or exactly the value of the magnetic field divided by
the value of the momentum transversal to the field. This can be set by invoking the user command :

AUl nanager : : Get Ul poi nt er () - >Appl yConmand("/ geant 4e/lim ts/ magFi el d MY_VALUE");

The classes that limit the step are implemented as GEANT4 processes. Therefore, the invocation
of the above-mentioned commands should only be done after the initialization (for example after
GAEr r or Propagat or Manager: : I ni t Geant 4e() .

206

Chapter 6. User Actions

6.1. Mandatory User Actions and Initializations

Geant4 has three virtual classes whose methods the user must override in order to implement a simulation. They
require the user to define the detector, specify the physics to be used, and describe how initial particles are to
be generated.

AVUser Det ect or Constructi on

Example 6.1. GAVUser Det ect or Constructi on

cl ass GAVUser Det ect or Constructi on

public:
GAVUser Det ect or Const ructi on();
virtual ~GAVUser Det ect or Construction();

public:
virtual G4VPhysi cal Vol ume* Construct() = O;

fit
AVUser Physi cslLi st

Thisisan abstract classfor constructing particles and processes. There are several methodsto define PhysicsList.

6.1.1. Building Physics List from Scratch

The user must derive a concrete class from (4VUser Physi csLi st and implement three virtual methods:

» ConstructParticl e() toinstantiate each requested particle type;

» Construct Physi cs() toinstantiate the desired physics processes and register each of them;

» Set Cut s((4doubl e aVal ue) tosetacutvalueinrangefor al particlesin the particletable, whichinvokes
the rebuilding of the physicstable.

At early stage of the initialisation of Geant4 the method Const ruct Parti cl e() of G4VUserPhysicsList is
invoked. The Construct Process() method must always invoke the AddTr ansport ati on() method
in order to insure particle transportation. AddTr ansport ati on() must never be overridden. This is done
automatically if G4VUserPhysicsList inherits of G4VModular PhysicsList. It isrecommended for users asthe most
robust interface to Physics List. Geant4 examples demonstrate different methods how to create user Physics List.

6.1.2. Reference Physics Lists

Number of ready to use Physics Lists are available with Geant4 kernel. Below an example of instantiation of
FTFP_BERT Physics List classis shown. The full set of reference Physics Lists is described in Geant4 web.

Example 6.2. Creating FTFP_BERT PhysicsList.

4int verbose = 1;
FTFP_BERT* physlist = new FTFP_BERT(ver bose);
runManager - >Set User I ni ti al i zati on(physlist);

6.1.3. Building Physics List Using Factory

Geant4 provides a class G4PhysListFactory allowing to defined Physics List by its name. The last for characters
in the name defines an electromagnetic (EM) physics options. By default standard EM physicsisused, " EMV"
corresponding to standard optionl, " EMX" - to standard option2, "_LIV" to EM Livermore physics, " PEN" -
to EM Penelope physics.

207

User Actions

Example 6.3. Creating PhysicsList by name.

4int verbose = 1;

GAPhysLi st Factory factory;

GAVModul ar Physi csLi st* physlist = factory. Get Ref erencePhysLi st (" FTFP_BERT_EW") ;
physli st. Set Ver boseLevel (ver bose) ;

runManager - >Set User I ni ti al i zati on(physlist);

The class G4PhysListFactory provides a so another interface allowing to defined Physics List by the environment
variable PHYSLIST.

Example 6.4. Creating PhysicsList by name.

G4int verbose = 1;

GAPhysLi st Factory factory;

G4AVModul ar Physi csLi st* physlist = factory. ReferencePhysList();
physli st. Set Ver boseLevel (ver bose) ;

runManager - >Set User I ni ti al i zati on(physlist);

6.1.4. Building Physics List from Physics Builders

The user Physics List class may be created from components provided by Geant4 kernel and by user application.
For that G4VModularPhysList should be implemented.

Example 6.5. Creating PhysicsList by name.

MyPhysi csLi st :: MyPhysi csLi st () : G4VModul ar Physi csLi st ()

{
G4Dat aQuesti onaire it(photon, neutron, no, no, no, neutronxs);
GAcout << "<<< CGeant4 Physics List: MyPhysicsList " <<Gendl ;
GAcout <<GEHendl ;
def aul t Cut Val ue = 0. 7*mm
Gdint ver = 1;
Set Ver boselLevel (ver);

/1 EM Physi cs
Regi st er Physi cs(new GAEnSt andar dPhysi cs(ver));

/1 Synchroton Radiation & GN Physics

Regi st er Physi cs(new GAEnExt r aPhysi cs(ver));
/| Decays

Regi st er Physi cs(new ADecayPhysi cs(ver));

/1 Hadron physics

Regi st er Physi cs(new GAHadr onEl asti cPhysi csXS(ver));
Regi st er Physi cs(new GAQSt oppi ngPhysi cs(ver));

Regi st er Physi cs(new G4l onBi nar yCascadePhysi cs(ver));
Regi st er Physi cs(new G4Hadr onl nel asti cQBBC(ver));

/1 Neutron tracking cut
Regi st er Physi cs(new GANeutronTracki ngCut (ver));

}

GAVUser Pri mar yGener at or Acti on

Example 6.6. GAVUser Pri mar yGener at or Acti on

cl ass AVUser Pri mar yCener at or Act i on
{
public:
GAVUser Pri mar yGener at or Action();
virtual ~GAVUser Pri maryGener ator Action();

public:
virtual void CeneratePrinmari es(G4iEvent* anEvent) = O;

bi

208

User Actions

6.2. Optional User Actions

Therearefivevirtual classeswhose methods the user may overridein order to gain control of the simulation at var-
ious stages. Each method of each action class has an empty default implementation, allowing the user to inherit and
implement desired classes and methods. Objects of user action classes must be registered with GARunManager .

6.2.1. Usage of User Actions

HAUser RunAct i on
This class has three virtual methods which are invoked by GARunManager for each run:

Gener at eRun()
This method isinvoked at the beginning of BeanOn. Because the user can inherit the class G4Run and create
his/her own concrete class to store some information about the run, the Gener at eRun() method is the
placeto instantiate such an object. It isalso theideal placeto set variableswhich affect the physicstable (such
as production thresholds) for a particular run, because Gener at eRun() isinvoked before the calculation
of the physicstable.

Begi nO RunActi on()
Thismethod isinvoked before entering the event loop. A typical use of this method would betoinitialize and/
or book histograms for a particular run. This method is invoked after the calculation of the physics tables.

EndOf RunActi on()
This method is invoked at the very end of the run processing. It is typically used for a ssimple analysis of
the processed run.

Example 6.7. GAUser RunAct i on

cl ass GAUser RunActi on

public:
GAUser RunActi on();
virtual ~GAUser RunAction();

public:
virtual GARun* GenerateRun();
virtual void Begi nOf RunActi on(const ARun*);
virtual void EndOf RunActi on(const GARun*);
IE

AUser Event Acti on
This class has two virtual methods which are invoked by G4Event Manager for each event:

begi nO Event Acti on()
This method is invoked before converting the primary particlesto GATr ack objects. A typical use of this
method would be to initialize and/or book histograms for a particular event.

endCf Event Acti on()
This method is invoked at the very end of event processing. It is typically used for a simple analysis of the
processed event. If the user wants to keep the currently processing event until the end of the current run, the
user can invoke f pEvent Manager - >KeepTheCur r ent Event () ; sothat it iskept in G4Run object.
This should be quite useful if you simulate quite many events and want to visualize only the most interest
ones after the long execution. Given the memory size of an event and its contents may be large, it isthe user's
responsibility not to keep unnecessary events.

Example 6.8. AUser Event Acti on

class GAUser Event Acti on

209

User Actions

public:
GAUser Event Action() {;}
virtual ~GAUser Event Action() {;}
virtual void Begi nOf Event Acti on(const GAEvent*);
virtual void EndOf Event Acti on(const GAEvent*);
prot ect ed:
G4Event Manager * f pEvent Manager ;
IE

HAUser St acki ngActi on

This class has three virtual methods, Cl assi f yNewTr ack, NewSt age and Pr epar eNewEvent which the
user may overridein order to control thevarioustrack stacking mechanisms. ExampleN04 could beagood example
to understand the usage of this class.

O assi fyNewTrack() is invoked by GAStackManager whenever a new ATrack object is
"pushed” onto a stack by GAEvent Manager. C assifyNewTrack() returns an enumerator,
(Ad assi fi cati onOf NewTr ack, whose value indicates to which stack, if any, the track will be sent. This
value should be determined by the user. G4C assi fi cat i onOf NewTr ack hasfour possible values:

» fUrgent -track isplaced in the urgent stack

» fWAIi ting - track is placed in the waiting stack, and will not be simulated until the urgent stack is empty
» f Post pone - track is postponed to the next event

* fKill -thetrack isdeleted immediately and not stored in any stack.

These assignments may be made based on the origin of the track which is obtained as follows:

G4int parent_| D = aTrack->get_parent!| D();
where

e parent | D = Oindicatesaprimary particle
e parent | D > 0 indicatesasecondary particle
» parent | D < 0 indicates postponed particle from previous event.

NewSt age() isinvoked when the urgent stack is empty and the waiting stack contains at least one 4 Tr ack
object. Here the user may kill or re-assign to different stacks all the tracks in the waiting stack by calling the
st ackManager - >Red assi f y() method which, inturn, callsthe d assi f yNewTr ack() method. If no
user action is taken, all tracks in the waiting stack are transferred to the urgent stack. The user may also decide
to abort the current event even though some tracks may remain in the waiting stack by calling st ackManag-

er - >cl ear () . Thismethod is valid and safe only if it is called from the GAUser St acki ngAct i on class.
A global method of event abortion is

G4Ul manager * Ul manager = GAUl nanager: : Get Ul poi nter();
U manager - >Appl yCommrand("/ event / abort");

Pr epar eNewEvent () isinvoked at the beginning of each event. At this point no primary particles have been
converted to tracks, so the urgent and waiting stacks are empty. However, there may be tracksin the postponed-to-
next-event stack; for each of these the Cl assi f yNewTr ack() method is called and the track is assigned to
the appropriate stack.

Example 6.9. GAUser St acki ngActi on

#i ncl ude "&4d assi fi cati onOf NewTr ack. hh"

cl ass HAUser St acki ngActi on
{
public:
G4User St acki ngAction();
virtual ~GAUser St acki ngAction();
pr ot ect ed:

210

User Actions

GASt ackManager * st ackManager ;

public
e TR R T
/1 virtual nethods to be inplenmented by user
e TR R T
/1

virtual 4d assificati onOf NewTrack
Cl assi f yNewTr ack(const GATrack*);

virtual void NewsStage();

virtual void PrepareNewEvent();

GAUser Tr acki ngActi on
Example 6.10. GAUser Tr acki ngActi on

/| GAUser Tr acki ngActi on. hh

/| Description:
/1 This class represents actions taken place by the user at each
/1 end of stepping.

LEEELEEELEEE iy
cl ass GAUser Tr acki ngActi on
LEEELEEELEEE iy

/] Constructor & Destructor
GAUser Tr acki ngAction(){};
virtual ~GAUser Tracki ngAction(){}

/1 Menmber functions
virtual void PreUserTracki ngActi on(const GATrack*){}
virtual void PostUserTracki ngActi on(const G4Track*){}

/'l Menber data
GATr acki ngManager * f pTracki ngManager ;

HAUser St eppi ngActi on
Example 6.11. GAUser St eppi ngActi on

L e T R R
/1

/| GAUser St eppi ngActi on. hh

/1

/] Description:

I This class represents actions taken place by the user at each

/1 end of stepping.

211

User Actions

/1

LILETEEELE iy
cl ass HAUser St eppi ngActi on
LILETEEELE iy

/] Constructor and destructor
GAUser St eppi ngAction(){}
virtual ~&AUser St eppi ngAction(){}

/1 Menmber functions
virtual void User Steppi ngAction(const GAStep*){}

/'l Menber data
GASt eppi ngManager * f pSt eppi ngManager ;

6.2.2. Killing Tracks in User Actions and Energy Conserva-
tion

In either of user action classes described in the previous section, the user can implement an unnatural/unphysical
action. A typical exampleisto kill atrack, which isunder the simulation, in the user stepping action. In this case
the user have to be cautious of the total energy conservation. The user stepping action itself does not take care the
energy or any physics quantity associated with the killed track. Therefore if the user want to keep the total energy
of an event in this case, the lost track energy need to be recorded by the user.

The sameistrue for user stacking or tracking actions. If the user has killed atrack in these actions the al physics
information associated with it would be lost and, for example, the total energy conservation be broken.

If the user wants the Geant4 kernel to take care the total energy conservation automatically when he/she has
killed artificially a track, the user has to use a killer process. For example if the user uses G4UserLimits and
G4UserSpecial Cuts process, energy of the killed track is added to the total energy deposit.

6.3. User Information Classes

Additional user information can be associated with various Geant4 classes. There are basically two ways for the
user to do this:

» derive concrete classes from base classes used in Geant4. These are classes for run, hit, digit, trajectory and tra-
jectory point, which are discussed in Section 6.2 for G4Run, Section 4.4 for G4V Hit, Section 4.5 for G4V Digit,
and Section 5.1.6 for G4V Trajectory and G4V TrajectoryPoint

* create concrete classes from provided abstract base classes and associate them with classes used in Geant4.
Geant4 classes which can accommodate user information classes are G4Event, G4Track, G4PrimaryV ertex,
G4PrimaryParticle and G4Region. These classes are discussed here.

6.3.1. G4VUserEventinformation

G4VUser Eventl nformationisan abstract classfrom which the user can derive his/her own concrete classfor storing
user information associated with a G4Event class object. It isthe user'sresponsibility to construct a concrete class
object and set the pointer to a proper G4Event object.

Within a concrete implementation of G4UserEventAction, the SetUserEventinformation() method of
G4EventManager may be used to set a pointer of a concrete class object to G4Event, given that the G4Event object

212

User Actions

isavailable only by "pointer to const”. Alternatively, the user may modify the GenerateEvent() method of his/her
own RunManager to instantiate a G4V UserEventlnformation object and set it to G4Event.

The concrete class object is deleted by the Geant4 kernel when the associated G4Event object is del eted.

6.3.2. G4VUserTrackIinformation

Thisis an abstract class from which the user can derive his’her own concrete class for storing user information
associated with a G4Track class object. It is the user's responsibility to construct a concrete class object and set
the pointer to the proper G4Track object.

Within a concrete implementation of G4UserTrackingAction, the SetUserTrackinformation() method of
G4TrackingManager may be used to set a pointer of a concrete class object to G4Track, given that the G4Track
object is available only by "pointer to const".

The ideal place to copy a G4V UserTrackinformation object from a mother track to its daughter tracks is
G4User TrackingAction: : PostUser TrackingAction().

Example6.12. CopyingAVUser Tr ackl nf or mat i on from mother to daughter tracks

voi d REO1Tracki ngActi on: : Post User Tr acki ngActi on(const GATrack* aTrack)

GATrackVector* secondaries = fpTracki ngManager - >G nmeSecondari es() ;
i f(secondari es)

{
REO1Tr ackl nformati on* info = (REO1Trackl nformation*) (aTrack->Get User | nf ormation());

size_t nSeco = secondaries->size();
i f (nSeco>0)

for(size_t i=0; i < nSeco; i++)

REO1Tr ackl nf or mati on* i nfoNew = new REO1Tr ackl nf or mati on(i nf o) ;
(*secondaries)[i]->SetUserl nformation(infoNew);
}
}
}
}

The concrete class object is deleted by the Geant4 kernel when the associated G4Track object is deleted. In case
the user wants to keep the information, it should be copied to atrajectory corresponding to the track.

6.3.3. G4VUserPrimaryVertexinformation and
G4VUserPrimaryTrackinformation

These abstract classes allow the user to attach information regarding the generated primary vertex and pri-
mary particle. Concrete class objects derived from these classes should be attached to G4PrimaryVertex and
G4PrimaryParticle class objects, respectively.

The concrete class objects are deleted by the Geant4 Kernel when the associated G4PrimaryVertex or
G4PrimaryParticle class objects are del eted along with the deletion of G4Event.

6.3.4. G4VUserRegioninformation

This abstract base class alows the user to attach information associated with a region. For example, it would be
quite beneficial to add some methods returning a boolean flag to indicate the characteristics of the region (e.g.
tracker, calorimeter, etc.). With this example, the user can easily and quickly identify the detector component.

Example 6.13. A sampleregion information class

cl ass REO1Regi onl nformati on : public GAVUser Regi onl nf or mati on

{
public:

213

User Actions

REO1Regi onl nf ormati on() ;
~REO1Regi onl nf ormati on();
void Print() const;

private:
G4bool i sWorl d;
G4bool i sTracker;
G4bool isCalorineter;

public:
inline void SetWrl d(&bool v=true) {isWrld = v;}
inline void SetTracker (G4bool v=true) {isTracker = v;}
inline void SetCal orimeter(&bool v=true) {isCalorineter = v;}
inline GAbool |sWrld() const {return isWrld;}
inline Abool |sTracker() const {return isTracker;}
inline Abool I|sCalorineter() const {return isCalorineter;}

}s

The following code is an example of a stepping action. Here, atrack is suspended when it enters the "cal orimeter
region" from the "tracker region".

Example 6.14. Sample use of aregion information class

voi d REO1St eppi ngActi on: : User St eppi ngActi on(const GAStep * theStep)
{

/] Suspend a track if it is entering into the calorineter

/1 check if it is alive
GATrack * theTrack = theStep->Cet Track();
i f(theTrack->Get TrackStatus()!=fAlive) { return; }

/] get region information
GASt epPoi nt * thePrePoint = theSt ep->Get PreSt epPoint ();
G4Logi cal Vol une * thePrelLV = t hePrePoi nt - >Get Physi cal Vol une() - >Get Logi cal Vol une() ;
REO1Regi onl nf or mati on* t hePreRl nfo
= (REO1Regi onl nf or mati on*) (t hePr eLV- >Get Regi on() - >Get User | nf or mati on());
GASt epPoi nt * thePost Poi nt = t heSt ep- >Get Post St epPoi nt () ;
G4Logi cal Vol une * t hePost LV = t hePost Poi nt - >Get Physi cal Vol une() - >Get Logi cal Vol une();
REO1Regi onl nf or mati on* t hePost Rl nf o
= (REO1Regi onl nf or mati on*) (t hePost LV- >Get Regi on() - >Get User I nf or mati on());

/Il check if it is entering to the calorineter vol une
if(!(thePreRInfo->IsCalorinmeter()) && (thePostRI nfo->IsCalorineter()))
{ theTrack->Set TrackSt at us(f Suspend); }

214

Chapter 7. Communication and Control

7.1. Built-in Commands

Geant4 has various built-in user interface commands, each of which corresponds roughly to a Geant4 category.
These commands can be used

* interactively viaa (Graphical) User Interface - (G)UI,
* inamacro file via/control/execute <command>,
 within C++ code with the ApplyCommand method of G4UImanager.

Note

The availability of individual commands, the ranges of parameters, the available candidates on individ-
ual command parameters vary according to the implementation of your application and may even vary
dynamically during the execution of your job.

The following is a short summary of available commands. Y ou can also see the al available commands by exe-
cuteing 'help' in your Ul session.

e List of built-in commands

7.2. User Interface - Defining New Commands

7.2.1. G4UImessenger

G4UlImessenger is a base class which represents a messenger that delivers command(s) to the destination class
object. Y our concrete messenger should have the following functionalities.

 Construct your command(s) in the constructor of your messenger.
 Destruct your command(s) in the destructor of your messenger.

These requirements mean that your messenger should keep all pointersto your command objects as its data mem-
bers.

Y ou can use G4Ulcommand derived classes for the most frequent types of command. These derived classes have
their own conversion methods according to their types, and they make implementation of the Set Newval ue()
and Get Cur r ent Val ue() methods of your messenger much easier and simpler.

For complicated commands which take various parameters, you can use the G4Ulcommand base class, and con-
struct G4Ulparameter objects by yourself. Y ou don't need to delete GAUlparameter object(s).

In the Set Newval ue() and Get Current Val ue() methods of your messenger, you can compare the
G4Ulcommand pointer given in the argument of these methods with the pointer of your command, because your
messenger keeps the pointers to the commands. Thus, you don't need to compare by command name. Please re-
member, in the cases where you use G4Ulcommand derived classes, you should store the pointers with the types
of these derived classes so that you can use methods defined in the derived classes according to their types without
casting.

G4Ulmanager/G4Ulcommand/G4Ulparameter have very powerful type and range checking routines. You are
strongly recommended to set the range of your parameters. For the case of anumerical value (i nt or doubl e),
the range can be given by a G43tring using C++ notation, e.g.," X > 0 & & X < 10". For the case of astring
type parameter, you can set a candidate list. Please refer to the detailed descriptions below.

Get Cur rent Val ue() will beinvoked after the user's application of the corresponding command, and before
the Set NewVal ue() invocation. ThisGet Cur r ent Val ue() method will be invoked only if

* at least one parameter of the command has arange

215

./AllResources/Control/UIcommands/_.html

Communication and Control

* at least one parameter of the command has a candidate list
 at least the value of one parameter is omitted and this parameter is defined as omittable and cur r ent Val -
ueAsDef aul t

For the first two cases, you can re-set the range or the candidate list if you need to do so, but these “"re-set"
parameters are needed only for the case where the range or the candidate list varies dynamically.

A command can be “state sensitive”, i.e., the command can be accepted only for a certain G4ApplicationSate(s).
For example, the / r un/ beamOn command should not be accepted when Geant4 is processing another event
(" G4state_EventProc" state). You can set the states available for the command with the Avai | abl eFor S-
t at es() method.

7.2.2. G4Ulcommand and its derived classes

Methods available for all derived classes
These are methods defined in the G4Ulcommand base class which should be used from the derived classes.
» voi d Set Gui dance(char*)

Define a guidance line. You can invoke this method as many times as you need to give enough amount of
guidance. Please note that the first line will be used as atitle head of the command guidance.
» void avail abl eFor St at es(4ApplicationState s1,...)

If your command is valid only for certain states of the Geant4 kernel, specify these states by this
method. Currently available states are GAState _Prelnit, GAState Init, AState I|dle,
(ASt at e_GeonCl osed, andGASt at e_Event Pr oc. Refer to the section 3.4.2 for meaning of each state.
Please note that the Pause state had been removed from G4ApplicationSate.

e voi d Set Range(char* range)

Define arange of the parameter(s). Use C++ notation, eg.,"x > 0 && x < 10", with variable name(s)
defined by the Set Par anmet er Nane() method. For the case of a GAThreeVector, you can set the relation
between parameters, e.g.,"x > y".

G4Uldirectory
Thisis aG4Ulcommand derived class for defining a directory.
e AUl directory(char* directoryPath)

Constructor. Argument is the (full-path) directory, which must begin and terminate with °/ '.

G4UlcmdWithoutParameter
Thisis aG4Ulcommand derived class for acommand which takes no parameter.
e (AUl cndW t hout Par anet er (char* commandPat h, 4Ul nessenger* theMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.

G4UlcmdWithABool
ThisisaG4Ulcommand derived class which takes one boolean type parameter.
e AUl cndW t hABool (char* commandpat h, AUl manager * t heMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
e voi d Set Paranet er Name(char* paramNanme, Gibool omttabl e)

Define the name of the boolean parameter and set the omittable flag. If omittable istrue, you should define the
default value using the next method.

216

Communication and Control

voi d Set Def aul t Val ue(G4bool def Vval)

Define the default value of the boolean parameter.
Abool Get NewBool Val ue(&4String paranttring)

Convert G4String parameter value given by the Set Newval ue() method of your messenger into boolean.
AString convert ToStri ng(&4bool currVal)

Convert the current bool ean value to G4tring whichshoul d bereturned by the Get Cur r ent Val ue() method
of your messenger.

G4UlcmdWithAnInteger

ThisisaG4Ulcommand derived class which takes one integer type parameter.

AUl cndW t hAnl nt eger (char* commandpat h, G4Ul manager* t heMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anet er Nane(char* paranName, Gibool om ttabl e)

Define the name of the integer parameter and set the omittable flag. If omittable istrue, you should define the
default value using the next method.
voi d Set Def aul t Val ue(G4i nt def Val)

Define the default value of the integer parameter.
i nt CGet New nt Val ue(AStri ng paranttring)

Convert G4String parameter value given by the Set Newval ue() method of your messenger into integer.
(AString convert ToString(G4int currVal)

Convert the current integer valueto G4String, which should bereturned by the Get Cur r ent Val ue() method
of your messenger.

G4UlcmdWithADouble

ThisisaG4Ulcommand derived class which takes one double type parameter.

AU cndW t hADoubl e(char* comandpat h, GAUl manager* t heMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anet er Nane(char* paranName, Gibool omttable)

Define the name of the double parameter and set the omittable flag. If omittable is true, you should define the
default value using the next method.
voi d Set Def aul t Val ue(G4doubl e def Val)

Define the default value of the double parameter.
Adoubl e Get NewDoubl eVal ue(AString paranttri ng)

Convert G4String parameter value given by the Set Newval ue() method of your messenger into double.
AString convert ToStri ng(G4doubl e currVal)

Convert the current double value to G4String which should be returned by the Get Cur r ent Val ue() method
of your messenger.

G4UlcmdWithAString

ThisisaG4Ulcommand derived class which takes one string type parameter.

AU cnmdW t hASt ri ng(char* comandpat h, GAUl manager* t heMessenger)

217

Communication and Control

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anet er Nane(char* paranName, Gibool omttable)

Define the name of the string parameter and set the omittable flag. If omittable is true, you should define the
default value using the next method.
voi d Set Def aul t Val ue(char* def Val)

Define the default value of the string parameter.
voi d Set Candi dat es(char* candi dat eLi st)

Defineacandidate list which can be taken by the parameter. Each candidate listed in thislist should be separated
by a single space. If this candidate list is given, a string given by the user but which is not listed in this list
will be rejected.

G4UlcmdWith3Vector

Thisis aG4Ulcommand derived class which takes one three vector parameter.

AU cnmdW t h3Vect or (char* comuandpat h, AUl manager * t heMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anet er Nanme(char* paramNamX, char* paranNamy, char* paranNani,
AAbool omittable)

Define the names of each component of the three vector and set the omittable flag. If omittable is true, you
should define the default value using the next method.
voi d Set Def aul t Val ue(G4Thr eeVect or def Val)

Define the default value of the three vector.
GAThr eeVect or Get New3Vect or Val ue(AStri ng paranttri ng)

Convert the G4String parameter value given by the Set Newval ue() method of your messenger into a
GA4ThreeVector.
AString convert ToStri ng(G4AThreeVect or currVal)

Convert the current three vector to G4String, which should be returned by the Get Cur r ent Val ue() method
of your messenger.

G4UlcmdWithADoubleAndUnit

Thisis aG4Ulcommand derived class which takes one double type parameter and its unit.

AU cnmdW t hADoubl eAndUni t (char* commandpat h, AUl nanager* t heMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anmet er Nane(char* paranName, Gibool omttable)

Define the name of the double parameter and set the omittable flag. If omittable is true, you should define the
default value using the next method.
voi d Set Def aul t Val ue(GAdoubl e def Val)

Define the default value of the double parameter.
voi d Set Unit Cat egory(char* unit Category)

Define acceptable unit category.
voi d SetDefaul tUnit(char* defUnit)

Define the default unit. Please use this method and the Set Uni t Cat egor y() method alternatively.
Adoubl e Get NewDoubl eVal ue(AString paranttring)

218

Communication and Control

Convert G4Siring parameter value given by the Set Newval ue() method of your messenger into double.
Please note that the return value has already been multiplied by the value of the given unit.
GAdoubl e Get NewDoubl eRawval ue(AStri ng paranftri ng)

Convert G4String parameter value given by the Set NewVal ue() method of your messenger into double but
without multiplying the value of the given unit.
Adoubl e Get NewUni t Val ue(G4String paranttring)

Convert G4String unit value given by the Set NewVal ue() method of your messenger into double.
AString convert ToStri ng(&4bool currVal, char* unitNane)

Convert the current double value to a G4String, which should be returned by the Get Cur r ent Val ue()
method of your messenger. The double value will be divided by the value of the given unit and converted to
astring. Given unit will be added to the string.

G4UlcmdWith3VectorAndUnit

Thisis aG4Ulcommand derived class which takes one three vector parameter and its unit.

AU cmdW t h3Vect or AndUni t (char* commandpat h, AUl nanager* theMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anet er Nane(char * par amNanmX, char* par aniNan, char*
par anNan¥Z, G4bool omittable)

Define the names of each component of the three vector and set the omittable flag. If omittable is true, you
should define the default value using the next method.
voi d Set Def aul t Val ue(G4Thr eeVect or def Val)

Define the default value of the three vector.
voi d Set Unit Cat egory(char* unit Category)

Define acceptable unit category.
voi d SetDefaul tUnit(char* defUnit)

Define the default unit. Please use this method and the Set Uni t Cat egor y() method alternatively.
GAThr eeVect or Get New3Vect or Val ue(G4St ri ng paranttri ng)

Convert a G4String parameter value given by the Set Newval ue() method of your messenger into a
GA4ThreeVector. Please note that the return value has already been multiplied by the value of the given unit.
GAThr eeVect or Get New3Vect or Rawval ue(A4St ri ng paranttri ng)

Convert a G4String parameter value given by the Set NewVal ue() method of your messenger into three
vector, but without multiplying the value of the given unit.
(Adoubl e Get NewUni t Val ue(A4St ring paranttri ng)

Convert a G4Sring unit value given by the Set NewVal ue() method of your messenger into a double.
AString convert ToStri ng(G4AThreeVector currVal, char* unit Nane)

Convert thecurrent three vector to aG4String which should bereturned by the Get Cur r ent Val ue() method
of your messenger. The three vector value will be divided by the value of the given unit and converted to a
string. Given unit will be added to the string.

Additional comments on the Set Par anet er Nane() method

Y ou can add one additional argument of G4bool type for every Set Par anet er Nane() method mentioned
above. Thisadditional argument isnamed cur r ent AsDef aul t FI ag and the default value of thisargument is
f al se. If you assign this extra argument ast r ue, the default value of the parameter will be overriden by the
current value of the target class.

219

Communication and Control

7.2.3. An example messenger

This exampleis of G4ParticleGunMessenger, which is made by inheriting G4Ulcommand.

Example 7.1. An exampleof G4Parti cl eGunMessenger . hh.

#i fndef AParticl eGunMessenger _h
#define AParticl eGnMessenger_h 1

class GAParticl eQun;

class HAParticl eTabl e;

cl ass G4U comrand;

class G4Uldirectory;

cl ass GAU cndW t hout Par anet er ;
class GAU cndW t hAStri ng;

class GAU cndW t hADoubl eAndUni t ;
cl ass AU cndW t h3Vect or ;

class GAU cndW t h3Vect or AndUni t ;

#i ncl ude " AUl nessenger. hh"
#i ncl ude "gl obal s. hh"

class GAParticl eGunMessenger: public AUl nessenger
{
public:
GHAParticl eGunMessenger (G4ParticleGn * fPtcl Gun);
~HAParticl eGunMessenger () ;

public:
voi d Set Newval ue(G4Ul cormand * commrand, G4Stri ng newval ues) ;
GAString Get Current Val ue(G4Ul conrmand * command) ;

private:
HAParticle@n * fParticl eGun;
G4Particl eTabl e * particl eTabl g;

private: //conmmands
AUl directory * gunDirectory;
AUl cnmdW t hout Par anet er * listCmd;
AUl cndW t hAString * particl eCnd;
AU cnmdW t h3Vect or * di recti onCnd;
AUl cndW t hADoubl eAndUnit * ener gyCnd;
G4Ul cnmdW t h3Vect or AndUnit * posi ti onCnd;
GAUl cndW t hADoubl eAndUnit * ti neCnd;

) 5

#endi f

Example 7.2. An exampleof G4Parti cl eGunMessenger. cc.

#i ncl ude "4Parti cl eGunMessenger. hh"

#i ncl ude "GAParticl eGun. hh"

#i ncl ude "&AGeanti no. hh"

#i ncl ude " &AThr eeVect or. hh"

#i ncl ude "GAParticl eTabl e. hh"

#i ncl ude "G4Ul directory. hh"

#i ncl ude " &AUl cndW t hout Par anet er . hh"
#i ncl ude "&AU cmdW t hAStri ng. hh"

#i ncl ude " GAUl cndW t hADoubl eAndUni t . hh"
#i ncl ude "&AU cmdW t h3Vect or. hh"

#i ncl ude " &AUl cndW t h3Vect or AndUni t . hh"
#i ncl ude <i ostream h>

GHAParticl eGunMessenger:: GAParti cl eGunMessenger (GAParticl eGun * fPtcl Gun)
:fParticle@n(fPtcl Gun)

{
particleTabl e = AParticl eTabl e: : Get Parti cl eTabl e();

gunDirectory = new AUl di rectory("/gun/");
gunDi rect ory- >Set Gui dance("Particle Gun control commands.");

l'istCrd = new G4U cndW t hout Par aneter ("/gun/list",this);

220

Communication and Control

|'i st Cnd- >Set Gui dance("Li st avail able particles.");
|'i st Cnd- >Set Gui dance(" | nvoke GAParticl eTable.");

particleCmd = new AU cnmdW t hAStri ng("/gun/particle",this);
particl eCrd- >Set Gui dance("Set particle to be generated.");
particl eCmd- >Set Gui dance(" (geantino is default)");

particl eCrd- >Set Par anet er Nane(" parti cl eNane", true);

particl eCnd- >Set Def aul t Val ue("geanti no");

GAString candi dat eLi st ;

Gdint nPtcl = particleTabl e->entries();
for(G4int i=0;i<nPtcl;i++)
{

candi dat eLi st += particl eTabl e->CGet Particl eNane(i);

candi dat eLi st += ;
}
particl eCmd- >Set Candi dat es(candi dat eLi st) ;

directionCnmd = new G4U cndW t h3Vect or ("/ gun/direction”, this);

di recti onCnd- >Set Gui dance(" Set nonentum direction.");

di recti onCnd- >Set Gui dance("Directi on needs not to be a unit vector.");
di recti onCnd- >Set Par anet er Nane(" Px", "Py", "Pz", true, true);

di recti onCnd- >Set Range("Px !=0 || Py I=0 || Pz I=0");

energyCnd = new AUl cndW t hADoubl eAndUni t ("/ gun/ energy", this);
ener gyCnd- >Set Gui dance(" Set ki netic energy.");

ener gyCnd- >Set Par anet er Nane(" Ener gy", true, true);

ener gyCnd- >Set Def aul t Uni t (" GeV") ;

ener gyCnd- >Set Uni t Candi dat es("eV keV MeV GeV TeV');

posi ti onCd = new GAUl cndW t h3Vect or AndUni t ("/ gun/ posi tion",this);
posi ti onCnd- >Set Gui dance("Set starting position of the particle.");
posi ti onCnd- >Set Par anet er Name(" X", "Y","Z", true, true);

posi ti onCnd- >Set Def aul t Unit ("cnt') ;

posi ti onCmd- >Set Uni t Candi dat es("m cron mm cm m kni') ;

timeCmd = new G4Ul cndW t hADoubl eAndUni t ("/gun/ti me", this);
ti meCnd- >Set Cui dance("Set initial tine of the particle.");
ti meCnd- >Set Par anet er Name("t 0", true, true);

ti meCnmd- >Set Def aul t Uni t (" ns");

ti meCmd- >Set Uni t Candi dates("ns nms s");

/] Set initial value to GAParticl eCGun
fParticleGun->SetParticleDefinition(GAGeantino:: CGeantino());

fParticl eGun->Set Particl eMonent unDi recti on(G4ThreeVector(1.0,0.0,0.0));
fParticleGn->SetParticleEnergy(1.0*GeV);

fParticl eGn->Set Particl ePosition(&ThreeVector(0.0*cm 0.0*cm 0.0*cnm));
fParticleGn->SetParticleTime(0.0*ns);

GAParticl eGunMessenger:: ~GAParti cl eGunMessenger ()
{

delete |istCnd;

del ete particl eCd;

del ete directi onCnd;

del et e ener gyCnd;

del ete positionCnd;

delete tinmeCnd;

del ete gunDirectory;

}

voi d GAParticl eGunMessenger : : Set Newval ue(
G4Ul conmand * command, GAStri ng newval ues)
{

if(conmand==listCnd)
{ particl eTabl e->dunpTabl e(); }
el se if(command==particleCrd)

GAParticlebDefinition* pd = particl eTabl e->fi ndParticl e(newal ues) ;
if(pd !'= NULL)
{ fParticleQn->SetParticleDefinition(pd); }

el se i f(command==directi onCnd)

{ fParticleCun->SetParticl eMnentunDirection(directi onCnd->
Get New3Vect or Val ue(newval ues)); }

el se if(command==ener gyCnd)

{ fParticl eCGun->SetParticl eEnergy(energyCnd- >

221

Communication and Control

Get NewDoubl eVal ue(newval ues)); }
el se i f(command==positionCrd)
{ fParticleGun->SetParticl ePosition(
di recti onCnd- >Get New3Vect or Val ue(newval ues)); }
else if(command==ti neCrd)
{ fParticleGn->SetParticleTine(ti meCnd->
Get NewDoubl eVal ue(newval ues)); }

}
GAString G4Particl eGunMessenger : : Get Current Val ue(AUl conmand * command)
{

GAString cv;

i f(command==di rectionCnd)
{ cv = directionCrd->Convert ToStri ng(
fParticl eGn->CGetParticleMnentunDirection()); }
el se if(command==ener gyCnd)
{ cv = energyCnd->ConvertToStri ng(
fParticleGun->CetParticleEnergy(),"GV'); }
el se i f(command==positionCrd)
{ cv = positionCnrd->ConvertToStri ng(
fParticl eGn->GetParticlePosition(),"cnt'); }
else if(command==ti neCrd)
{ cv = tinmeCnd->ConvertToString(
fParticleGun->CetParticleTinme(),"ns"); }
el se i f(command==particleCrd)
{ /'l update candidate |ist
GAString candi dateLi st;
Gdint nPtcl = particleTabl e->entries();
for(G4int i=0;i<nPtcl;i++)

candi dateLi st += particl eTabl e->Get Parti cl eName(i);
candi dateLi st += " ";

}
particl eCrd- >Set Candi dat es(candi dat eLi st) ;

}

return cv;
}

7.2.4. How to control the output of G4cout/G4cerr

Instead of cout and cerr, Geant4 uses G4cout and G4cerr. Output streams from G4cout/G4cerr are handled by
G4Ulmanager which allows the application programmer to control the flow of the stream. Output strings may
therefore be displayed on another window or stored in afile. Thisis accomplished as follows:

1. Derive aclass from G4Ulsession and implement the two methods:

G4i nt Recei veGAcout (const GAString& coutString);
G4i nt Recei veGAcerr (const GAString& cerrString);

These methods receive the string stream of G4cout and G4cerr, respectively. The string can be handled to meet
specific requirements. The following sample code shows how to make alog file of the output stream:

ostream | ogFi | e;
| ogFi | e. open("M/LogFile");
G4int MySessi on: : Recei veGAcout (const GAString& cout String)

| ogFile << coutString << flush;
return O;

}
2. Set the destination of G4cout/G4cerr using (AUl manager : : Set Cout Dest i nati on(sessi on).

Typically this method is invoked from the constructor of G4Ulsession and its derived classes, such as
G4UIGAG/G4Ulteminal. This method sets the destination of G4cout/G4cerr to the session. For example, when
thefollowing code appearsin the constructor of G4Ulterminal, the method Set Cout Desti nati on(t hi s)

tells Ulmanager that thisinstance of G4Ulterminal receives the stream generated by G4cout.

222

Communication and Control

GAU term nal :: G4Ul term nal ()

U = GAUl nanager: : Get Ul poi nter();
Ul - >Set Cout Dest i nation(this);
/1

}

Similarly, Ul - >Set Cout Dest i nat i on(NULL) must be added to the destructor of the class.
3. Write or modify the main program. To modify exanpl eB1 to produce alog file, derive a class as described
in step 1 above, and add the following lines to the main program:

#i ncl ude "MySessi on. hh"
mai n()
{
/] get the pointer to the User Interface manager
G4Ul nanager* U = AUl manager: : Get Ul poi nter();
/1 construct a session which receives GAcout/ GAcerr
My/Sessi on * LoggedSessi on = new MySessi on;
Ul - >Set Cout Dest i nati on(LoggedSessi on) ;
/'l session->SessionStart(); // not required in this case
// do sinmulation here ...

del ete LoggedSessi on;
return 0O;

Note

GA4cout/G4cerr should not be used in the constructor of aclassif the instance of the classisintended to
beused as st at i c. Thisrestriction comes from the language specification of C++. See the documents
below for details:

* M.A.Ellis, B.Stroustrup, ~ Annoctated C++ Reference Manual”, Section 3.4[Ellis1990]
e P.J.Plauger, "The Draft Standard C++ Library" [Plauger1995 |

223

Chapter 8. Visualization

8.1. Introduction to Visualization

The Geant4 visualization system was developed in response to a diverse set of requirements:

1. Quick response to study geometries, trajectories and hits

2. High-quality output for publications

3. Flexible camera control to debug complex geometries

4. Toolsto show volume overlap errors in detector geometries

5. Interactive picking to get more information on visualized objects

Noonegraphicssystemisideal for al of these requirements, and many of thelarge softwareframeworksinto which
Geant4 has been incorporated already have their own visualization systems, so Geant4 visualization was designed
around an abstract interface that supports a diverse family of graphics systems. Some of these graphics systems
use a graphics library compiled with Geant4, such as OpenGL, Qt, while others involve a separate application,
such as HepRApp or DAWN.

Most examples include a vis.mac to perform typical visualization for that example. The macro includes optional
code which you can uncomment to activate additional visualization features.

8.1.1. What Can be Visualized

Simulation data can be visualized:

» Detector components
< A hierarchical structure of physical volumes
* A piece of physical volume, logical volume, and solid
* Particle trgjectories and tracking steps
» Hitsof particlesin detector components
» Scoring data

Other user defined objects can be visualized:

* Polylines, such as coordinate axes

» 3D Markers, such as eye guides

» Text, descriptive character strings, comments or titles
o Scales

» Logos

8.1.2. You have a Choice of Visualization Drivers

The many graphics systems that Geant4 supports are complementary to each other.

* OpenGL
¢ View directly from Geant4
« Requiresaddition of GL librariesthat arefreely avialablefor all operating systems (and pre-installed on many)
* Rendered, photorealistic image with some interactive features
e zoom, rotate, translate
« Fast response (can usually exploit full potential of graphics hardware)
Print to EPS (vector and pixel graphics)

« Qt
* View directly from Geant4
» Requires addition of Qt and GL libraries that are freely available on most operating systems
» Rendered, photorealistic image
e Many interactive features
e zoom, rotate, translate

224

Visualization

» Fast response (can usually exploit full potential of graphics hardware)
» Expanded printing ability (vector and pixel graphics)
* Easy interface to make movies
* Openlnventor
* View directly from Geant4
» Requires addition of Openlinventor libraries (freely available for most Linux systems).
< Rendered, photorealistic image
* Many interactive features
e zoom, rotate, trandate
« click to "seeinside" opague volumes
« Fast response (can usually exploit full potential of graphics hardware)
» Expanded printing ability (vector and pixel graphics)
* HepRep
» Create afileto view in aHepRep browser such as HepRApp, FRED or WIRED4
» Requires aHepRep browser (above options work on any operating system)
» Wireframe or simple areafills (not photorealistic)
¢ Many interactive features
e zoom, rotate, trandlate
« click to show attributes (momentum, etc.)
* special projections (FishEye, etc.)
« control visibility from hierarchical (tree) view of data
» Hierarchical view of the geometry
« Export to many vector graphic formats (PostScript, PDF, etc.)
« DAWN
* Create afileto view inthe DAWN Renderer
* RequiresDAWN, available for all Linux and Windows systems.
» Rendered, photorealistic image
* Nointeractive features
« Highest quality technical rendering - output to vector PostScript

* VRML
* Createafiletoview inany VRML browser (some as web browser plug-ins).
* Requires VRML browser (many different choices for different operating systems).
« Rendered, photorealistic image with some interactive features
e zoom, rotate, translate
 Limited printing ability (pixel graphics, not vector graphics)
* RayTracer
e Createajpegfile
» Formsimage by using Geant4's own tracking to follow photons through the detector
« Can show geometry but not tragjectories
« Can render any geometry that Geant4 can handle (such as Boolean solids)
 Supports shadows, transparency and mirrored surfaces
* gMocren
» Create agMocren file suiable for viewing in the gMocren volume data visualization application
» Represents three dimensional volume data such as radiation therapy dose
¢ Can dsoinclude geometry and trajectory information
* ASClITree
e Text dump of the geometry hierarchy
« Not graphical
e Control over level of detail to be dumped
 Can calculate mass and volume of any hierarchy of volumes

8.1.3. Choose the Driver that Meets Your Needs

* If you want very responsive photorealistic graphics (and have the OpenGL libraries installed)
* OpenGL isagood solution (if you have the Motif extensions, this also gives GUI control)
« If you want to have the User Interface and all Visualization windows in the same window
¢ Only Qt can do that

225

Visualization

« If you want very responsive photorealistic graphics plus more interactivity (and have the Openlnventor or Qt
libraries installed)
» Openlnventor or Qt are good solutions

« If you want GUI control, very responsive photorealistic graphics plus more interactivity (and have the Qt li-
braries installed).
* Qtisagood solution

« If you want GUI control, want to be able to pick on items to inquire about them (identity, momentum, etc.),
perhaps want to render to vector formats, and a wireframe look will do
» HepRep will meet your needs

« If you want to render highest quality photorealistic images for use in a poster or a technical design report, and
you can live without quick rotate and zoom
« DAWN istheway to go

« If you want to render to a 3D format that others can view in avariety of commodity browsers (including some
web browser plug-ins)
* VRML istheway to go

* If you want to visualize a geometry that the other visualization drivers can't handle, or you need transparency
or mirrors, and you don't need to visualize trajectories
e RayTracer will do it

* If you want to visualization volume data, such as radiation therapy dose distributions
* gMocren will meet your needs

* If you just want to quickly check the geometry hierarchy, or if you want to calculate the volume or mass of
any geometry hierarchy
¢ ASCIITreewill meet your needs

* You can also add your own visualization driver.
* Geant4's visualization system ismodular. By creating just three new classes, you can direct Geant4 informa-

tion to your own visualization system.

8.1.4. Controlling Visualization

Y our Geant4 code stays basically the same no matter which driver you use.
Visualization is performed either with commands or from C++ code.

» Some visualization drivers work directly from Geant4
¢ OpenGL
. Qt
¢ Openlnventor
* RayTracer
e ASClITree
* For other visuaization drivers, you first have Geant4 produce a file, and then you have that file rendered by
another application (which may have GUI control)
* HepRep
« DAWN
« VRML
e gMocren

8.1.5. Visualization Details

The following sections of this guide cover the details of Geant4 visualization:

 Section 8.2 Adding Visualization to Y our Executable
 Section 8.3 The Visualization Drivers

 Section 8.4 Controlling Visualization from Commands
 Section 8.5 Controlling Visualization from Compiled Code
 Section 8.6 Visualization Attributes

 Section 8.7 Enhanced Trajectory Drawing

 Section 8.9 Polylines, Markers and Text

226

Visualization

¢ Section 8.10 Making aMovie
Other useful references for Geant4 visualization outside of this user guide:

* Introduction to Geant4 Visualization (pdf, ppt)

» Geant4 Visualization Commands (pdf, ppt)

» Geant4 Advanced Visualization (pdf, ppt)

» How to MakeaMovie (pdf, ppt)

» Geant4 Visualization Tutoria using the HepRApp HepRep Browser

» Geant4 Visuaization Tutorial using the OpenGL Event Display

» Geant4 Visuaization Tutorial using the DAWN Event Display

» Macro files distributed in Geant4 source in basic examples, vi s. mac and exanpl es/ basi ¢/ B4/
macros/ vi sTutor/.

8.2. Adding Visualization to Your Executable

This section explains how to incorporate your selected visualization driversinto the mai n() function and create
an executable for it. In order to perform visualization with your Geant4 executable, you must compile it with
realized visualization driver(s). You may be dazzled by the number of choices of visualization driver, but you
need not use all of them at one time.

8.2.1. Installing Visualization Drivers

Depending on what has been installed on your system, several kinds of visualization driver are available. One or
many driversmay be chosen for realization in compilation, depending on your visualization requirements. Features
and notes on each driver are briefly described in Section 8.3 "Visualization Drivers', along with links to detailed
web pages for the various drivers.

Note that not al drivers can be installed on al systems; Table 8.1 in Section 8.3 lists al the available drivers
and the platforms on which they can be installed. For any of the visualization drivers to work, the corresponding
graphics system must be installed beforehand.

Unless the environment variable G4VI S_NONE is set to "1" (which causes the makefiles to set a corresponding
C-pre-processor macro), visualization drivers that do not depend on external libraries are automatically incorpo-
rated into Geant4 libraries during their installation. (Here "installation of Geant4 libraries' means the generation
of Geant4 libraries by compilation.) The automatically incorporated visualization drivers are: DAWNFILE, Hep-
RepFile, HepRepXML, RayTracer, VRML1FILE, VRML2FILE and ATree and GAGTree.

The OpenGL, Qt, Openinventor and RayTracerX drivers are not incorporated by default. Nor are the DAWN-
Network and VRML-Network drivers, because they require the network setting of the installed machine. In order
to incorporate them, environment variables must be set (they cause the makefiles to set the corresponding C-pre-
processor macros). Thisis best done by sourcing the scripts generated by . / Conf i gur e (without any options).

./ Configure
source env.sh (or env.csh for C shells)

If you wish to "do-it-yourself", use "expor t " (for Bourne-like shells, including bash) or "set env" (for C-
shells). "G4VI S_BUI LD DRI VERNAME DRI VER' should be set to "1" before installing the Geant4 libraries:

setenv G4VI S BUI LD_OPENGLX DRI VER
setenv G4VI S BUI LD _OPENGLXM DRI VER
setenv G4VI S_BUI LD_OPENGLQT DRI VER
setenv G4VI S BU LD O X DRI VER

setenv G4VI S_BUI LD_RAYTRACERX_ DRI VER
setenv G4VI S BU LD DAWN DRI VER

setenv AVIS_BU LD VRM__DRI VER

OpenGL-Xlib driver
QpenGL- Moti f driver

Q driver

Openl nventor-Xib driver
RayTracer-XLi b driver
DAWN- Net wor k dri ver
VRML- Net wor k

PR RRPRP R R
HHHHHHH

Unlesstheenvironment variable G4Vl S_NONEissetto"1", setting any of the above variabl es setsa C-pre-proces-
sor flag of the same name. Also the C-pre-processor flag G4VI S_BUI LDisset (see config/G4VIS BUILD.gmk),
which incorparates the selected driver into the Geant4 libraries.

227

http://geant4.slac.stanford.edu/Presentations/vis/G4VisIntroduction.pdf
http://geant4.slac.stanford.edu/Presentations/vis/G4VisIntroduction.ppt
http://geant4.slac.stanford.edu/Presentations/vis/G4VisCommands.pdf
http://geant4.slac.stanford.edu/Presentations/vis/G4VisCommands.ppt
http://geant4.slac.stanford.edu/Presentations/vis/G4VisAdvanced.pdf
http://geant4.slac.stanford.edu/Presentations/vis/G4VisAdvanced.ppt
http://geant4.slac.stanford.edu/Presentations/vis/HowToMakeAMovie.pdf
http://geant4.slac.stanford.edu/Presentations/vis/HowToMakeAMovie.ppt
http://geant4.slac.stanford.edu/Presentations/vis/G4HepRAppTutorial/G4HepRAppTutorial.html
http://geant4.slac.stanford.edu/Presentations/vis/G4OpenGLTutorial/G4OpenGLTutorial.html
http://geant4.slac.stanford.edu/Presentations/vis/G4DAWNTutorial/G4DAWNTutorial.html

Visualization

8.2.2. How to Realize Visualization Drivers in an Exe-
cutable

You can realize and use any of the visualization driver(s) you want in your Geant4 executable, provided they are
among the set installed beforehand into the Geant4 libraries. A warning will appear if thisis not the case.

In order to realize visuaization drivers, you must instantiate and initialize a subclass of G4Vi sManager that
implements the pure virtual function Regi st er G- aphi csSyst ens() . This subclass must be compiled in
the user's domain to force the loading of appropriate libraries in the right order. The easiest way to do thisisto
use AVi sExecut i ve, aprovided class with included implementation. G4Vi sExecut i ve issensitiveto the
AVI S_USE. . . variables mentioned below.

If you do wish to write your own subclass, you may do so. You will see how to do this by looking at
(AVi sExecuti ve. i cc. A typical extract is:

Regi st er Gr aphi csSyst em (new GADAVWNFI LE) ;

#i f def GAVI S_USE_OPENGLX
Regi st er G aphi csSyst em (new G4QpenGLl nmedi at eX) ;
Regi st er Gr aphi csSyst em (new GAQpenGL.St or edX) ;
#endi f

If youwishtouse AVi sExecut i ve but register an additional graphics system, XXX say, you may do so either
before or after initializing:

vi sManager - >Regi st er Gr aphi csSyt en(new XXX) ;
vi sManager->Initialize();

By default, you get the DAWNFILE, HepRepFile, RayTracer, VRMLIFILE, VRML2FILE, ATreeand GAGTree
drivers. Additionally, you may choose from the OpenGL-Xlib, OpenGL-Moatif, Qt, Openlnventor, RayTracerX,
DAWN-Network and VRML-Network drivers, each of which can be selected with "Conf i gur e" or by setting
the proper environment variable:

setenv AVI S_USE_OPENGLX
setenv GAVI S_USE_OPENGLXM
setenv AVI S_USE OPENGLQT
setenv G4AVIS_USE_O X

setenv AVI S_USE_RAYTRACERX
setenv G4AVI S_USE_DAWN

setenv AVI S_USE VRWM

Y i

(Of course, this has to be chosen from the set incorporated into the Geant4 libraries during their compilation.)
Unless the environment variable G4VI S_NONE is set, these set C-pre-processor flags of the same name.

Also, unless the environment variable G4VI' S_NONE is set, the C-pre-processor flag GAVI S_USE is always set
by default. Thisflag is availablein describing themai n() function.

Y ou may haveto set additional environment variablesfor your selected visualization drivers and graphics systems.
For example, the OpenGL driver may require the setting of OGL HOVE which pointsto the location of the OpenGL
libraries. For more details, see Section 8.3 "Visualization Drivers' and pages linked from there.

8.2.3. Visualization Manager

Visualization procedures are controlled by the "Visuaization Manager", a class which must inherit from
G4VisManager defined in the visualization category. Most users will find that they can just use the default visual-
ization manager, G4VisExecutive. The Visualization Manager accepts users requests for visualization, processes
them, and passes the processed requirements to the abstract interface, i.e., to the currently selected visualization
driver.

228

Visualization

8.2.4. How to Write the mai n() Function

In order for your Geant4 executable to perform visualization, you must instantiate and initialize "your" Visual-
ization Manager in the mai n() function. The core of the Visualization Manager is the class G4Vi sManager ,
defined in the visualization category. This class requires that one pure virtual function be implemented, namely,
voi d Regi st er G aphi csSyst ens(). The easiest way to do thisis to use G4Vi sExecut i ve, as de-
scribed above (but you may write your own class - see above).

Example 8.1 shows the form of the mai n() function.

Example 8.1. Theform of themai n() function.

[]----- C++ source codes: Instantiation and initialization of G4Vi sManager

/1 Your Visualization Manager
#i ncl ude " 4Vi sExecuti ve. hh"

// Instantiation and initialization of the Visualization Manager

#i f def GAVI S_USE

GAVi sManager * vi sManager = new (4Vi sExecuti ve;

/| GAVi sExecutive can take a verbosity argunent - see /vis/verbose gui dance.
/| GAVi sManager* vi sManager = new (AVi sExecutive("Quiet");

vi sManager->Initialize();

#endi f

#i f def GAVI S_USE
del et e vi sManager;
#endi f

[]----- end of C++

Alternatively, you can implement an empty Regi st er Gr aphi csSyst ens() function, and register visualiza-
tion drivers you want directly in your mai n() function. See Example 8.2.

Example 8.2. An alternative stylefor the mai n() function.

[]----- C++ source codes: How to register a visualization driver directly
Il in main() function

GAVi sManager * vi sManager = new GAVi sExecuti ve;
vi sManager -> Regi st er G aphi csSyst em (new MyG aphi csSystem) ;

del et e vi sManager

[]----- end of C++

Do not forget to del ete the instantiated Visualization Manager by yourself. Note that a graphics system for Geant4
Visualization may run as a different process. In that case, the destructor of G4Vi sManager might have to ter-
minate the graphics system and/or close the connection.

We recommend that the instantiation, initialization, and deletion of the Visualization Manager be protected by
C-pre-processor commands, as in the basic examples. The C-pre-processor macro AVI S_USE is automatically
defined unless the environment variable G4VI S_NONE is set. This assumes that you are compiling your Geant4
executable with the standard version of GNUmakefile found in the conf i g directory.

Example 8.3 shows an example of the mai n() function available for Geant4 Visualization.

Example 8.3. An example of themai n() function available for Geant4 Visualization.

[]----- C++ source codes: An exanple of nmin() for visualization
#i ncl ude "AVi sExecuti ve. hh"
#i ncl ude " 4Ul Executi ve. hh"

229

Visualization

int main(int argc, char *argv[])

{

// Run Manager
GARunManager * runManager = new ARunManager;

/] Detector conponents
runManager - >set _userlnitializati on(new MyDet ect or Construction);
runManager - >set _userlnitializati on(new M/Physi csLi st);

/] UserAction classes.

runManager - >set _user Acti on(new MyRunActi on);

runManager - >set _user Act i on(new MyPri mar yGener at or Acti on) ;
runManager - >set _user Acti on(new MyEvent Acti on) ;
runManager - >set _user Act i on(new MySt eppi ngActi on);

#i fdef GAVI S_USE

#endi

GAVi sManager * vi sManager = new (AVi sExecuti ve;
vi sManager->Initialize(argc, argv);
f

/1 Define (G U
AUl Executive * ui = new AUl Executi ve;
ui - >SessionStart();

del ete ui;
del et e runManager;

#i fdef AVI S_USE

#endi

Useful information on incorporated visualization drivers can be displayed in initializing the Visualization Man-
ager. Thisis done by setting the verbosity flag to an appropriate number or string:

del et e vi sManager ;
f

return O;

-- end of C++

Si npl e graded nessage schene - give first letter or a digit:

qui et /1 Nothing is printed.

startup, /] Startup and endup nessages are printed...
errors, /1 ...and errors...

war ni ngs, /1 ...and warnings...

confirmations, // ...and confirni ng nessages. ..

paraneters, /1 ...and paraneters of scenes and views...
al | /1 ...and everything avail abl e.

For example, in your mai n() function, write the following code:

GAVi

sManager* vi sManager = new (AVi sExecutive("Quiet");

vi sManager->Initialize();

(This can also be set with the/ vi s/ ver bose command.)

8.3

As explained in the Introduction to Visualization , Geant4 provides many different choices of visualization sys-
tems. Features and notes on each driver are briefly described here along with links to detailed web pages for the

. The Visualization Drivers

various drivers.

Details are given below for:

 Section 8.3.2 OpenGL
» Section 8.3.3 Qt
* Section 8.3.4 Openlnventor

230

Visualization

* Section 8.3.5 Openlnventor Extended
* Section 8.3.6 HepRepFile

 Section 8.3.7 HepRepXML

¢ Section 8.3.8 DAWN

¢ Section 8.3.10 VRML

 Section 8.3.11 RayTracer

» Section 8.3.12 gMocren

» Section 8.3.13 ASClITree

» Section 8.3.14 GAGTree

» Section 8.3.15 XMLTree

8.3.1. Availability of drivers on the supported systems

Table 8.1 lists required graphics systems and supported platforms for the various visualization drivers

Driver Required Graphics System Platform

OpenGL-Xlib OpenGL Linux, UNIX, Mac with Xlib

OpenGL-Motif OpenGL Linux, UNIX, Mac with Motif
OpenGL-Win32 OpenGL Windows

Qt Qt, OpenGL Linux, UNIX, Mac, Windows

Openlnventor-X

Openlnventor (Coin3D), OpenGL

Linux, UNIX, Mac with Xlib and
Motif

Openlnventor-X-Extended

Openlnventor (Coin3D), OpenGL

Linux, UNIX, Mac with Xlib and
Motif

Openlnventor-Win32

Openlinventor, OpenGL

Windows

HepRep

HepRApp, FRED or WIRED4 Hep-
Rep Browser

Linux, UNIX, Mac, Windows

DAWNFILE Fukui Renderer DAWN Linux, UNIX, Mac, Windows
DAWN-Network Fukui Renderer DAWN Linux, UNIX

VRMLFILE any VRML viewer Linux, UNIX, Mac, Windows
VRML-Network any network-enabled VRML viewer | Linux, UNIX

RayTracer any JPEG viewer Linux, UNIX, Mac, Windows
ASClIITree none Linux, UNIX, Mac, Windows
GAGTree GAG Linux, UNIX, Mac, Windows
XMLTree any XML viewer Linux, UNIX, Mac, Windows
Table 8.1. Required graphics systems and supported platforms for the various
visualization drivers.

8.3.2. OpenGL

These drivers have been developed by John Allison and Andrew Walkden (University of Manchester). It is an
interface to the de facto standard 3D graphics library, OpenGL. It is well suited for real-time fast visualization
and demonstration. Fast visualization is realized with hardware acceleration, reuse of shapes stored in a display
list, etc. NURBS visualization is also supported.

Severa versions of the OpenGL drivers are prepared. Versions for Xlib, Motif, Qt and Win32 platforms are
available by default. For each version, there are two modes: immediate mode and stored mode. The former has no
limitation on data size, and the latter isfast for visualizing large data repetitively, and so is suitable for animation.

Output can be exported to EPS (both vector and pixel graphics) using vis/ogl/printEPS.

More information can be found here : Section 8.4.14

231

Visualization

If you want to open a OGL viewer, the generic way is:

/ vi s/ open OGL

According to your G4VIS_USE... variables it will open the correct viewer. By default, it will be open in stored
mode. You can specify to open an "OGLS" or "OGLI" viewer, or even "OGLSXm","OGLIXm",... If you don't
have Matif or Qt, al control is done from Geant4 commands:

/vi s/ open OGLI X

/vis/viewer/set/vi ewoi nt ThetaPhi 70 20
/vi s/ viewer/zoom 2

etc.

But if you have Matif libraries or Qt install, you can control Geant4 from Motif widgets or mouse with Qt:

/vi s/ open OGLSQX
The OpenGL driver added Smooth shading and Transparency since Geant4 release 8.0.
Further information (OpenGL and Mesa):

* http://www.opengl.org/

* http://www.mesa3d.org

* http://geant4.slac.stanford.edu/Presentati ons/vis/G40penGL Tutorial/G40penGL Tutoria .html using the
OpenGL Graphics System

8.3.3. Qt

This driver has been developed by Laurent Garnier (IN2P3, LAL Orsay). It is an interface to the powerful appli-
cation framework, Qt, now free on most platforms. This driver also requires the OpenGL library.

The Qt driver iswell suited for real-time fast visualization and demonstration. Fast visualization is realized with
hardware acceleration, reuse of shapes stored in a display list, etc. NURBS visuaization is also supported. All
OpenGL features are implemented in the Qt driver, but one also gets mouse control of rotation/translation/zoom,
the ability to save your scene in many formats (both vector and pixel graphics) and an easy interface for making
movies.

Two display modes are available: Immediate mode and Stored mode. The former has no limitation on data size,
and the latter isfast for visuaizing large data repetitively, and so is suitable for animation.

Thisdriver has the feature to open avis window into the Ul window as anew tab. Y ou can have as many tabsyou
want and mix them from Stored or Immediate mode. To see the visualization window in the Ul :

/vis/open OGL (Generic way. For Stored node if you have define your GAVIS USE QT vari abl e)
0I’ /vis/open OGI (for |mediate node)
0I’ /vis/open OGS (for Stored npde)
0I’ /vis/open OGLIQ (for |Imedi ate node)
0I’ /vis/open OGLSQ (for Stored npde)

Further information (Qt):

< Qt
» Geant4 Visualization Tutorial using the Qt Driver

8.3.4. Openlinventor

These drivers were developed by Jeff Kallenbach (FNAL) and Guy Barrand (IN2P3) based on the Hepvis class
library originated by Joe Boudreau (Pittsburgh University). The Openlnventor drivers and the Hepvisclasslibrary
are based on the well-established Openl nventor technology for scientific visualization. They have high extendibil-

232

http://www.opengl.org/
http://www.mesa3d.org
http://geant4.slac.stanford.edu/Presentations/vis/G4OpenGLTutorial/G4OpenGLTutorial.html
http://trolltech.com/
http://geant4.in2p3.fr/spip.php?article60&lang=en
http://www-pat.fnal.gov/graphics/HEPVis/www
http://www-pat.fnal.gov/graphics/HEPVis/www

Visualization

ity. They support high interactivity, e.g., attribute e diting of picked objects. Some Openlnventor viewers support
"stereoscopic” effects.

It is also possible to save a visualized 3D scene as an Openlnventor-formatted file, and re-visualize the scene
afterwards.

Because it is connected directly to the Geant4 kernel, using same language as that kernel (C++), Openlnventor
systems can have direct access to Geant4 data (geometry, tragjectories, etc.).

Because Openlnventor uses OpenGL for rendering, it supports lighting and transparency.
Openlnventor provides thumbwheel control to rotate and zoom.

Openlnventor supports picking to ask about data. [Control Clicking] on a volume turns on rendering of that
volume's daughters. [Shift Clicking] a daughter turns that rendering off: If modeling opague solid, effect is like
opening a box to look inside.

Further information (HEPVis and OpenScientist):

* Geantd Inventor Visualization with OpenScientist http://openscientist.lal.in2p3.fr/v15r0/html/
osc_g4 vis_ui.html

» Overall OpenScientist Home http://openscientist.lal.in2p3.fr/v15r0/html/osc_g4 vis ui.html

* HEPVis http://www-pat.fnal.gov/graphicsHEPVisiwww

Further information (Openlnventor):

* http://0ss.sgi.com/projects/inventor

» Josie Wernecke, "The Inventor Mentor", Addison Wesley (ISBN 0-201-62495-8)

» Josie Wernecke, "The Inventor Toolmaker", Addison Wesley (ISBN 0-201-62493-1)

» "The Open Inventor C++ Reference Manual", Addison Wesley (ISBN 0-201-62491-5)

8.3.5. Openinventor Extended Viewer

This driver was developed by Rastislav Ondrasek, Pierre-Luc Gagnon and Frederick Jones (TRIUMF). It extends
thefunctionality of the Openlnventor driver, described in the previous section, by adding anumber of new features
to the viewer.

At present this driver is supported only on Linux/Unix/MacOS platforms and is not available for Windows. It
requires the Coin3D implementation of Openlnventor.

All of the viewer functions and behavior of the basic Openlnventor driver are included and remain unchanged.
The added viewer functions are implemented via dropdown menu items, buttons, a new navigation panel, and
keyboard and mouse inputs.

Reference path navigation

Most of the added features are concerned with navigation along a"reference path" which is a piecewise linear path
through the geometry. The reference path can be any particle trgjectory, which may be chosen in the application
by an attaching avisualization attribute to it, or at run time by selecting atrajectory with the mouse. Via L oad and
Save menu items, areference path can be read from afile and the current reference path can be written to afile.

Once a reference path is established, the viewer pops up a Navigation Panel showing a list of all elements in
the geometry, ordered by their "distance" along the reference path (based on the perpendicular from the element
center to the path).

Navigation controls
[L,R,U,D refer to the arrow keys on the keyboard)]
 Select an element from the list: navigate along the path to the element's "location™ (distance along the reference

path).
 Shift-L and Shift-R: navigate to the previous or next element on the path (with wraparound).

233

http://openscientist.lal.in2p3.fr/v15r0/html/osc_g4_vis_ui.html
http://openscientist.lal.in2p3.fr/v15r0/html/osc_g4_vis_ui.html
http://openscientist.lal.in2p3.fr/v15r0/html/osc_g4_vis_ui.html
http://www-pat.fnal.gov/graphics/HEPVis/www
http://oss.sgi.com/projects/inventor

Visualization

e L and R: rotate 90 degrees around the vertical axis
« U and D: rotate 90 degrees around the path
 Citrl-L and Ctrl-R: rotate 90 degrees around the horizontal axis

All these keys have a"repeat” function for continuous motion.

The rotation keys put the camera in a definite orientation, whereas The Shift-L and Shift-R keys can be used to
"fly" along the path in whatever camera orientation isin effect. NOTE: if this appears to be "stuck", try switching
from orthonormal camerato perspective camera (" cube" viewer button).

Menu Items:

» Tools/ Goto start of reference path: useful if you get lost
e Tools/ Invert reference path: flips the direction of travel and the distance readout

Reference path animation
Thisisaspecial mode which flys the camera steadily aong the path, without wraparound. The controls are:

» ToolsMenu - Animate Ref Particle: start animation mode
» Page-Up: increase speed

» Page-Down: decrease speed

U (arrow key): raise camera

» D (arrow key): lower camera

» ESC: exit animation mode

For suitable geometries the U and D keys can be used to get "Star Wars' style fly-over and fly-under effects.
Bookmarks

At any time, the viewpoint and other camera parameters can be saved in afile as alabelled "bookmark". The view
can then be restored later in the current run or in another run.

The default name for the bookmark file is ".bookmarkFile" The first time a viewpoint is saved, this file will be
created if it does not already exist. When the viewer is first opened, it will automatically read thisfile if present
and load the viewpoints into the left-hand panel of the viewer's auxiliary window.

Controls:

» Select viewpoint from list: restore this view

* Right-arrow VIEWER button: go to next viewpoint Left-arrow VIEWER button: go to next viewpoint

* "Floppy Disk" button: save current view. The user can type in a label for the view, or use the default label
provided.

» FileMenu - Open Viewpoint File: loads an existing bookmark file

» FileMenu - New Viewpoint File: creates a new bookmark file for saving subsequent views

Special picking modes
Controls:

» "Console" VIEWER button: enable brief trajectory picking and mouse-over element readout For trajectories,
the list of al trajectory pointsis replaced by the first and last point only, allowing easier identification of the
particle without scrolling back. Passing the mouse over an element will give a readout of the volume name,
material, and position on the reference path.

» "Star" VIEWER button: select new reference path The cursor will change to a small cross (+) after which a
trajectory can be selected to become the new reference path.

Conveniencefeature
It is now possible to escape from the Open Inventor viewer without using the mouse.

In addition to the File - Escape menu item, pressing the "€" key on the keyboard will exit from the viewer's X
event loop. The viewer will become inactive and control will return to the Geant4 Ul prompt.

234

Visualization

8.3.6. HepRepFile

TheHepRepFiledriver createsaHepRep XML filein the HepRepl format suitablefor viewing with the HepRApp
HepRep Browser.

The HepRep graphics format is further described at http://www.dlac.stanford.edu/~perl/heprep .

To write just the detector geometry to thisfile, use the command:

/vis/viewer/flush

Or, to aso include trajectories and hits (after the appropriate /vis/viewer/add/trajectories or /vis/viewer/add/hits
commands), just issue:

/run/ beantn 1

HepRepFile will write afile called G4Data0.heprep to the current directory. Each subsequent file will have afile
name like G4Datal.heprep, GAData2.heprep, etc.

View the file using the HepRApp HepRep Browser, available from:;
http://www.dlac.stanford.edu/~perl/HepRApp/ .

HepRApp allowsyou to pick on volumes, trgjectories and hitsto find out their associated HepRep Attributes, such
as volume name, particle ID, momentum, etc. These same attributes can be displayed as labels on the relevant
objects, and you can make visibility cuts based on these attributes ("show me only the photons’, or "omit any
volumes made of iron").

HepRApp can read heprep filesin zipped format as well as unzipped, so you can save space by applying gzip to
the heprep file. Thiswill reduce the file to about five percent of its original size.

Several commands are available to override some of HepRepFile's defaults

» You can specify adifferent directory for the heprep output files by using the setFileDir command, as in:

/vi s/ heprep/setFileDir <someQ herDir/someQ her SubDir >

 You can specify adifferent file name (the part before the number) by using the setFileName command, asin;
/vi s/ heprep/setFil eName <ny_file_nanme>

which will produce files named <my_file_name>0.heprep, <my_file_name>1.heprep, etc.
» You can specify that each file should overwrite the previous file (always rewriting to the same file name) by
using the setOverwrite command, asin:

/vi s/ heprep/setOverwite true

This may be useful in some automated applications where you always want to see the latest output file in the
same location.

» Geant4 visualization supports a concept called "culling”, by which certain parts of the detector can be made
invisible. Since you may want to control visibility from the HepRep browser, turning on visibility of detector
parts that had defaulted to be invisible, the HepRepFile driver does not omit these invisible detector parts from
the HepRep file. But for very large files, if you know that you will never want to make these parts visible, you
can choose to have them left entirely out of the file. Use the /vissheprep/setCullInvisibles command, asin:

/ vi s/ heprep/setCul |l nvisibles true

235

http://www.slac.stanford.edu/~perl/HepRApp/
http://www.slac.stanford.edu/~perl/heprep
http://www.slac.stanford.edu/~perl/HepRApp/

Visualization

Further information:
* HepRApp Users Home Page:

http://www.slac.stanford.edu/~perl/HepRApp/ .
* HepRep graphics format:

http://www.slac.stanford.edu/~perl/heprep
» Geant4 Visualization Tutoria using the HepRApp HepRep Browser

http://geant4.sl ac.stanford.edu/Presentations/vis'G4HepRA ppT utorial/GAHepRAppT utorial .html

8.3.7. HepRep XML

The HepRepXML driver creates a HepRep file in the HepRep2 format suitable for viewing with the WIRED4
Plugin to the JAS3 Analysis System or the FRED event display.

This driver can write both Binary HepRep (.bheprep) and XML HepRep (.heprep) files. Binary HepRep files
are a one-to-one translation of XML HepRep files, but they are considerably shorter and faster to parse by a
HepRepViewer such as WIRED 4.

Both Binary HepRep and XML HepRep can be compressed using the standard zlib library if linked into Geant4
using G4LIB_USE ZLIB. If a standard zlib is not available (WIN32-VC for instance) you should also set
GA4LIB_BUILD_ZLIB to build G4zlib included with Geant4.

HepRep files (Binary and XML) can contain multiple HepRep events/geometries. If the file contains more than
one HepRep it is not strictly XML anymore. Files can be written in .heprep.zip, .heprep.gz or .heprep format and
their binary versions .bheprep.zip, .bheprep.gz or .bheprep.

The .heprep.zip is the default for file output, the .heprep is the default for stdout and stderr.
(Optional) To set the filename with a particular extension such as. .heprep.zip, .heprep.gz, .hep-
rep, .bheprep.zip, .bheprep.gz or .bheprep use for instance:

/vis/scene/create filenane.bheprep.zip

(Optional) To create separate files for each event, you can set a suffix such as "-0001" to start writing files
from filename-0001.bheprep.zip to filename-9999.bheprep.zip (or up), while "-55-sub™ will start write files file-
name-55-sub.bheprep.zip to filename-99-sub.bheprep.zip (or up).

/ vi s/ hepr ep/ set Event Nunber Suf fi x -0001
(Note: suffix hasto contain at least one digit)

(Optional) To route the HepRep XML output to stdout (or stderr), by default uncompressed, use:

/vi s/ scene/ create stdout

(Optional) To add attributes to each point on atrgjectory, use:

/vi s/ heprep/ addPoi nt Attri butes 1
Be aware that this may increase the size of the output dramatically.

(Optional) Y ou may use the commands:

/vi s/ viewer/zoom to set an initial zoom factor

/vis/viewer/set/vi ewoi nt Thet aPhi to set an initial view point

/ vi s/ hepr ep/ set Coor di nat eSyst em uvw to change the coordi nate system where uvw
can be "xyz", "zxy", ...

236

http://www.slac.stanford.edu/~perl/HepRApp/
http://www.slac.stanford.edu/~perl/heprep
http://geant4.slac.stanford.edu/Presentations/vis/G4HepRAppTutorial/G4HepRAppTutorial.html
http://wired.freehep.org/index.html
http://www.fisica.uniud.it/~glast/FRED/

Visualization

(Optional) You may decide to write .zip files with events and geometry separated (but linked). This resultsin a
smaller zip file, as the geometry is only written once. Use the command:

/vi s/ heprep/ appendGeonetry fal se

(Optional) To close thefile, remove the SceneHandler, use:

/vi s/ sceneHandl er/ renove scene-handl er-0

Limitations: Only one SceneHandler can exist at any time, connected to asingle Viewer. Since the HepRep format
isamodel rather than aview thisisnot areal limitation. In WIRED 4 you can create as many views (SceneHan-
dlers) asyou like.

Further information:

» WIRED4 Plugin to the JAS3 Analysis System
* FRED event display
» HepRep graphics format:

http://www.d ac.stanford.edu/~perl/heprep

8.3.8. DAWN

The DAWN drivers are interfaces to Fukui Renderer DAWN, which has been developed by Satoshi Tanaka,
Minato Kawaguti et a (Fukui University). Itisavectorized 3D PostScript processor, and so well suited to prepare
technical high quality outputs for presentation and/or documentation. It is also useful for precise debugging of
detector geometry. Remote visualization, off-line re-visualization, cut view, and many other useful functions of
detector simulation are supported. A DAWN process is automatically invoked as a co-process of Geant4 when
visualization is performed, and 3D data are passed with inter-process communication, via afile, or the TCP/IP
socket.

When Geant4 Visualization is performed with the DAWN driver, the visualized view is automatically saved to
afile named g4. eps in the current directory, which describes a vectorized (Encapsulated) PostScript data of
the view.

There are two kinds of DAWN drivers, the DAWNFILE driver and the DAWN-Network driver. The DAWNFILE
driver isusually recommended, sinceit isfaster and safer in the sense that it is not affected by network conditions.

The DAWNFILE driver sends 3D datato DAWN via an intermediate file, named g4. pr i min the current direc-
tory. Thefile g4. pri mcan be re-visualized later without the help of Geant4. Thisis done by invoking DAWN
by hand:

% dawn g4. prim
DAWN files can also serve as input to two additional programs:

» A standalone program, DAWNCUT, can perform a planar cut on aDAWN image. DAWNCUT takes as input
a.prim file and some cut parameters. Its output is anew .prim file to which the cut has been applied.

» Another standalone program, DAVID, can show you any volume overlap errors in your geometry. DAVID
takes as input a .prim file and outputs a new .prim file in which overlapping volumes have been highlighted.
The use of DAVID is described in section Section 4.1.11 of this manual.

The DAWN-Network driver is amost the same as the DAWNFILE driver except that
» 3D data are passed to DAWN viathe TCP/IP the socket (default) or the named pipe, and that,

If you have not set up network configurations of your host machine, set the environment variable
GADAWN_NAMED Pl PEto"1", e.g., % set env GADAWN_NAMED Pl PE 1. This setting switches the default
socket connection to the named-pipe connection within the same host machine. The DAWN-Network driver also
saves the 3D datato thefileg4. pri minthe current directory.

237

http://wired.freehep.org/index.html
http://www.fisica.uniud.it/~glast/FRED/
http://www.slac.stanford.edu/~perl/heprep
http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAWN.html

Visualization

8.3.9. Remote Visualization with the DAWN-Network Driver

Visualization in Geant4 is considered to be "remote” when it is performed on a machine other than the Geant4
host. Some of the visualization drivers support this feature.

Usually, the visualization host is your local host, while the Geant4 host is a remote host where you log in, for
example, with thet el net command. This enables distributed processing of Geant4 visualization, avoiding the
transfer of large amounts of visualization data to your terminal display via the network. This section describes
how to perform remote Geant4 visualization with the DAWN-Network driver. In order to do it, you must install
the Fukui Renderer DAWN on your local host beforehand.

The following steps realize remote Geant4 visualization viewed by DAWN.

1. Invoke DAWN with "-G" option on your local host:
Local _Host> dawn -G

Thisinvokes DAWN with the network connection mode.
. Login to the remote host where a Geant4 executable is placed.
3. Set an environment variable on the remote host as follows:

N

Renot e_Host > set env ADAWN_HOST_NAME | ocal _host _nane

For example, if you are working in the local host named "arkoop.kek.jp", set this environment variable as
follows:

Renot e_Host > set env GADAWN_HOST_NAME ar koop. kek. j p

This tells a Geant4 process running on the remote host where Geant4 Visualization should be performed, i.e.,
where the visualized views should be displayed.
4. Invoke a Geant4 process and perform visualization with the DAWN-Network driver. For example:

I dl e> /vis/open DAWN
I dl e> /vis/drawWol unme
Idl e> /vis/viewer/flush

In step 4, 3D scene data are sent from the remote host to the local host as DAWN-formatted data, and the local
DAWN will visualize the data. The transferred data are saved as afile named g4. pr i min the current directory
of theloca host.

Further infor mation:

* http://geantd.kek.jp/ GEANT4/visDAWN/About DAWN.html
* http://geant4.kek.jp/GEANT4/viSDAWN/GAPRIM_FORMAT _24/

Further infor mation:
» Fukui Renderer DAWN:

http://geantd.kek.jp/ GEANT4/vissDAWN/About DAWN.html
» The DAWNFILE driver:

http://geant4.kek.jp/ GEANT4/viSGEANT4/DAWNFILE_driver.html
* The DAWN-Network driver:

http://geant4.kek.jp/ GEANT4/vissGEANT4/DAWNNET _driver.html
» Environmental variablesto customize DAWN and DAWN drivers:

238

http://geant4.kek.jp/GEANT4/vis/DAWN/G4PRIM_FORMAT_24/
http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAWN.html
http://geant4.kek.jp/GEANT4/vis/DAWN/G4PRIM_FORMAT_24/
http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAWN.html
http://geant4.kek.jp/GEANT4/vis/GEANT4/DAWNFILE_driver.html
http://geant4.kek.jp/GEANT4/vis/GEANT4/DAWNNET_driver.html

Visualization

http://geant4.kek.jp/ GEANT4/vis DAWN/DAWN_ENV..html

http://geant4.kek.jp/ GEANT4/viSGEANT4/g4vis_on_linux.html
* DAWN format (g4.prim format) manual:

http://geant4.kek.jp/ GEANTA4/ViSDAWN/GAPRIM_FORMAT _24/
» Geant4 Fukui University Group Home Page:

http://geant4.kek.jo/ GEANT4/vig/
« DAWNCUT:

http://geant4.kek.jp/ GEANT4/vis DAWN/About_ DAWNCUT.html
« DAVID:

http://geantd.kek.jp/ GEANT4/vissDAWN/About DAVID.html
e Geant4 Visualization Tutorial using the DAWN Renderer:

http://geant4.slac.stanford.edu/Presentations/vis GDAWNTutorial/GADAWNT utoria .html

8.3.10. VRML

These driverswere devel oped by Satoshi Tanakaand Y asuhide Sawada (Fukui University). They generate VRML
files, which describe 3D scenes to be visualized with a proper VRML viewer, at either aloca or aremote host. It
realizes virtual -reality visualization with your WWW browser. There are many excellent VRML viewers, which
enable oneto perform interactive spinning of detectors, walking and/or flying inside detectors or particle showers,
interactive investigation of detailed detector geometry etc.

There are two kinds of VRML drivers: the VRMLFILE driver, and the VRML-Network driver. The VRMLFILE
driver isusually recommended, sinceit isfaster and safer in the sense that it is not affected by network conditions.

The VRMLFILE driver sends 3D data to your VRML viewer, which is running on the same host machine as
Geant4, viaan intermediate file named g4. wr | created in the current directory. Thisfile can be re-visualization
afterwards. Invisualization, the name of the VRML viewer should be specified by setting the environment variable
GAVRM._ VI EVIER beforehand. For example,

% set env. GAVRML_VI EMER " net scape"
Its default value is NONE, which means that no viewer isinvoked and only thefile g4. wr | is generated.
Remote Visualization with the VRML-Network Driver

Visualization in Geant4 is considered to be "remote” when it is performed on a machine other than the Geant4
host. Some of the visualization drivers support this feature.

Usually, the visualization host is your local host, while the Geant4 host is a remote host where you log in, for
example, with thet el net command. This enables distributed processing of Geant4 visualization, avoiding the
transfer of large amounts of visualization data to your terminal display viathe network.

In order to perform remote visualization with the VRML-Network driver, the following must beinstalled on your
local host beforehand:

1. aVRML viewer
2. the Javaapplication g4vr m vi ew.

The Javaapplication g4vr m vi ewisincluded as part of the Geant4 package and is located at:

sour ce/ vi sual i zati on/ VRM./ g4vr ml vi ew
Installation instructions for g4vr m vi ew can be found in the READVE file there, or on the WWW page below.

The following steps realize remote Geant4 visualization displayed with your local VRML browser:

239

http://geant4.kek.jp/GEANT4/vis/DAWN/DAWN_ENV.html
http://geant4.kek.jp/GEANT4/vis/GEANT4/g4vis_on_linux.html
http://geant4.kek.jp/GEANT4/vis/DAWN/G4PRIM_FORMAT_24/
http://geant4.kek.jp/GEANT4/vis/
http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAWNCUT.html
http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAVID.html
http://geant4.slac.stanford.edu/Presentations/vis/GDAWNTutorial/G4DAWNTutorial.html

Visualization

1. Invoketheg4vr m vi ewon your local host, giving aVRML viewer name as its argument:
Local _Host> java g4vrnlview VRM__viewer_nane
For example, if you want to usethe Netscape browser asyour VRML viewer, executeg4vr m vi ewasfollows:
Local Host> java g4vrnlview netscape

Of course, the command path to the VRML viewer should be properly set.
. Log in to the remote host where a Geant4 executable is placed.
3. Set an environment variable on the remote host as follows:

N

Renot e_Host > set env GAVRML_HOST_NAME | ocal _host _nane

For example, if you are working on the local host named "arkoop.kek.jp", set this environment variable as
follows:

Renot e_Host > set env GAVRM._HOST_NAME ar koop. kek. j p

This tells a Geant4 process running on the remote host where Geant4 Visualization should be performed, i.e.,
where the visualized views should be displayed.
4. Invoke a Geant4 process and perform visualization with the VRML-Network driver. For example:

I dl e> /vis/open VRM.2
I dl e> /vi s/ drawvol ume
1 dl e> /vis/viewer/update

In step 4, 3D scene data are sent from the remote host to the local host as VRML-formatted data, and the VRML
viewer specified in step 3 isinvoked by the g4vr m vi ew process to visualize the VRML data. The transferred
VRML dataare saved asafile named g4. wr | in the current directory of the local host.

Further information:
* http://geantd.kek.jp/ GEANT4/ViSGEANT4/VRML _net_driver.html
Further information (VRML drivers):

¢ http://geant4.kek.jp/GEANT4/ViSGEANT4/VRML_file_driver.html
¢ http://geant4.kek.jp/GEANTA/ViSGEANT4/VRML_net_driver.html

Sample VRML files:
* http://geant4.kek.jp/GEANTA/VISGEANT4/VRML2_FIG/
Further information (VRML language and browsers):

* http://www.vrmlsite.com/

8.3.11. RayTracer

This driver was developed by Makoto Asai and Minamimoto (Hirosihma Instutute of Technology). It performs
ray-tracing visualization using the tracking routines of Geant4. It is, therefore, available for every kinds of shapes/
solids which Geant4 can handle. It is also utilized for debugging the user's geometry for the tracking routines of
Geant4. It is well suited for photo-realistic high quality output for presentation, and for intuitive debugging of
detector geometry. It produces a JPEG file. This driver is by default listed in the available visualization drivers
of user's application.

240

http://geant4.kek.jp/GEANT4/vis/GEANT4/VRML_net_driver.html
http://geant4.kek.jp/GEANT4/vis/GEANT4/VRML_file_driver.html
http://geant4.kek.jp/GEANT4/vis/GEANT4/VRML_net_driver.html
http://geant4.kek.jp/GEANT4/vis/GEANT4/VRML2_FIG/
http://www.vrmlsite.com/

Visualization

Some pieces of geometries may fail to show up in other visualization drivers (due to algorithms those drivers use
to compute visualizable shapes and polygons), but RayTracer can handle any geometry that the Geant4 navigator
can handle.

Because RayTracer in essence takes over Geant4's tracking routines for its own use, RayTracer cannot be used
to visualize Trajectories or hits.

An X-Window version, called RayTracerX, can be selected by setting G4VI S_BUI LD _RATRACERX_DRI VER
at Geant4 library build time and G4Vl S_USE_RAYTRACERX at application (user code) build time (assuming
you use the standard visualization manager, G4Vi sExecut i ve, or an equally smart vis manager). RayTracerX
builds the same jpeg file as Ray Tracer, but simultaneously renders to screen so you can watch as rendering grows
progressively smoother.

RayTracer has its own built-in commands - / vi s/ rayTr acer/ Alternatively, you can treat it as a normal
vissystem and use/ vi s/ vi ewer / ... commands, e.g:

/vi s/ open RayTracer X

/vi s/ dr awvol ure

/vis/viewer/set/viewpoi nt ThetaPhi 30 30
/vis/viewer/refresh

The view parameters are trandated into the necessary RayTracer parameters.

RayTracer is compute intensive. If you are unsure of a good viewing angle or zoom factor, you might be advised
to choose them with a faster renderer, such as OpenGL, and transfer the view parameters with / vi s/ vi ew
er/ copyVi ewFr om

/vi s/ open OGL

/vi s/ dr awvol une

/vis/viewer/zoom # plus any /vis/viewer/commands that get you the view you want.
/vi s/ open RayTracer X

/vi s/ vi ewer/ copyVi ewFr om vi ewer - 0

/vis/viewer/refresh

8.3.12. gMocren

The gMocrenFile driver creates a gdd file suitable for viewing with the gMocren volume visualizer. gMocren, a
sophisticated tool for rendering volume data, can show volume data such as Geant4 dose distrubutions overlaid
with scoring grids, trajectories and detector geometry. gMocren provides additional advanced functionality such
as transfer functions, colormap editing, image rotation, image scaling, and image clipping.

gMacren isfurther described at http://geant4.kek.jp/gMocren/ . At thislink you will find the gM ocren download,
the user manual, atutorial and some example gdd datafiles.

Please note that the gMocren file driver is currently considered a Beta release. Users are encouraged to try this
driver, and feedback is welcome, but users should be aware that features of this driver may change in upcoming
releases.

To send volume data from Geant4 scoring to a gMocren file, the user needs to tell the gMocren driver the name
of the specific scoring volume that is to be displayed. For scoring done in C++, thisis the name of the sensitive
volume. For command-based scoring, thisis the name of the scoring mesh.

/ vi s/ gMocr en/ set Vol uneNane <vol ume_nane>
The following is an example of the minimum command sequence to send command-based scoring data to the a
gMacren file:

an exanpl e of a conmand-based scoring definition

/ scor el creat e/ boxMesh scori ngMesh # name of the scoring nesh

/ scor e/ mesh/ boxSi ze 10. 10. 10. cm # di mensi on of the scoring nesh

/ score/ mesh/nBin 10 10 10 # nunber of divisions of the scoring nesh
/ score/ quantity/energyDeposit eDep # quantity to be scored

/ scor e/ cl ose

241

http://geant4.kek.jp/gMocren/

Visualization

configuration of the gvocren-file driver
/vi s/ scene/create

/ vi s/ open ghvbcrenFile

[vi s/ gMocr en/ set Vol uneNane scori ngMesh

To add detector geometry to thisfile:

/vis/viewer/flush

To add trajectories and primitive scorer hitsto thisfile:

/vis/scene/add/trajectories
/vi s/ scene/ add/ pshits
/run/ beanDn 1

gMoacrenFilewill write afile named G4_00.gd to the current directory. Subsequent draws will create files named
g4 01.gdd, g4 02.gdd, etc. An alternate output directory can be specified with an environment variable:

export GAGWocrenFi |l e_DEST_DI R=<someQ her Di r/ someQt her SubDi r/ >

View the resuling gMocren files with the gMocren viewer, available from: http://geant4.kek.jp/gMocren/ .

8.3.13. Visualization of detector geometry tree

ASCIITREE isavisualization driver that is not actually graphical but that dumps the volume hierarchy asasimple
text tree.

Each call to /vis/viewer/flush or /vis/drawTree will dump the tree.

ASCIITree has command to control its verbosity, / vi s/ ASCI | Tr ee/ ver bose. The verbosity value controls
the amount of information available, e.g., physical volume name alone, or also logical volume and solid names.
If the volume is "sensitive" and/or has a "readout geometry", this may aso be indicated. Also, the mass of the
physical volume tree(s) can be printed (but beware - higher verbosity levels can be computationally intensive).

At verbosity level 4, ASCIITree calculates the mass of the complete geometry tree taking into account daughters
up to the depth specified for each physical volume. The calculation involves subtracting the mass of that part of the
mother that is occupied by each daughter and then adding the mass of the daughter, and so on down the hierarchy.

/vi s/ ASCI | Tr ee/ Ver bose 4
/vis/viewer/flush
"HadCal ori met er Physical ": 0 / "HadCal ori neterLogi cal" / "HadCal ori net er Box" (4Box) ,
1.8 n8 , 11.35 g/cnB8
"HadCal Col umPhysical ":-1 (10 replicas) / "HadCal Col umLogi cal " / "HadCal Col utmBox" (G4Box) ,
180000 cnB, 11.35 g/cnB
"HadCal Cel | Physical ":-1 (2 replicas) / "HadCal Cel | Logi cal" / "HadCal Cel | Box" (4Box),
90000 cnB8, 11.35 g/cnB
"HadCal Layer Physical ":-1 (20 replicas) / "HadCal LayerLogical" / "HadCal Layer Box" (G4Box),
4500 cnB, 11.35 g/cnB
"HadCal Sci nti Physical":0 / "HadCal Sci nti Logical" / "HadCal Sci nti Box" (G4Box),
900 cnB, 1.032 g/cnB

Cal cul ati ng mass(es)...
Overall volume of "worldPhysical":0, is 2400 nB
Mass of tree to unlimted depth is 22260.5 kg

Some more examples of ASCIITreein action:

I dl e> /vis/ASCI | Tree/ ver bose 1
I dl e> /vis/drawlree
Set verbosity with "/vis/ASCl| Tree/ ver bose
< 10: - does not print daughters of repeated placenments, does not repeat replicas.
>= 10: prints all physical vol unes.
The level of detail is given by verbosity%0:
for each vol une:
>= 0: physical volune nane.
>= 1: |ogical volune name (and nanes of sensitive detector and readout geonetry, if any).
>= 2: solid nanme and type.

HOHHHHHHH

242

http://geant4.kek.jp/gMocren/

Visualization

>= 3

>= b5: daughter-subtracted vol une and nass.
and in the summary at the end of printing:

>= 4: daughter-included mass of top physical

vol ume and density.

vol une(s) in scene to depth specified.

"Cal orineter", copy no.
"Layer", copy no. -1,
" Absor ber", copy no.
"Gap", copy no. O, belongs to |ogical

0, belongs to | ogical volune "Calorineter"

bel ongs to | ogical volune "Layer" (10 replicas)
0, belongs to |ogical volunme "Absorber"

vol ume " Gap"

I dl e> /vis/ASCI | Tree/ ver bose 15

I dl e> /vis/drawlree

"tube_phys":0 / "tube_L" / "tube"(GATubs), 395841 cnB8, 1.782 ng/cnB,
9. 6539e-08 mmB, 1.72032e-10 ny
"divided_tube_L" / "divided_tube"(&4Tubs),
1.782 ng/cnB, 7587.54 cnB, 13.521 g
"di vi ded_t ube_i nset _phys": 0 / "divided_tube_inset_L" / "divided_tube_inset"(&XTubs),
58385.9 cnB, 1.782 ng/cnB, 6.03369e-09 nmmB, 1.0752e-11 ny
"sub_di vided_tube_L" / "sub_divi ded_t ube"(&G4Tubs),
14596.5 cnB, 1.782 ng/cnB, 12196.5 cnB, 21.7341 g

"di vi ded_t ube_phys":0 / 65973. 4 cnB,

"sub_di vi ded_t ube_phys": 0 /

Cal cul ati ng mass(es). ..
Overall volunme of "expHall _P":0, is 8000 nB

is 78414 kg

and the daughter-included mass to unlimted depth

For the complete list of commands and options, seethe Control...UlCommands section of this user guide.

8.3.14. GAG Tree

The GAGTreedriver provides alisting of the detector geometry tree within GAG, the Geant Adaptive GUI, from
$GAINSTALL/environmentsMOMO/MOMO.jar. GAG alows "folding/un-folding" a part of the geometry tree,
using the Tree Widget in Java:

GAG [=iisike
File Xtns Geant4 History Help [log to_Fle [to_Terminal [JAS
g'é ‘:s“" | [/vis/GAGTree/verkose 10 =
[jenable
[disable
[y verbose B
[y drawTree | i|/vis/open
[draswvolume | “|vis/open [<graphics-system- name= | [<pisels=]
[drawiesy | “[For this graphics systen, creates a scene handler ready for drawing
7| “[The acene handler iecomescurrent.
[y open | The scene handler name is auto-generated.
[specify | IThe 2na is the window size hint.
o ggiﬂgﬁme | ‘leraphics- oystem-name|[GAGTree - ‘(s)
Tee
D e : L @
© [ecene DTREE =B
@ [sceneHandler [exampleN03
o [viewer ® DI world 0.0
> o Ll s
[rampleND3 in Idle [yAbsorber 0.3
[ycap.04
o Qlawer 15 2 S 5 rone
© [Jlayer-1.8 2 733320 872 fuin
[y Absorber.0.9
[Gap.0.10
@ [Jlaver.-111
9 [Qlaver.-114
[y Absorber.0.15
[Gap.0.16
@ Jlayer.-1.17
@ [Jlayer.-1.20
@ Jlaver.-1.23
[y Absorber.0.24
[y cap.0.25
@ Jlayer.-1.26
| e-[Tlayer-1.20

J% kterm | % kterm

8.3.15. XML Tree

The XML description of the geometry tree can be created in Geant4 by the XML Tree driver. The XML source
can aso be edited on the fly. The created XML files are visualizable with any XML browser (in Windows, agood

XML viewer is XML Notepad).

 Folding and un-folding:

|?) # viewer-0..] % DTREE

|% kerm |z GAG Josg
7 e GivP Pl

243

./AllResources/Control/UIcommands/_vis_.html

Visualization

£l Output - XML Motepad

File Edit “iew Inzert Toolz Help

D|S|E| of &[5 da| Plos| «|+|e|e]+]=[F

Structure | | alues
El'Ij o ld
1]

i@ copy_no

& logical_volume "Wiar Id
& =zolid name "Wiar Id
i @ zolid_tvpe G4 B
B3 Calorimeter
Y copy_no 0
$ logical_volume Calorimeter
% =olid name Calorimeter
i @ zolid_tvpe G4 B
E@ Lawer

i @ copy_no -1
- @ logical_volume Laver
- @ =zolid_name Layer
- @ solid_tvpe G4 Box
-3 Absorber
o 68

n iap
i @ Copy_no 1]

logical_wolume Giap
zolid_name Gap
zolid_tvpe 54 Box

For Help, pres= F1 v

 Searching astring:

<ML Motepad

Edit Wiew Insert Toolz Help

D||E| of #[5e|@] da] F[os| «|+|e[+[+]=[=

Structure | Yalues
== torld
- COpY_No 0
- @ logical_volume YWar|d
- § zolid_name Wiar Id
o @ zolid_tvpe G4 Blox
E@ Calarimeter
‘ Copy_ho 0
o logical_ valume Calorimeter

§ =olid name Calorimeter

o @ zolid_type G4 Baox

=23 e
% copv_no -1

logical volume Lawer
z0lid_name Layer
solid, [t

i Absa
-{Z3 Gap | Find what: ILa_l,Jer

Search in
[~ Caontent

¥ Element Tags
[~ atribute Mames

' Diirection
[T Attribute Walues
[Comments " Up 1% Down

[T Match case

Far Help, prezs Fl

244

Visualization

8.4. Controlling Visualization from Commands

This section describes just a few of the more commonly used visualization commands. For the complete list of
commands and options, see the Control...UlCommands section of this user guide.

For simplicity, this section assumes that the Geant4 executable was compiled incorporating the DAWNFILE and
the OpenGL-Xlib drivers. For details on creating an executable for visualization see Section 8.2.

8.4.1. Scene, scene handler, and viewer

In using the visualization commands, it is useful to know the concept of "scene", "scene handler”, and "viewer".
A "scene" is a set of visualizable raw 3D data. A "scene handler" is a graphics-data modeler, which processes
raw datain a scene for later visualization. And a "viewer" generates images based on data processed by a scene
handler. Roughly speaking, a set of a scene handler and a viewer corresponds to a visualization driver.

The steps of performing Geant4 visualization are explained bel ow, though some of these steps may be donefor you
so that in practice you may use as few as just two commands (such as /vis/open OGLIX plus /vis/drawVolume).
The seven steps of visualization are:

Step Command Alternative command
1 Create a scene handler and|/vis/sceneHandler/create | /vis/open
aviewer Ivislviewer/create
Create an empty scene Ivig/scene/create IvigdrawV olume
Add raw 3D datato the cre- | /vis/scene/add/volume
ated scene
4 Attach the current scene to|/vis/sceneHandler/attach

the current scene handler

5 Set camera parameters,|E.g., /vis/viewer/set/view-
drawing style (wire-|point
frame/surface), etc

6 Make the viewer execute|/vis/viewer/refresh
visualization
7 Declare the end of visual-|/vis/viewer/flush

ization for flushing

Table 8.2.

For details about the commands, see below.
These seven steps can be controlled explicitly to create multiple scenes and multiple viewers, each with its own

set of parameters, with easy switching from one scene to another. But for the most common case of just having
one scene and one viewer, many steps are handled implicitly for you.

8.4.2. Create a scene handler and a viewer: / vi s/ open
command

Command "/ vi s/ open" creates a scene handler and a viewer, which corresponds to Step 1.
Command: /vi s/ open [driver_tag_nane]
* Argument

A name of (amode of) an available visualization driver.

245

./AllResources/Control/UIcommands/_vis_.html

Visualization

» Action

Create avisudlization driver, i.e. a set of a scene hander and aviewer.
e Example: Create an OpenGL generic driver with itsimmediate mode

I dl e> /vis/open OGLI
+ Additional notes

For immediate viewers, such as OGL I, your geometry will immediately be rendered in the new GL window
How to list available driver_tag_name:

I dl e> hel p /vis/open

or

I dl e> hel p /vis/sceneHandl er/create

Thelist is, for example, displayed as follows:

Candi dates : DAWNFI LE OGL

For additional options, seethe Control...UlCommands section of this user guide.

8.4.3. Create an empty scene: /vi s/ scene/ creat e com-
mand

Command "/ vi s/ scene/ cr eat e" creates an empty scene, which corresponds to Step 2.
Command: /vis/scenel/create [scene_nane]
* Argument

A name for this scene. Created for you if you don't specify one.

8.4.4. Visualization of a physical volume: / vi s/ dr awNol -
ume command

Command "/ vi s/ dr awMol une" adds a physical volume to the scene. It also does some of the other steps, if
you haven't done them explicitly. It takes care of steps 2, 3, 4 and 6. Command "/ vi s/ vi ewer / f | ush" should
follow in order to do the final Step 7.

Commands:

[vi s/ drawvol une [physi cal - vol une- nane]

Idl e> /vis/viewer/flush
* Argument

A physical-volume name. The default value is "world", which is omittable.
* Action

246

./AllResources/Control/UIcommands/_vis_.html

Visualization

Creates a scene consisting of the given physical volume and asks the current viewer to draw it. The scene
becomes current. Command "/ vi s/ vi ewer / f | ush" should follow this command in order to declare end
of visualization.

» Example: Visualization of the whole world with coor dinate axes

1 dl e> /vis/drawol unme
I dl e> /vis/scene/ add/axes 0 0 0 500 mm
1dl e> /vis/viewer/flush

8.4.5. Visualization of alogical volume: / vi s/ speci fy
command

Command "/ vi s/ speci f y" visualizes alogical volume. If alows you to control how much details is shown
and whether to show booleans, voxels and readout geometries. It also does some of the other steps, if you haven't
done them explicitly. It takes care of steps 2, 3, 4 and 6. Command "/ vi s/ vi ewer / f | ush" should follow the
command in order to do the final Step 7.

Command: /vis/specify [I|ogical-volune-nane][depth-of-descent] [bool eans-
flag] [voxel s-flag] [readout-flag]

* Argument

A logical-volume name.
» Action

Creates ascene consisting of the given logical volume and asksthe current viewer to draw it. The scene becomes
current.

» Example (visualization of a selected logical volume with coordinate axes)

I dl e> /vis/specify Absorber

I dl e> /vis/scene/add/axes 0 0 0 500 mm

I dl e> /vis/scene/add/text 0 O O nmm 40 -100 -200 LogVol : Absor ber
Idl e> /vis/viewer/flush

For more options, seethe Control...UlCommands section of this user guide.

8.4.6. Visualization of trajectories: / vi s/ scene/ add/ tr a-
j ectories command

Command "/ vi s/ scene/ add/traj ectories [snoboth] [rich]" adds trgectories to the current
scene. Theoptional parameters™smooth” and/or "rich" (you may specify either, both or neither) invoke, if "smooth"
is specified, the storing and displaying of extra points on curved trajectories and, if "rich” is specified, the storing,
for possible subsequent selection and display, of additional information, such as volume names, creator process,
energy deposited, global time. Be aware, of course, that thisimposes computational and memory overheads. Note
that thisautomatically issuesthe appropriate”/ t r acki ng/ st or eTr aj ect or y" command so that trgjectories
are stored (by default they are not). The visualization is performed with the command "/ r un/ bean®On" unless
you have non-default values for /vis/scene/endOf EventAction or /vis/scene/endOfRunAction (described below).

Command: /vi s/ scene/add/trajectories [smooth] [rich]
* Action

The command adds trgjectories to the current scene. Trajectories are drawn at end of event when the scenein
which they are added is current.
» Example: Visualization of trajectories

247

./AllResources/Control/UIcommands/_vis_.html

Visualization

I dl e> /vis/scenel/add/trajectories
I dl e> /run/beanOn 10

* Additional note 1

See the section Section 8.7.3 Enhanced Trajectory Drawing for details on how to control how trajectories are
color-coded.
» Additional note 2

Events may be kept and reviewed at end of run with
I dl e> /vis/reviewKept Events
Keep all eventswith

I dl e> /vis/scene/ endO Event Acti on accunul ate [maxNunber]

(see Section 8.4.12)

or keep some chosen subset with
GAEvent Manager : : Get Event Manager () - >KeepTheCurrent Event () ;

as described in Example 6.7.

To suppress drawing during arun

I dl e> /vis/disabl e
I dl e> /run/beanOn 10000

then at end of run

Idle> /vis/enable
Idl e> /vis/reviewKept Events

For more options, seethe Control...UlCommands section of this user guide.

8.4.7. Visualization of hits: / vi s/ scene/ add/ hi t s com-
mand

Command "/ vi s/ scene/ add/ hi t s" adds hits to the current scene, assuming that you have a hit class and
that the hits have visualization information. The visualization is performed with the command "/ r un/ beantn"

unless you have non-default values for /vig/scene/endOfEventAction or /vis/scene/lendOfRunAction (described
above).

8.4.8. Visualization of Scored Data

Scored data can be visualized using the commands "/ scor e/ dr awPr oj ecti on" and"/ scor e/ dr awCol -
umm". For details, see examples/extended/runAndEvent/REQ3.

8.4.9. HepRep Attributes for Hits

The HepRep file formats, HepRepFile and HepRepX ML, attach various attributes to hits such that you can view
these attributes, label trajectories by these attributes or make visibility cuts based on these attributes. Exampl es of

248

./AllResources/Control/UIcommands/_vis_.html

Visualization

adding HepRep attributes to hit classes can be found in examples /extended/analysis/A01 and /extended/runAn-
dEvent/REOL.

For example, in example REO1's class REO1Cal orimeterHit.cc, available attributes will be:

» Hit Type

o Track ID

« ZCdlID

» Phi Cell ID

» Energy Deposited

» Energy Deposited by Track
* Position

* Logica Volume

You can add additional attributes of your choosing by modifying the relevant part of the hit class (look for the
methods GetAttDefs and CreateAttValues).

8.4.10. Basic camera workings:/vi s/ vi ewer/ commands

Commands in the command directory "/ vi s/ vi ewer / " set camera parameters and drawing style of the current
viewer, which correspondsto Step 5. Notethat the cameraparameters and the drawing style should be set separately
for each viewer. They can be initialized to the default values with command "/ vi s/ vi ewer/ r eset ". Some
visualization systems, such as the VRML and HepRep browsers also allow camera control from the standalone
graphics application.

Just a few of the camera commands are described here. For more commands, see the Control...UlCommands
section of this user guide.

The view is defined by atarget point (initially at the centre of the extent of all objectsin the scene), an up-vector
and a viewpoint direction - see Figure 8.1. By default, the up-Vector is parallél to the y-axis and the viewpoint
directionisparallel to the z-axis, so the the view shows the x-axis to the right and the y-axis upwards - a projection
on to the canonical x-y plane - see Figure 8.2.

The target point can be changed witha/ vi s/ vi ewer / set command or with the/ vi s/ vi ewer/ pan com-
mands. The up-vector and the viewpoint direction can also be changed with / vi s/ vi ewer/ set commands.
Care must be taken to avoid having the two vectors paralel, for in that case the view is undefined.

A

up vector

viewpoint direction

point

Figure 8.1. Up-vector and viewpoint direction

249

./AllResources/Control/UIcommands/_vis_.html

Visualization

y

e

up vector

viewpoint direction
i
ﬁz
Figure8.2. Thedefault view
Command: /vi s/ vi ewer/set/vi ewpoi nt ThetaPhi [theta] [phi] [deg|rad]

* Arguments

Arguments "theta" and "phi" are polar and azimuthal camera angles, respectively. The default unit is"degree".
» Action

Set aview point in direction of (theta, phi).
» Example: Set the viewpoint in direction of (70 deg, 20 deg) /

1 dl e> /vis/viewer/set/viewoint ThetaPhi 70 20

» Additional notes

Camera parameters should be set for each viewer. They are initialized with command "/ vi s/ vi ewer/ r e-
set".

Command: /vi s/ viewer/zoom [scal e_factor]
* Argument

The scale factor. The command multiplies magnification of the view by this factor.
* Action

Zoom up/down of view.
» Example: Zoom up by factor 1.5

I dl e> /vis/viewer/zoom 1.5

» Additional notes

250

Visualization

Camera parameters should be set for each viewer. They are initialized with command "/ vi s/ vi ewer/ r e-
set".

A similar pair of commands, scale and scaleTo allow non-uniform scaling (i.e., zoom differently along different
axes). For details, seethe Control...UlCommands section of this user guide.

Command: /vis/viewer/set/style [style_nange]

Arguments

Candidate values of the argument are "wireframe" and "surface”. ("w" and "s" also work.)
Action

Set a drawing style to wireframe or surface.
Example: Set the drawing styleto " surface"

I dl e> /vis/viewer/set/style surface

Additional notes

The style of some geometry components may have been forced one way or the other through calls in compiled
code. The set/style command will NOT override such force styles.

Drawing style should be set for each viewer. The drawing style is initialized with command "/ vi s/ vi ew
er/reset".

8.4.11. Declare the end of visualization for flushing: / vi s/
vi ewer/fl ush command

Command: /vi s/ vi ewer/fl ush

Action

Declare the end of visualization for flushing.
Additional notes

Command "/ vi s/ vi ewer/ f | ush" should follow "/ vi s/ dr awMol une", "/ vi s/ speci fy", etcin or-
der to complete visualization. It corresponds to Step 7.

Theflush is done automatically after every /run/beamOn command unless you have non-default valuesfor /vis/
scene/endOfEventAction or /vig/scene/endOfRunAction (described above).

8.4.12. End of Event Action and End of Run Action: / vi s/
vi ewer / endOf Event Acti on and / vi s/ vi ewer/ end-
Of RunAct i on commands

By default, a separate picture is created for each event. You can change this behavior to accumulate multiple
events, or even multiple runs, in asingle picture.

Command: /vi s/ scene/ endf Event Acti on [refresh|accunul at e]

Action

Control how often the picture should be cleared. r ef r esh means each event will be written to a new picture.
accurnul at e means events will be accumulated into a single picture. Picture will be flushed at end of run,
unlessyou have aso set/ vi s/ scene/ endf RunActi on accunul at e

Additional note

251

./AllResources/Control/UIcommands/_vis_.html

Visualization

You may instead choose to use update commands from your BeginOfRunAction or EndOfEventAction, asin
early examples, but now the vis manager ia able to do most of what most users require through the above
commands.

Command: /vi s/ scene/ endOf RunAction [refresh|accunul at e]
» Action

Control how often the picture should be cleared. r ef r esh means each run will be written to a new picture.
accurnul at e meansrunswill be accumulated into asingle picture. To start anew picture, you must explicitly
issue/ vi s/ viewer/refresh,/vis/viewer/updateor/vis/viewer/flush

8.4.13. HepRep Attributes for Trajectories

The HepRep file formats, HepRepFile and HepRepX ML, attach various attributesto trajectories such that you can
view these attributes, label trajectories by these attributes or make visibility cuts based on these attributes. If you
use the default Geant4 trajectory class from /tracking/src/G4Trajectory.cc (this is what you get with the plain /
vi s/ scene/ add/ tr aj ect ori es command), available attributes will be:

e Track ID

* Parent ID

 Particle Name

» Charge

* PDG Encoding

e Momentum 3-Vector
* Momentum magnitude
» Number of points

Using/ vi s/ scene/ add/ traj ectori es ri ch will get you additional attributes. Y ou may aso add addi-
tional attributes of your choosing by modifying therelevant part of G4Trajectory (look for the methods GetAttDefs
and CreateAttValues). If you are using your own tragjectory class, you may want to consider copying these methods
from G4Tragjectory.

8.4.14. How to save a visualized views to PostScript files

Most of the visualization drivers offer waysto save visualized viewsto PostScript files (or Encapsul ated PostScript
(EPS) files) by themselves.

* DAWNFILE

The DAWNFILE driver, which co-works with Fukui Renderer DAWN, generates "vectorized" PostScript da-
tawith "analytical hidden-line/surface removal”, and so it is well suited for technical high-quality outputs for
presentation, documentation, and debugging geometry. In the default setting of the DAWNFILE drivers, EPS
filesnamed "g4_00. eps, g4_01.eps, g4_02. eps,..." are automatically generated in the current di-
rectory each time when visualization is performed, and then a PostScript viewer "gv"is automatically invoked
to visualize the generated EPSfiles.

For large data sets, it may take time to generate the vectorized PostScript data. In such a case, visualize the 3D
scene with a faster visualization driver beforehand for previewing, and then use the DAWNFILE drivers. For
example, the following visualizes the whole detector with the OpenGL-Xlib driver (immediate mode) first, and
then with the DAWNFILE driver to generate an EPSfile g4_XX. eps to save the visualized view:

I nvoke the OpenGL visualization driver in its i medi ate node
/vi s/ open OGLI X

Canera setting
/vis/viewer/set/vi ewoi nt ThetaPhi 20 20

Canera setting
/ vi s/ dr awVol une

252

Visualization

/vis/viewer/flush

I nvoke the DAWNFI LE visualization driver
/vi s/ open DAWNFI LE

Canera setting
/vi s/ viewer/set/viewoi nt ThetaPhi 20 20

Canera setting
/ vi s/ dr awVol une
/vis/viewer/flush

Thisisagood example to show that the visualization drivers are complementary to each other.
* Openlnventor

In the Openlnventor drivers, you can simply click the "Print" button on their GUI to generate a PostScript file
asahard copy of avisualized view.
* OpenGL

The OpenGL drivers can also generate PostScript files, either from a pull-down menu (Motif and Qt drivers) or
with/ vi s/ ogl / pri nt EPS. It can generate either vector or bitmap PostScript datawith/ vi s/ ogl / set/
pri nt Mode ("vectored" or "pixmap"). Y ou can changethefilenameby / vi s/ ogl / set/ pri nt Mode And
theprint sizeby / vi s/ ogl / set/ pri nt Si ze In generating vectorized PostScript data, hidden-surface re-
moval is performed based on the painter's algorithm after dividing facets of shapesinto small sub-triangles.

Notethat afundamental limitation of the gl2pslibrary used for this PostScript printing causesthe/ vi s/ vi ew
er/ set/ hi ddenMar ker command to be ignored. Trajectories will always be fully drawn in the printEPS
output even when the hiddenMarker hidden line removal option has been set to hide these trgjectories in the
corresponding OpenGL view.

The/vi s/ ogl/set/printSize command can be used to print EPS files even larger than the current
screen resolution. This can allow creation of very large images, suitable for creation of posters, etc. The only
size limitation is the graphics card's viewport dimension: GL_MAX_VIEWPORT_DIMS

Invoke the QpenGL visualization driver in its stored node
/vi s/ open OGLSX

Canera setting
/vis/viewer/set/viewpoi nt ThetaPhi 20 20

Camera setting
/ vi s/ dr awVol une
/vis/viewer/flush

set print node to vectored
/vis/ogl/set/printMde vectored

set print size |larger than screen
/vis/ogl/set/printSize 2000 2000

print
/vi s/ ogl/print EPS

* HepRep

The HepRApp HepRep Browser and WIRED4 JAS Plug-1n can generate a wide variety of bitmap and vector
output formats including PostScript and PDF.

8.4.15. Culling

"Culling" means to skip visualizing parts of a 3D scene. Culling is useful for avoiding complexity of visuaized
views, keeping transparent features of the 3D scene, and for quick visualization.

Geant4 Visualization supports the following 3 kinds of culling:

 Culling of invisible physical volumes

253

Visualization

 Culling of low density physical volumes.
 Culling of covered physical volumes by others

In order that one or al types of the above culling are on, i.e., activated, the global culling flag should aso be on.

Table 8.3 summarizes the default culling policies.

Culling Type Default Value
global ON
invisible ON
low density OFF
covered daughter OFF

Table8.3. Thedefault culling policies.
The default threshold density of the low-density culling is 0.01 g/cm®.

The default culling policies can be modified with the following visualization commands. (Below the argument
fl ag takesavalueof t rue or f al se.)

gl oba
/vis/viewer/set/culling global flag

invisible
/vis/viewer/set/culling invisible flag

| ow density

"val ue" is a proper value of a treshold density
"unit" is either g/cnB, ng/cnB or kg/nB8
/vis/viewer/set/culling density flag value wunit

covered daughter
/vis/viewer/set/culling coveredDaughters flag density

The HepRepFile graphic system will, by default, include culled objects in the file so that they can still be made
visiblelater from controlsinthe HepRep browser. If this behavior would causefilesto betoo large, you caninstead
choose to have culled objects be omitted from the HepRep file. See details in the HepRepFile Driver section of
this user guide.

8.4.16. Cut view

Sectioning

"Sectioning" means to make athin slice of a 3D scene around a given plane. At present, this function is supported
by the OpenGL drivers. The sectioning is realized by setting a sectioning plane before performing visualization.
The sectioning plane can be set by the command,

/vis/viewer/set/sectionPlane on x y z units nx ny nz
wherethe vector (X,y,z) definesapoint on the sectioning plane, and the vector (nx,ny,nz) definesthe normal vector
of the sectioning plane. For example, the following sets a sectioning planeto ayz plane at x = 2 cm:

I dl e> /vis/viewer/set/sectionPlane on 2.0 0.0 0.0 cm 1.0 0.0 0.0
Cutting away
"Cutting away" means to remove a half space, defined with a plane, from a 3D scene.

 Cutting away is supported by the DAWNFILE driver "off-line". Do the following:
e Perform visualization with the DAWNFILE driver to generate afile g4. pri m describing the whole 3D
scene.
« Makethe application "DAWNCUT" read the generated file to make a view of cutting away.

254

Visualization

Seethefollowing WWW pagefor details; http://geant4.kek.jp/ GEANT4/vissDAWN/About DAWNCUT.html
 Alternatively, add up to three cutaway planes:

/vi s/ vi ewer/ addCut awayPl ane 0

0OO0Om1l1loO
/vi s/ viewer/addCut awayPlane 0 0 0 mO 1

0
0

and, for more that one plane, you can change the mode to
e (@) "add" or, equivaently, "union" (default) or
e (b) "multiply" or, equivalently, "intersection”:

/vis/viewer/set/cutawayMde multiply
To de-activate:
/vi s/ vi ewer/ cl ear Cut awayPl anes

OpenGL supports this feature.

8.5. Controlling Visualization from Compiled Code

While a Geant4 simulation is running, visualization can be performed without user intervention. This is
accomplished by calling methods of the Visualization Manager from methods of the user action classes
(G4User RunAction and G4User EventAction, for example). In this section methods of the class G4VVisManager,
which ispart of thegr aphi cs_r eps category, are described and examples of their use are given.

8.5.1. G4VVisManager

The Visualization Manager isimplemented by classes G4VisManager and G4VisExecutive. See Section 8.2 "M ak-
ing a Visualization Executable". In order that your Geant4 be compilable either with or without the visualization
category, you should not use these classes directly in your C++ source code, other than in the mai n() function.
Instead, you should use their abstract base class G4VVisManager, defined in thei nt er cons category.

The pointer to the concrete instance of the real Visualization Manager can be obtained as follows:
[]-=---- Getting a pointer to the concrete Visualization Manager instance

GAWi sManager * pWi sManager = GAWi sManager : : Get Concr et el nst ance() ;

The method GAVWVi sManager : : Get Concr et el nst ance() returns NULL if Geant4 is not ready for visu-
alization. Thus your C++ source code should be protected as follows:

[]----- How to protect your C++ source codes in visualization
if (pWVisManager) {
pWVi sManager ->Draw (...);

}
8.5.2. Visualization of detector components

If you have already constructed detector components with logical volumes to which visualization attributes are
properly assigned, you are almost ready for visualizing detector components. All you have to do is to describe
proper visualization commands within your C++ codes, using the Appl yComand() method.

For example, the following is sample C++ source codes to visualize the detector components:

255

http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAWNCUT.html

Visualization

[]----- C++ source code: How to visualize detector conponents (2)
/1 ... using visualization commands in source codes

GAWi sManager * pWi sManager = GAVWi sManager : : Get Concr et el nst ance() ;

i f (pVWVi sManager)

{
. (canera setting etc) ...
GAUI manager : : Get Ul poi nt er () - >Appl yCommand("/ vi s/ dr awMol unme") ;
G4Ul manager : : Get Ul poi nt er () - >Appl yCommand("/ vi s/ vi ewer/ fl ush");
}
[]----- end of C++ source code

In the above, you should also describe / vi s/ open command somewhere in your C++ codes or execute the
command from (G)UI at the executing stage.

8.5.3. Visualization of trajectories

In order to visualize trajectories, you can use the method voi d (ATraj ectory: : Drawlraj ectory()
defined in the tracking category. In the implementation of this method, the following drawing method of
G4VvVisManager is used:

[]----- A draw ng net hod of APolyline
virtual void G4AWisManager::Draw (const G4Polyline& ...) ;

The real implementation of this method is described in the class G4VisManager .

At the end of one event, a set of trajectories can be stored as a list of GA4Trajectory objects. There-
fore you can visualize trgjectories, for example, at the end of each event, by implementing the method
MyEvent Acti on: : EndOF Event Acti on() asfollows:

If----- Ct+ source codes
voi d ExNO3Event Acti on: : EndOf Event Acti on(const GAEvent* evt)

/] extract the trajectories and draw t hem
if (GAWisManager: : Get Concr et el nst ance())
{
GATr aj ectoryCont ai ner* trajectoryContai ner = evt->Get Traj ectoryContainer();
Gdint n_trajectories = 0;
if (trajectoryContainer) n_trajectories = trajectoryContainer->entries();

for (Gint i=0; i < n_trajectories; i++)
{ HATrajectory* trj=(GATrajectory*)((*(evt->GetTrajectoryContainer()))[i]);
if (drawFlag == "all") trj->Drawlrajectory(50);
else if ((drawFl ag == "charged") &&(trj->CGet Charge() != 0.))
trj->Drawlraj ectory(50);
else if ((drawFlag == "neutral ") &&(trj->Cet Charge() == 0.))
trj->Drawlraj ectory(50);
}
}
}
[f----- end of C++ source codes

8.5.4. Enhanced trajectory drawing

It is possible to use the enhanced trajectory drawing functionality in compiled code as well as from commands.
Multiple trajectory models can beinstantiated, configured and registered with G4VisManager. For details, seethe
section on Section 8.7.4 Enhanced Trajectory Drawing.

8.5.5. HepRep Attributes for Trajectories

The HepRep file formats, HepRepFile and HepRepX ML, attach various attributes to trajectories such that you can
view these attributes, label trajectories by these attributes or make visibility cuts based on these attributes. If you
use the default Geant4 trajectory class, from /tracking/src/G4Trajectory.cc, available attributes will be:

256

Visualization

» Track ID

e Parent ID

» Particle Name

» Charge

» PDG Encoding

* Momentum 3-Vector
* Momentum magnitude
* Number of points

You can add additional attributes of your choosing by modifying the relevant part of G4Trajectory (look for the
methods GetAttDefs and CreateAttVaues). If you are using your own trgjectory class, you may want to consider
copying these methods from G4Trajectory.

8.5.6. Visualization of hits

Hits are visualized with classes G4Square or G4Circle, or other user-defined classes inheriting the abstract base
class G4VMarker. Drawing methods for hits are not supported by default. Instead, ways of their implementa-
tion are guided by virtual methods, GAVHi t: : Draw() and GAVHi t sCol | ection:: DrawAl | Hits(),
of the abstract base classes G4VHit and G4VHitsCollection. These methods are defined as empty functions in
the di gi t s+hi t s category. You can overload these methods, using the following drawing methods of class
G4VvVisManager, in order to visualize hits:

[]-=---- Drawi ng net hods of ASquare and ACi rcle
virtual void GAWi sManager::Draw (const ACircle& ...) ;
virtual void AWisManager::Draw (const (4Square&, ...) ;

The real implementations of these Dr aw() methods are described in class G4VisManager.

The overloaded implementation of GAVHi t s: : Draw() will be held by, for example, class MyTrackerHits in-
heriting G4VHit asfollows:

[]----- C++ source codes: An exanple of giving concrete inplenentation of
/1 GAVHi t::Draw(), using class MyTrackerHit : public GAVHt {...}

void MyTrackerHit::Draw)

GAWi sManager * pVWVi sManager = G4VWi sManager : : Cet Concr et el nst ance() ;
i f (pVVi sManager)
{

/] define a circle in a 3D space

GACircle circl e(pos);

circle. Set ScreenSi ze(0. 3) ;

circle.SetFillStyle(GACircle::filled);

/1 make the circle red

GACol our colour(1.,0.,0.);

GAVi sAttributes attribs(col our);
circle.SetVisAttributes(attribs);

/1 make a 3D data for visualization
pWVi sManager - >Draw(circl e);

I]----- end of C++ source codes

The overloaded implementation of GAVHi t sCol | ecti on: : DrawAl | Hi t s() will be held by, for example,
class MyTrackerHitsCollection inheriting class G4VHitsCollection as follows:

[]----- C++ source codes: An exanple of giving concrete inplenentation of
/1 GAVHi t sCol | ection:: Draw(),
Il using class MyTrackerHit : public GAVH tsCol | ection{...}

257

Visualization

voi d MyTracker Hi tsCol | ecti on:: DrawAl | Hi ts()

{
Gdint n_hit = theCollection.entries();
for(G4int i=0;i < n_hit;i++)

theCol I ection[i].Draw();

I]----- end of C++ source codes

Thus, you can visualize hits as well as trgjectories, for example, at the end of each event by implementing the
method MyEvent Act i on: : EndOf Event Acti on() asfollows:

voi d MyEvent Acti on: : EndCf Event Acti on()

{
const GAEvent* evt = fpEvent Manager - >Cet Const Current Event () ;

GASDvanager * SDman = G4SDManager : : Get SDMVpoi nter () ;

GAString col Nam

int trackerCol |l 1D = SDman->Get Col | ecti onl D(col Name" Tr acker Col | ecti on");
Gdint calorinmeterCol Il D = SDman->Cet Col | ecti onl D(col Nan=" Cal Col | ecti on");

GATr aj ectoryCont ai ner * trajectoryContainer = evt->CetTraj ect oryContai ner();
Adint n_trajectories = 0;

i f(trajectoryCont ai ner)

{ n_trajectories = trajectoryContainer->entries(); }

G4AHCof Thi sEvent * HCE
Gint n_hitCollection
i f (HCE)

{ n_hitCollection = HCE->Cet Capacity(); }

evt - >Get HCof Thi sEvent () ;
0;

GAWi sManager * pWi sManager = G4VWi sManager : : Cet Concr et el nst ance() ;

i f (pVVi sManager)

{
/| Decl are begi ni nng of visualization
GAUl manager : : Get Ul poi nt er () - >Appl yCommand("/ vi s/ scene/ noti f yHandl ers");
/] Draw trajectories
for(G4int i=0; i < n_trajectories; i++)
{
(*(evt->Get Traj ectoryContainer()))[i]->Drawlrajectory();
}
/1 Construct 3D data for hits
M/ Tr acker Hi t sCol | ecti on* THC
= (My/Tracker H tsCol | ecti on*) (HCE- >Get HC(t r acker Col | I D)) ;
if(THC) THC->DrawAl I Hits();
MyCal ori meter Hi t sCol | ecti on* CHC
= (MyCal orineterHitsColl ecti on*) (HCE->CGet HC(cal ori neterCol 1 I D)) ;
if(CHC) CHC >DrawAl | Hits();
/| Declare end of visualization
G4Ul manager : : Get Ul poi nt er () - >Appl yConmmand("/ vi s/ vi ewer / updat e") ;
}
}
[]----- end of C++ codes

You can re-visualize a physical volume, where a hit is detected, with a highlight color, in addition to the whole
set of detector components. It is done by calling a drawing method of a physical volume directly. The method is:

I]----- Drawi ng net hods of a physical vol une
virtual void Draw (const (AVPhysical Vol une&, ...) ;

258

Visualization

Thismethod is, for example, called in amethod My XXXHi t : : Dr aw() , describing the visualization of hits with
markers. The following is an example for this:

[]-=---- C++ source codes: An exanple of visualizing hits with
void MyCalorineterHit::Draw()

{
GAWi sManager * pVVi sManager = G4VWi sManager : : Cet Concr et el nst ance() ;
i f (pVWVi sManager)

{
GATr ansf or nBD trans(rot, pos);
GAVi sAttributes attribs;
G4Logi cal Vol une* | ogVol = pPhys->Get Logi cal Vol unme();
const AVi sAttributes* pVA = | ogVol - >Get Vi sAttri butes();
if(pVA) attribs = *pVA
G4Col our colour(1.,0.,0.);
attribs. Set Col our (col our);
attribs. Set ForceSol i d(true);

/]----- Re-vi sual i zati on of a sel ected physical volume with red col or
pWi sManager - >Dr aw(*pPhys, attri bs, trans);

/]----- end of C++ codes

8.5.7. HepRep Attributes for Hits

The HepRep file formats, HepRepFile and HepRepXML, attach various attributes to hits such that you can view
these attributes, label trajectories by these attributes or make visibility cuts based on these attributes. Examples of
adding HepRep attributes to hit classes can be found in examples /extended/analysis/A01 and /extended/runAn-
dEvent/REOL.

For example, in example REO1's class REQ1Cal orimeterHit.cc, available attributes will be:

* Hit Type

* Track ID

« ZCdlID

» Phi Cell ID

* Energy Deposited

» Energy Deposited by Track
* Position

* Logica Volume

You can add additional attributes of your choosing by modifying the relevant part of the hit class (look for the
methods GetAttDefs and CreateAttValues).

8.5.8. Visualization of text
In Geant4 Visualization, atext, i.e., acharacter string, is described by class G4Text inheriting G4VMarker aswell

as G4Sguare and G4Circle. Therefore, the way to visualize text isthe same asfor hits. The corresponding drawing
method of G4VVisManager is.

[]-=---- Drawi ng nmet hods of AText
virtual void GAWi sManager::Draw (const AText&, ...);

Therea implementation of this method is described in class G4VisManager.

8.5.9. Visualization of polylines and tracking steps

Polylines, i.e., sets of successive line segments, are described by class G4Polyline. For G4Polyline, the following
drawing method of class G4VVisManager is prepared:

259

Visualization

[]----- A drawi ng nmet hod of G4Pol yli ne
virtual void AWisManager::Draw (const APolyline& ...)

The real implementation of this method is described in class G4VisManager.

Using this method, C++ source codes to visualize G4Polyline are described as follows:

[]----- C++ source code: How to visualize a polyline
GAWi sManager * pWi sManager = AW sManager : : Get Concr et el nst ance() ;

if (pWVisManager) {
GAPol yl i ne polyline ;

..... (C++ source codes to set vertex positions, color, etc)

pWi svanager -> Draw(pol yline);

[]-=---- end of C++ source codes

Tracking steps are able to be visualized based on the above visualization of G4Polyline. Y ou can visualize track-
ing steps at each step automatically by writing a proper implementation of class MySteppingAction inheriting
G4User SeppingAction, and also with the help of the Run Manager.

First, you must implement a method, My St eppi ngAct i on: : User St eppi ngActi on() . A typical imple-
mentation of this method is as follows:

[]-=---- C++ source code: An exanpl e of visualizing tracking steps
voi d MySt eppi ngActi on: : User St eppi ngActi on()
{

GAWi sManager * pWi sManager = GAWi sManager : : Get Concr et el nst ance() ;
if (pWisManager) ({

[]----- Cet the Stepping Manager
const GASt eppi ngManager* pSM = Get St eppi ngManager () ;

[]----- Define a |line segnent

G4Pol yl i ne pol yline;

GAdoubl e charge = pSM >Get Tr ack() - >Get Def i ni ti on() - >Get PDGChar ge() ;
G4Col our col our;

if (charge < 0.) colour = G4Colour(1., 0., 0.);
else if (charge < 0.) colour = G4Col our(0., 0., 1.);
el se col our = G4Col our(0., 1., 0.);

GAVisAttributes attribs(col our);

pol yline. SetVisAttributes(attribs);

pol yl i ne. push_back(pSM >Get St ep() - >Get Pr eSt epPoi nt () - >Get Posi ti on());
pol yl i ne. push_back(pSM >Get St ep() - >Get Post St epPoi nt () - >Get Posi tion());

[]----- Call a drawi ng nethod for G4Pol yline
pWi sManager -> Draw(pol yline);
}
}
[]----- end of C++ source code

Next, in order that the above C++ source code works, you have to pass the information of the MySteppingAction
to the Run Manager in themai n() function:

I]----- C++ source code: Passing what to do at each step to the Run Manager

int main()

{

260

Visualization

/1 Run Manager
GARunManager * runManager = new G4ARunManager ;

/] User initialization classes

runManager - >Set User Act i on(new MySt eppi ngActi on);

[]----- end of C++ source code

Thus you can visualize tracking steps with various visualization attributes, e.g., color, at each step, automatically.

As well as tracking steps, you can visualize any kind 3D object made of line segments, using class G4Polyline
and its drawing method, defined in class G4VVisManager. See, for example, the implementation of the/ vi s/
scene/ add/ axes command.

8.5.10. Visualization User Action

Y ou can implement the Dr aw method of G4VUser Vi sAct i on, e.g., the class definition could be:

cl ass Standal oneVi sAction: public GAVUser Vi sAction {
void Draw);
i ;

and the implementation:

voi d Standal oneVi sAction::Drawm) {
GAWi sManager * pVi sManager = AW sManager : : Get Concr et el nst ance() ;
if (pVisManager) {

/1 Sinple box...
pVi sManager - >Dr am{ ZABox(" box", 2*m 2*m 2*m) ,
GAVi sAttri butes(ACol our(1,1,0)));

/1 Bool ean solid...

ABox boxA("boxA", 3*m 3*m 3*m) ;

(ABox boxB("boxB", 1*m 1*m 1*m) ;

GASubtractionSol i d subtracted("subtracted _boxes", &o0xA, &o0xB,

GATransl ate3D(3*m 3*m 3*m)) ;

pVi sManager - >Dr aw(subt r act ed,
GAVi sAttri but es(ACol our (0, 1,1)),
GATr ansl at e3D(6*m 6*m 6*m)) ;

}
}

Explicit use of polyhedron objectsis equivalent, e.g.:

/] Same, but explicit polyhedron...

GAPol yhedr on* pA = G4Box("boxA", 3*m 3*m 3*n) . Cr eat ePol yhedron() ;
GAPol yhedr on* pB = G4Box("boxB", 1*m 1*m 1*n) . Cr eat ePol yhedr on() ;
pB- >Tr ansf or n{ G4Tr ansl at e3D(3*m 3*m 3*m)) ;

GAPol yhedr on* pSubtracted = new G4Pol yhedr on(pA- >subtract (*pB));
GAVi sAttributes subVisAtts(XACol our(0,1,1));

pSubt r act ed- >Set Vi sAttri but es(&ubVi sAtts);

pVi sManager - >Dr am * pSubt r act ed, ATr ansl at e3D(6*m 6*m 6*m)) ;

del ete pA;

del ete pB;

del et e pSubtract ed;

If efficiency isan issue, create the objects in the constructor, delete them in the destructor and draw them in your
Dr aw method. Anyway, an instance of your class needs to be registered with the vis manager, e.g.:

GAVi sManager * vi sManager = new (AVi sExecuti ve;
vi sManager->Initialize ();

261

Visualization

vi sManager - >Set User Act i on
(new St andal oneVi sActi on,
GAVi sExtent (-5*m 5*m -5*m 5*m -5*m 5*m)); // 2nd argunent optional.

then activate by adding to a scene, e.g:

/control/verbose 2

/vi s/ verbose c

/vi s/ open OGLSXm

/vi s/ scene/ create

#/ vi s/ scene/ add/ user Acti on

/vi s/ scene/ add/ user Action -10 10 -10 10 -10 10 m
#/ vi s/ scene/ add/axes 0 0 0 10 m

#/ vi s/ scene/ add/ scal e 10 m

/vi s/ sceneHandl er/ attach

/vis/viewer/refresh

The extent can be added on registration or on the command line or neither (if the extent of the scene is set by
other components). Y our Dr awmethod will be called whenever needed to refresh the screen or rebuild agraphics
database, for any chosen viewer. The scene can be attached to any scene handler and your drawing will be shown.

8.5.11. Standalone Visualization

The above raises the possibility of using Geant4 as a "standalone" graphics package without invoking the run
manager. The following main program, together with a user visualization action and a macro file, will allow you
to view your drawing interactively on any of the supported graphics systems.

#i ncl ude "gl obal s. hh"

#i ncl ude "AVi sExecuti ve. hh"
#i ncl ude " &AVi sExt ent . hh"

#i ncl ude " G4Ul manager . hh"

#i nclude "G4Ul ter m nal . hh"
#i ncl ude "&4Ul t csh. hh"

#i ncl ude " St andal oneVi sActi on. hh"
int main() {

G4Vi sManager * vi sManager = new (4Vi sExecuti ve;
vi sManager->Initialize ();

vi sManager - >Set User Act i on
(new St andal oneVi sActi on,
GAVi sExtent (-5*m 5*m -5*m 5*m -5*m 5*nm)); // 2nd argunent optional.

G4Ul manager* U = AUl manager:: Get Ul poi nter ();
Ul - >Appl yCommand ("/control / execute standal one. g4nt');

G4Ul sessi on* session = new (AUl term nal (new G4Ultcsh);
sessi on->SessionStart();

del ete session;
del ete vi sManager ;

}

8.6. Visualization Attributes

Visualization attributes are extra pieces of information associated with the visualizable objects. This information
is necessary only for visualization, and is not included in geometrical information such as shapes, position, and
orientation. Typical examples of visualization attributes are Color, Visible/Invisible, Wireframe/Solid. For exam-
ple, in visualizing a box, the Visualization Manager must know its colour. If an object to be visualized has not
been assigned a set of visualization attributes, then an appropriate default set is used automatically.

A set of visualization attributes is held by an instance of class G4VisAttributes defined in the gr aphi cs_r eps
category. In the following, we explain the main fields of the G4VisAttributes one by one.

262

Visualization

8.6.1. Visibility

Visibility is a boolean flag to control the visibility of objects that are passed to the Visualization Manager for
visualization. Visibility is set with the following access function:

void GAVisAttributes::SetVisibility (&G4bool visibility);

If you givef al se totheargument, and if culling is activated (see below), visualization is skipped for objects for
which this set of visualization attributesis assigned. The default value of visibility ist r ue.

Note that whether an object is visible or not is aso affected by the current culling policy, which can be tuned
with visualization commands.

By default the following public static function is defined:

static const GAVisAttributes& Getlnvisible();

which returns areference to a const object in which visibility issettof al se. It can be used as follows:

experinental Hal | _| ogical -> SetVisAttributes (G4VisAttributes:: Getlnvisible());

Direct access to the public static const data member G4Vi sAt tri but es: : I nvi si bl e is aso possible but
deprecated on account of initialisation issues with dynamic libraries.

8.6.2. Colour
8.6.2.1. Construction

Class G4Colour (an equivalent class name, G4Color, is also available) has 4 fields, which represent the RGBA
(red, green, blue, and alpha) components of colour. Each component takes a value between O and 1. If anirrele-
vant value, i.e., avaue less than 0 or greater than 1, is given as an argument of the constructor, such avaueis
automatically clipped to O or 1. Alphais opacity. Its default value 1 means "opaque”.

A G4Colour object isinstantiated by giving red, green, and blue components to its constructor, i.e.,

GACol our: : G4Col our (GAdouble r = 1.0,
GAdouble g = 1.0,
GAdouble b = 1.0,
GAdouble a = 1.0);
/] O<=red, green, blue <= 1.0

The default value of each component is 1.0. That isto say, the default colour is "white" (opague).

For example, colours which are often used can be instantiated as follows:

GACol our white 0 ;11 white
G4Col our white (1.0, 1.0, 1.0) ; // white
GACol our gray (0.5, 0.5, 0.5) ; [/ gray
G4Col our bl ack (0.0, 0.0, 0.0) ; // black
ACol our red (1.0, 0.0, 0.0) ; // red
GACol our green (0.0, 1.0, 0.0) ; [/ green
(ACol our bl ue (0.0, 0.0, 1.0) ; [// blue
GACol our cyan (0.0, 1.0, 1.0) ; [// cyan
GACol our nmagenta (1.0, 0.0, 1.0) ; // nmgenta
GACol our yellow (1.0, 1.0, 0.0) ; // yellow

It is also possible to instantiate common colours through static public data member functions:

static const ACol our& Wite
static const GACol our& G ay
static const GACol our & G ey
static const (ACol our & Bl ack

~—~—~
—— — —

263

Visualization

static const GACol our & Red ()
static const (ACol our& Green O
static const GACol our & Bl ue 0);
static const GACol our & Cyan 0);
static const G4Col our & Magenta ()
static const GACol our& Yellow ()

For example, alocal G4Colour could be constructed as:

GACol our myRed(G4Col our: : Red());

After instantiation of a G4Colour object, you can access to its components with the following access functions:

GAdoubl e GACol our: : Get Red () const ; // Get the red conponent .
GAdoubl e G4Col our:: GetGreen () const ; // Get the green conponent.
GAdoubl e G4Col our:: GetBlue () const ; // Get the blue conponent.

8.6.2.2. Colour Map

GA4Colour aso provides a static colour map, giving accessto predefined G4Colour's through a G4String key. The
default mapping is:

GAString G4Col our

white GACol our:: White ()
gray GACol our: : Gray ()
grey GACol our: : Grey)
bl ack GACol our: : Bl ack ()
red GACol our : : Red)
green GACol our: : Green ()
bl ue GACol our : : Bl ue)
cyan GACol our: : Cyan ()
nagent a GACol our: : Magenta ()
yel | ow GACol our:: Yellow ()

Colours can be retrieved through the GetColour method:

bool (ACol our: : Get Col our (const (AString& key, (4Col our& result)

For example:

GACol our mnyCol our (G4Col our: : Bl ack());
if (GACol our:: GetCol our("red", nyColour)) {
/1 Successfully retrieved colour "red". nyCol our is now red

el se {
[/ Colour did not exist in map. nyColour is still black
}

If the key is not registered in the colour map, a warning message is printed and the input colour is not changed.
The colour map is case insensitive.

It is also possible to load user defined G4Colour's into the map through the public AddToMap method. For ex-
ample:

ACol our nmyCol our (0.2, 0.2, 0.2, 1);
G4Col our : : AddToMap(" cust o', myCol our) ;

Thisloads a user defined G4Colour with key "custom™ into the colour map.

8.6.2.3. Colour and G4VisAttributes

Class G4VisAttributes holds its colour entry as an object of class G4Colour. A G4Colour object is passed to a
G4VisAttributes object with the following access functions:

264

Visualization

[f----- Set functions of G4VisAttributes.
voi d GAVisAttributes:: Set Col our (const GACol our & col our);
void GAVi sAttri butes:: Set Col or (const (4Col or& color);

We can also set RGBA components directly:

[]----- Set functions of G4VisAttributes

void GAVi sAttributes:: Set Col our (GAdoubl e red
G4doubl e green ,
G4doubl e blue ,
G4doubl e al pha = 1.0);

void GAVisAttributes:: SetCol or (GAdouble red
GAdoubl e green
HAdoubl e blue
GAdoubl e al pha = 1.);

The following constructor with G4Colour asits argument is also supported:

[]----- Constructor of AVisAttributes
GAVisAttributes:: G4VisAttributes (const (ACol our & col our);

Note that colour assigned to a G4VisAttributes object is not always the colour that ultimately appears in the visu-
alization. The ultimate appearance may be affected by shading and lighting models applied in the sel ected visual-
ization driver or stand-alone graphics system.

8.6.3. Forcing attributes

As you will see later, you can select a "drawing style" from various options. For example, you can select your
detector components to be visualized in "wireframe" or with "surfaces’. In the former, only the edges of your
detector are drawn and so the detector looks transparent. In the latter, your detector looks opague with shading
effects.

The forced wireframe and forced solid styles make it possible to mix the wireframe and surface visualization (if
your selected graphics system supports such visualization). For example, you can make only the outer wall of your
detector "wired" (transparent) and can see inside in detail.

Forced wireframe style is set with the following access function:

voi d GAVisAttributes:: Set ForceWrefrane (&4bool force);

If you givetr ue as the argument, objects for which this set of visualization attributes is assigned are always
visualized in wireframe even if in general, the surface drawing style has been requested. The default value of the
forced wireframe styleisf al se.

Similarly, forced solid style, i.e., to force that objects are always visualized with surfaces, is set with:

voi d GAVisAttributes:: Set ForceSolid (4bool force);
The default value of the forced solid styleisf al se, too.

Y ou can aso force auxiliary edgesto be visible. Normally they are not visible unless you set the appropriate view
parameter. Forcing the auxiliary edges to be visible means that auxiliary edges will be seen whatever the view
parameters.

Auxiliary edges are not genuine edges of the volume. They may be in a curved surface made out of polygons, for
example, or in plane surface of complicated shape that has to be broken down into simpler polygons. HepPoly-
hedron breaks all surfaces into triangles or quadrilaterals. There will be auxiliary edges for any volumes with a
curved surface, such as atube or a sphere, or avolume resulting from a Boolean operation. Normally, they are not
shown, but sometimesit is useful to see them. In particular, a sphere, because it has no egdes, will not be seenin
wireframe mode in some graphics systems unless requested by the view parameters or forced, as described here.

265

Visualization

To force auxiliary edgesto be visible, use:

voi d GAVi sAttri butes: : Set For ceAuxEdgeVi si bl e (4bool force);
The default value of the force auxiliary edgesvisibleflagisf al se.

For volumes with edgesthat are parts of acircle, such asatube (G4Tubs), etc., it is possible to force the precision
of polyhedral representation for visualisation. This is recommended for volumes containing only a small angle of
circle, for example, athin tube segment.

For visualisation, a circle is represented by an N-sided polygon. The default is 24 sides or segments. The user

may change this for all volumes in a particular viewer at run time with /visiviewer/set/lineSegmentsPerCircle;
alternatively it can be forced for a particular volume with:

void GAVi sAttri butes:: Set ForceLi neSegnentsPerCircle (G4int nSegnents);

8.6.4. Other attributes

Hereisalist of Set methods for class G4VisAttributes:

void SetVisibility (G4bool) ;

voi d Set Daughterslnvisible (Gibool);

voi d Set Col our (const ACol our &) ;

voi d Set Col or (const GACol or &) ;

voi d Set Col our (GAdoubl e red, G4doubl e green, Adoubl e bl ue,
G4doubl e al pha = 1.);

voi d Set Col or (GAdoubl e red, G4doubl e green, Adoubl e bl ue,
G4doubl e al pha = 1.);

voi d SetLineStyle (LineStyle);

void SetLineWdth (GAdoubl e) ;

voi d Set ForceW ref rane (G4bool) ;

voi d Set ForceSolid (G4bool) ;

voi d Set For ceAuxEdgeVi si bl e (G4bool) ;

voi d Set For ceLi neSegnentsPerCircle (&4int nSegnents);

/1 Allows choice of circle approxination. A circle of 360 degrees
/1 will be conposed of nSegnents |ine segnents. |If your solid has
// curves of D degrees that you need to divide into N segnents,

/| specify nSegnents = N * 360 / D.

void SetStartTime (G4doubl e) ;

voi d Set EndTi ne (GAdoubl e) ;

voi d Set Att Val ues (const std::vector<AAtt Val ue>*);

voi d SetAttDefs (const std:: map<String, G4At t Def >*);

8.6.5. Constructors of G4VisAttributes

The following constructors are supported for class G4VisAttributes:

[]----- Constructors of class GAVisAttributes

GAVi sAttributes (void);

GAVi sAttributes (G4bool visibility);

GAVi sAttributes (const G4Col our & col our);

GAVi sAttributes (G4bool visibility, const (4Col our& col our);

8.6.6. How to assign G4VisAttributes to a logical volume

In constructing your detector components, you may assign aset of visualization attributesto each "logical volume'
in order to visualize them later (if you do not do this, the graphics system will use adefault set). Y ou cannot make
a solid such as G4Box hold a set of visualization attributes; this is because a solid should hold only geometrical
information. At present, you cannot make a physical volume hold one, but there are plans to design a memory-ef-
ficient way to do it; however, you can visualize a transient piece of solid or physical volume with a temporary
assigned set of visualization attributes.

266

Visualization

Class G4Logical Volume holds a pointer of G4VisAttributes. This field is set and referenced with the following
access functions:

[f----- Set functions of GAVisAttributes
void GAVisAttributes::SetVisAttributes (const GAVisAttributes* pVA);
voi d GAVisAttributes:: SetVisAttributes (const GAVisAttributes& VA);

[f----- Get functions of GAVisAttributes
const GAVisAttributes* GAVisAttributes:: GetVisAttributes () const;

The following is sample C++ source codes for assigning a set of visualization attributes with cyan colour and
forced wireframe style to alogical volume:

[]----- C++ source codes: Assigning AVisAttributes to a | ogical volune

/1l Instantiation of a |ogical volune
nyTar get Log = new (ALogi cal Vol une(nyTar get Tube, BGO, "TLog", 0, 0, 0);

// Instantiation of a set of visualization attributes with cyan col our
GAVisAttributes * cal TubeVi sAtt = new GAVi sAttri butes(G4Col our(0.,1.,1.));

/1 Set the forced wirefrane style
cal TubeVi sAtt - >Set ForceW refrane(true);

/| Assignnent of the visualization attributes to the |ogical volune
nmyTar get Log- >Set Vi sAttri but es(cal TubeVi sAtt);

[]----- end of C++ source codes

Note that the life of the visualization attributes must be at least as long as the objects to which they are assigned; it
isthe users' responsibility to ensure this, and to delete the visualization attributes when they are no longer needed
(or just leave them to die at the end of the job).

8.6.7. Additional User-Defined Attributes

Geant4 Trajectories and Hits can be assigned additional arbitrary attributes that will be displayed when you click
on the relevant object in the WIRED or FRED HepRep browsers. WIRED then lets you label objects by any of
these attributes or cut visibility based on these attributes.

Define the attributes with lines such as:

std: : map<AString, AAtt Def >* store = G4Att Def Store:: Getlnstance("GATraj ectory", i sNew);

GAString PN("PN');

(*store)[PN] = GAAttDef (PN, "Particle Nane","Physics","","GString");

GAString | Monm(" I Mont');

(*store)[I Mon] = AAttDef (I Mom “Monentum of track at start of trajectory", "Physics", "",
"GAThreeVector");

Then fill the attributes with lines such as:

std::vector<G4Att Val ue>* val ues = new std::vector<AAtt Val ue>;
val ues- >push_back(G4At t Val ue("PN', Particl eNanme, ""));

s. seekp(std::ios::beg);

S << (ABestUnit(initial Momentum "Energy") << std::ends;

val ues- >push_back(G4Att Val ue("1 Mont', c,""));

See geantd/source/tracking/src/G4Trajectory.cc for agood example.

G4AttValue objects are light, containing just the value; for the long description and other sharable information
the G4AttValue object refers to a G4AttDef object. They are based on the HepRep standard described at http://
www.slac.stanford.edu/~perl/heprep/ . Geant4 also provides an G4AttDefSore.

Geant4 provides some default examples of the use of this facility in the trajectory classes in /source/tracking
such as G4Trajectory, G4SmoothTrajectory. G4Trajectory:: CreateAttVal ues shows how G4AttVal ue objects can
be made and G4Trajectory:: GetAttDefs shows how to make the corresponding G4AttDef objects and use the
G4AttDefSore. Note that the "user” of CreateAttValues guaranteesto destroy them; thisisaway of allowing cre-

267

http://www.slac.stanford.edu/~perl/heprep/
http://www.slac.stanford.edu/~perl/heprep/

Visualization

ation on demand and leaving the G4Trajectory object, for example, free of such objectsin memory. The comments
in G4VTrajectory.hh explain further and additional insights might be obtained by looking at two methods which
use them, namely G4VTrajectory:: DrawTrajectory and G4VTrajectory:: ShowTrajectory.

Hits classes in examples /extended/analysis/A01 and /extended/runAndEvent/REO1 show how to do the same
for your hits. The base class no-action methods CreateAttValues and GetAttDefs should be overridden in your
concrete class. The commentsin G4VHit.hh explain further.

In addition, the user is free to add a GA4std::vector<G4AttValue>* and a GA4std::vector<G4AttDef>* to a
GA4VigAttributes object as could, for example, be used by a G4L ogical Volume object.

At the time of writing, only the HepRep graphics systems are capable of displaying the G4AttValue information,

but this information will become useful for all Geant4 visualization systems through improvementsin release 8.1
or later.

8.7. Enhanced Trajectory Drawing

8.7.1. Default Configuration

Trajectory drawing styles are specified through trajectory drawing models. Each drawing model has a default
configuration provided through a G4VisTraContext object. The default context settings are shown below.

Property Default Setting
Line colour grey

Line visibility true

Draw line true

Draw auxiliary points false

Auxiliary point type sguares

Auxiliary point size

2 pixels or mm*

Auxiliary point size type screen
Auxiliary point fill style filled
Auxiliary point colour magenta
Auxiliary point visibility true
Draw step point false
Step point type circles
Step point size 2 pixels or mm*
Step point size type screen
Step point fill style filled
Step point colour yellow
Step point visibility true
Timedliceinterval 0

* Depending on size type. If size type == screen, pixels are assumed and no unit need be supplied. If size type
== world, aunit must be supplied, e.g., 10 cm.

Points to note:

» The context approach is intended to replace the configuration through the imode parameter. The use of imode
is depreciated and will be removed in Geant4 v10.0.

« Different visualisation drivers handle trajectory configuration in different ways, so trajectories may not neces-
sarily get displayed as you have configured them.

268

Visualization

8.7.2. Trajectory Drawing Models

A trgjectory drawing model can override the default context according to the properties of a given tragjectory. The
following models are supplied with the Geant4 distribution:

» GATrgjectoryGenericDrawer (generic)

» GATrgectoryDrawByCharge (drawByCharge)

» GATrajectoryDrawByParticlel D (drawByParticlel D)

* GATrajectoryDrawByOriginVolume (drawByOriginV olume)
» GATrajectoryDrawByAttribute (drawByAttribute)

Both the context and model properties can be configured by the user. The models are described briefly below,
followed by some example configuration commands.

G4TrajectoryGenericDrawer

Thismodel simply draws all trgjectories in the same style, with the properties provided by the context.
GA4TrajectoryDrawByCharge

Thisisthe default model - if no model is specified by the user, this model will be constructed automatically. The

trajectory lines are coloured according to charge, with all other configuration parameters provided by the default
context. The default colouring scheme is shown below.

Char ge Col our
1 Bl ue

1 Red
0 G een

GA4TrajectoryDrawByParticlelD

Thismodel colourstrajectory lines according to particle type. All other configuration parameters are provided by
the default context. By default, al trajectories are coloured grey. Chosen particle types can be highlighted with
specified colours.

GA4TrajectoryDrawByOriginVolume

This model colours trajectory lines according to the trajectories originating volume name. The volume can be
either alogical or physical volume. Physical volume takes precedence over logical volume. All trajectories are
coloured grey by default.

GA4TrajectoryDrawByAttribute

This model draws trajectories based on the HepRep style attributes associated with trajectories. Each attribute
drawer can be configured with interval and/or single value data. A new context object is created for each inter-
val/single value. This makes it possible to have different step point markers etc, as well as line colour for trajec-
tory attributes falling into different interval's, or matching single values. The single value data should override the
interval data, allowing specific values to be highlighted. Units should be specified on the command line if the
attribute unit is specified either as a G4BestUnit or if the unit is part of the value string.

8.7.3. Controlling from Commands

Multipletrajectory models can be created and configured using commandsinthe”/ vi s/ nodel i ng/ traj ec-
t ori es/ " directory. It isthen possible to list available models and select one to be current.

Model configuration commands are generated dynamically when amodel is instantiated. These commands apply
directly tothat instance. Thismakesit possibleto have multipleinstances of the drawByCharge model for example,
each independently configurable through it's own set of commands.

269

Visualization

See the interactive help for more information on the available commands.

8.7.3.1. Example commands

#Create a generic model named generic-0 by default

/vi s/ model i ng/trajectories/create/generic

#Configure context to colour all trajectories red

/vis/model i ng/trajectories/generic-0/defaul t/setLineCol our red

#Create a drawByCharge model named drawCharge-0 by default (Subsequent models will be named drawBY-
Charge-1, drawByCharge-2, etc.)

/vi s/ model i ng/trajectories/create/drawByCharge

#Create a drawByCharge model named testChargeM odel

/vi s/ nmodel i ng/trajectories/create/drawByCharge test ChargehMdel

#Configure drawByCharge-0 model

/vi s/ nmodel i ng/trajectories/drawByCharge-0/set 1 red
/vi s/ model i ng/trajectories/drawByCharge-0/set -1 red
/vi s/ nmodel i ng/trajectories/drawByCharge-0/set 0 white

#Configure testCharge model through G4Colour components

/vi s/ model ing/trajectories/testChargeMddel /setRGBA 1 0 1 1 1
/vi s/ model i ng/trajectories/testChargeMdel /setRGBA -1 0.5 0.5 0.5 1
/vi s/ model ing/trajectories/testChargeMdel /setRGBA O 1 1 0 1

#Create a drawByParticlel D model named drawByParticlel D-0

/vi s/ model ing/trajectories/create/drawByParticlel D

#Configure drawByParticlel D-0 model

/vi s/ model i ng/trajectories/drawByParticlel D-0/set ganma red
/vi s/ nmodel ing/trajectories/drawByParticlelD-0/setRGBA e+ 1 01 1

#List available models

/vis/modeling/trajectories/list

#select drawByParticlel D-0 to be current

/vi s/ nmodel ing/trajectories/select drawByParticlel D-0

#Create a drawByAttribute model named drawByAdttribute-0

/vi s/ model ing/trajectories/create/drawByAttribute

#Configure drawByAttribute-O model

270

Visualization

/vis/ model ing/trajectories/drawByAttribute-0/verbose true

#Select attribute "CPN"

/vis/modeling/trajectories/drawByAttribute-0/setAttribute CPN

#Configure single value data

/vi s/ nmodel ing/trajectories/drawByAttribute-0/addVal ue bremkey eBrem
/vis/modeling/trajectories/drawByAttri bute-0/addVal ue anni hil _key anni hil

/vi s/ model i ng/trajectories/drawByAttribute-0/addVal ue decay_key Decay

/vi s/ model i ng/trajectories/drawByAttri bute-0/addVal ue nmul on_key nul oni

/vi s/ model i ng/trajectories/drawByAttribute-0/addVal ue el on_key eloni

/vi s/ model i ng/trajectories/drawByAttribute-0/brem key/setLi neCol our red

/vi s/ model ing/trajectories/drawByAttribute-0/annihil_key/setLineCol our green

/vi s/ model ing/trajectories/drawByAttribute-0/decay_key/ set Li neCol our cyan

/vi s/ model ing/trajectories/drawByAttribute-0/elon_key/setLineCol our yel | ow

/vi s/ model i ng/trajectories/drawByAttri bute-0/mul on_key/ set Li neCol our nmagenta
#Create a drawByAttribute model named drawByAttribute-1

/vi s/ model i ng/trajectories/create/drawByAttribute

#Select "IMag" attribute

/vis/modeling/trajectories/drawByAttribute-1/setAttribute | Mg

#Configureinterval data

/vi s/ model ing/trajectories/drawByAttribute-1/addlnterval intervall 0.0 keV 2. 5MeV
/vis/model ing/trajectories/drawByAttribute-1/addlnterval interval2 2.5 MeV 5 MeV

/vi s/ model ing/trajectories/drawByAttribute-1/addlnterval interval3 5 MV 7.5 MeV

/vi s/ model ing/trajectories/drawByAttribute-1/addlnterval interval4 7.5 MeV 10 MeV
/vi s/ nmodel i ng/trajectories/drawByAttribute-1/addlnterval interval5 10 MeV 12.5 MV
/vi s/ model ing/trajectories/drawByAttribute-1/addlnterval interval 6 12.5 MeV 10000 MeV
/vi s/ model ing/trajectories/drawByAttribute-1/interval 1/setLi neCol ourRGBA 0.8 0 0.8 1
/vi s/ nodel ing/trajectories/drawByAttribute-1/interval 2/setLi neCol ourRGBA 0.23 0.41 1 1
/vi s/ model ing/trajectories/drawByAttribute-1/interval 3/setLi neColourRGBA O 1 0 1

/vi s/ model ing/trajectories/drawByAttribute-1/interval 4/setlLineColourRGBA 1 10 1

/vi s/ model i ng/trajectories/drawByAttribute-1/interval 5/setLi neColourRGBA 1 0.3 0 1
/vi s/ nmodel ing/trajectories/drawByAttribute-1/interval 6/setLi neColourRGBA 1 0 0 1

8.7.4. Controlling from Compiled Code

It is possible to use the enhanced trajectory drawing functionality in compiled code as well as from commands.
Multiple trajectory models can be instantiated, configured and registered with G4VisManager. Only one model

may be current. For example:

G4Vi sManager * vi sManager =
vi sManager->Initialize();

new 4Vi sExecuti ve;

GATr aj ect oryDrawByParticl el D nodel =
GATr aj ectoryDrawByParticl el DX npodel 2 =

nodel - >Set Def aul t ("cyan") ;

nodel - >Set (" ganmm", "green");

nodel - >Set ("e+", "magenta");

nodel - >Set ("e-", G4Col our (0.3, 0.3, 0.3));

vi sManager - >Regi st er Mbdel (nodel) ;
vi sManager - >Regi st er Model (npdel 2) ;

vi sManager - >Sel ect Tr aj ect or yMbdel (nodel - >Nane()) ;

new GATr aj ect oryDr awByParti cl el D;
new GATraj ectoryDrawByParticlel D("test");

271

Visualization

8.7.5. Drawing by time

To draw by time, you need to use G4RichTrgjectory, for example:

/vis/scene/add/trajectories rich

or

/vis/scene/add/trajectories rich snooth

When you run, you need to create a trajectory model and set the time dlice interval (remembering that paticles
are often relativistic and travel 30 cm/ns):

/vi s/ model i ng/trajectories/create/drawByCharge

/vi s/ nmodel i ng/trajectories/drawByChar ge-0/ def aul t/ set DrawSt epPts true

/vi s/ nmodel i ng/trajectories/drawByChar ge-0/ def aul t/set St epPtsSi ze 5

/vi s/ model i ng/ traj ectories/drawByChar ge- 0/ def aul t/ set Dr awAuxPts true

/vi s/ nmodel i ng/ trajectories/drawByChar ge-0/ def aul t/ set AuxPtsSi ze 5

/vi s/ nmodel i ng/trajectories/drawByCharge-0/defaul t/setTinmeSlicelnterval 0.1 ns
/vis/nmodeling/trajectories/list

and use a graphics driver that can display by time:

/vi s/ open OGL

/vi s/ dr awvol urme
/vis/scene/add/trajectories rich
/vis/ogl/set/startTine 0.5 ns
/vis/logl/set/endTime 0.8 ns

/ run/ beantn

[vis/viewer/refresh

A good way to see the particles moving through the detector is:

/vis/logl/set/fade 1

/vi s/ ogl/set/displ ayHeadTi ne true
/control/alias tinmeRange 1

/control /|l oop novie.loop -{ti reRange} 40 0.1

where f ade gives avapour-trail effect, di spl ayHeadTi ne displays the time of the leading edge as 2D text,
and novi e. | oop isamacrofile:

/vis/ogl/set/startTinme {startTime} ns {timeRange} ns

From there, it's straightforward to Section 8.10 make amovie.

8.8. Trajectory Filtering

Trajectory filtering alows you to visualise a subset of available trajectories. This can be useful if you only want
to view interesting trajectories and discard uninteresting ones. Trajectory filtering can be run in two modes:

» Soft filtering: In this mode, uninteresting trajectories are marked invisible. Hence, they are still written, but
(depending on the driver) will not be displayed. Some drivers, for example the HepRepFile driver, will alow
you to selectively view these soft filtered trajectories

» Hard filtering: In this mode, uninteresting trajectories are not drawn at all. This mode is especially useful if
the job produces huge graphics files, dominated by data from uninteresting trajectories.

Trajectory filter modelsare used to apply filtering according to specific criteria. Thefollowing modelsare currently
supplied with the Geant4 distribution;

o GATrgjectoryChargeFilter (chargeFilter)
e GATrajectoryParticleFilter (particleFilter)

272

Visualization

e GATrajectoryOriginVolumeFilter (originVolumeFilter)
o GATrajectoryAttributeFilter (attributeFilter)

Multiple filters are automatically chained together, and can configured either interactively or in commands or in
compiled code. The filters can be inverted, set to be inactive or set in a verbose mode. The above models are
described briefly below, followed by some example configuration commands.

GA4TrajectoryChargeFilter

Thismodd filterstrajectoriesaccording to charge. In standard running mode, only trajectorieswith charges match-
ing those registered with the model will pass thefilter.

GA4TrajectoryParticleFilter

Thismodel filters trgjectories according to particle type. In standard running mode, only trajectories with particle
types matching those registered with the model will pass the filter.

GA4TrajectoryOriginVolumeFilter

Thismodel filters trajectories according to originating volume name. In standard running mode, only trajectories
with originating volumes matching those registered with the model will pass the filter.

GA4TrajectoryAttributeFilter

This model filters trajectories based on the HepRep style attributes associated with trajectories. Each attribute
drawer can be configured with interval and/or single value data. Single value data should override the interval
data. Units should be specified on the command line if the attribute unit is specified either as a G4BestUnit or if
the unit is part of the value string.

8.8.1. Controlling from Commands

Multiple trajectory filter models can be created and configured using commands in the "/ vis/filter-
i ng/traj ectories/"directory. All generated filter models are chained together automatically.

Model configuration commands are generated dynamically when afilter model is instantiated. These commands
apply directly to that instance.

See the interactive help for more information on the available commands.

8.8.2. Example commands

#Create a particle filter. Configure to pass only gammas. Then
#invert to pass anything other than gammas. Set verbose printout,

#and then deactivate filter

/vis/filtering/trajectories/create/particleFilter
/vis/filtering/trajectories/particleFilter-0/add gamm
/vis/filtering/trajectories/particleFilter-0/invert true
/vis/filtering/trajectories/particleFilter-0/verbose true
/vis/filtering/trajectories/particleFilter-0/active fal se

#Create a charge filter. Configure to pass only neutral tragjectories.
#Set verbose printout. Reset filter and reconfigure to pass only

#negativly charged trajectories.

/vis/filtering/trajectories/create/chargeFilter

273

Visualization

/vis/filtering/trajectories/chargeFilter-0/add 0
/vis/filtering/trajectories/chargeFilter-0/verbose true
/vis/filtering/trajectories/chargeFilter-0/reset true
/vis/filtering/trajectories/chargeFilter-0/add -1

#Create an attribute filter named attributeFilter-0

/vis/filtering/trajectories/create/attributeFilter

#Select attribute "IMag"

/vis/filtering/trajectories/attributeFilter-0/setAttribute | Mg

#Select trajectories with 2.5 MeV <= IMag< 1000 MeV

Ivis/filtering/trajectories/attributeFilter-0/addlnterval 2.5 MeV 1000 MeV

#list filters

/vis/filtering/trajectories/list
#Note that although particleFilter-0 and chargeFilter-0 are automatically
#chained, particleFilter-O will not have any effect since

#it is has been deactivated.

8.8.3. Hit Filtering

The attribute based filtering can be used on hits aswell astrajectories. To active the interactive attribute based hit
filtering, afilter call should be added to the "Draw" method of the hit class:

void MyHit:: Draw)
{

if (! pwisManager->FilterH t(*this)) return;
}

Interactive filtering can then be done through the commandsin/ vi s/ filtering/ hits.

8.9. Polylines, Markers and Text

Polylines, markers and text are defined in the gr aphi cs_r eps category, and are used only for visualization.
Here we explain their definitions and usages.

8.9.1. Polylines

A polyline is a set of successive line segments. It is defined with a class G4Polyline defined in the
gr aphi cs_r eps category. A polylineis used to visualize tracking steps, particle trajectories, coordinate axes,
and any other user-defined objects made of line segments.

G4Polyline is defined as a list of G4Point3D objects, i.e., vertex positions. The vertex positions are set to a
G4Polyline object with the push_back() method.

For example, an x-axis with length 5 cm and with red color is defined in Example 8.4.

Example 8.4. Defining an x-axiswith length 5 cm and with colour red.

274

Visualization

[]----- C++ source codes: An exanple of defining a |ine segnent
/] Instantiate an enply polyline object
G4Pol yl i ne x_axis;

/1 Set red line col our

G4Col our red(1.0, 0.0, 0.0);
GAVisAttributes att(red);
X_axis.SetVisAttributes(&att);

/] Set vertex positions
x_axi s. push_back(G4Point3D(0., 0., 0.));
x_axi s. push_back(G&G4Poi nt3D(5.*cm 0., 0.));

[]----- end of C++ source codes

8.9.2. Markers

Here we explain how to use 3D markersin Geant4 Visualization.

What are Markers?

Markersset marksat arbitrary positionsin the 3D space. They are often used to visualize hits of particlesat detector
components. A marker is a 2-dimensional primitive with shape (square, circle, etc), color, and specia properties
(a) of always facing the camera and (b) of having the possibility of a size defined in screen units (pixels). Here
"size" means "overal size", e.q., diameter of circle and side of square (but diameter and radius access functions
are defined to avoid ambiguity).

So the user who constructs a marker should decide whether or not it should be visualized to a given sizein world
coordinates by setting the world size. Alternatively, the user can set the screen size and the marker is visualized
to its screen size. Finally, the user may decide not to set any size; in that case, it is drawn according to the sizes
specified in the default marker specified in the class G4ViewParameters.

By default, "square” and “circle" are supported in Geant4 Visudization. The former is described with class
G4guare, and the latter with class G4Circle:

Marker Type Class Name
circle GA4Circle
right square G4guare

These classes are inherited from class G4VMarker. They have constructors as follows:

[]----- Constructors of ACircle and ASquare
GACrcle::AC rcle (const GAPoi nt 3D& pos) ;
GASquar e: : GASquar e (const GAPoi nt 3D& pos) ;

Access functions of class G4VMarker are summarized below.
Access functions of markers
Example 8.5 shows the access functions inherited from the base class G4VMarker.

Example 8.5. The accessfunctionsinherited from the base class G4VMarker.

[f----- Set functions of G4VMarker

voi d GAVMarker: : Set Posi tion(const (4Point3D&);

voi d GAVMar ker : : Set Wr | dSi ze(GAdoubl e);

voi d GAVMar ker: : Set Wr | dDi anet er (G4doubl e) ;

voi d GAVMar ker : : Set Wor | dRadi us(G4doubl e);

voi d GAVMar ker: : Set ScreenSi ze(GAdoubl e);

voi d GAVMar ker : : Set Scr eenDi anet er (G4doubl e) ;

voi d GAVMar ker: : Set Scr eenRadi us(GAdoubl e);

void GAVMarker::SetFillStyle(FillStyle);

/] Note: enum GAVMarker::FillStyle {noFill, hashed, filled};

275

Visualization

[]----- Get functions of 4VMarker

G4Poi nt 3D G4AVMar ker : : Get Posi tion () const;

GAdoubl e AVMar ker: : Get Wor | dSi ze () const;

GAdoubl e GAVMar ker : : Get Wor | dDi aneter () const;

GAdoubl e AVMar ker : : Get Wor | dRadi us () const;

GAdoubl e GAVMar ker : : Get ScreenSi ze () const;

GAdoubl e AVMar ker : : Get ScreenDi aneter () const;

GAdoubl e GAVMar ker : : Get Scr eenRadi us () const;

FillStyle GAVMarker:: GetFill Style () const;

/] Note: enum GAVMarker::FillStyle {noFill, hashed, filled};

Example 8.6 shows sample C++ source code to define avery small red circle, i.e., a dot with diameter 1.0 pixel.
Such adot is often used to visualize a hit.

Example 8.6. Sample C++ source codeto defineavery small red circle.

[]----- C++ source codes: An exanple of defining a red small naker
GACircle circle(position); // Instantiate a circle with its 3D
/] position. The argunment "position"
/1l is defined as GA4Poi nt 3D i nstance
circle. Set ScreenDi aneter (1.0); // Should be circle.SetScreenD anet er
// (1.0 * pixels) - to be inplenented
circle.SetFillStyle (GACrcle::filled); // Mke it a filled circle

GACol our colour(1.,0.,0.); /| Define red col or

GAVisAttributes attribs(col our); /] Define a red visualization attribute
circle.SetVisAttributes(attribs); // Assign the red attribute to the circle
[f----- end of C++ source codes

8.9.3. Text

Text, i.e., a character string, is used to visualize various kinds of description, particle name, energy, coordinate
names etc. Text is described by the class G4Text . The following constructors are supported:

If----- Constructors of (AText
GAText (const (AString& text);
GAText (const (AString& text, const GAPoi nt 3D& pos);

where the argument t ext is the text (string) to be visualized, and pos is the 3D position at which the text is
visualized.

Text is currently drawn only by the OpenGL drivers, such as OGLIX, OGLIXm and Openinventor. It is not yet
supported on other drivers, including the Windows OpenGL drivers, HepRep, etc.

Note that class G4Text aso inherits G4VMarker. Size of text is recognized as "font size", i.e., height of the text.
All the access functions defined for class G4VMarker mentioned above are available. In addition, the following
access functions are available, too:

I]----- Set functions of AText
voi d GAText:: Set Text (const GAString& text) ;
void GAText::Set Offset (double dx, double dy) ;

I]----- Get functions of AText
GAString GAText:: Get Text () const;
GAdoubl e GAText:: Get XOffset () const;
GAdoubl e GAText:: Cet YO fset () const;

Method Set Text () definestext to bevisualized, and Get Text () returnsthe defined text. Method Set O f -
set () definesx (horizonta) andy (vertical) offsetsin the screen coordinates. By default, both offsetsare zero, and
the text starts from the 3D position given to the constructor or to the method G4VMar ker : Set Posi ti on().
Offsets should be given with the same units as the one adopted for the size, i.e., world-size or screen-size units.

Example 8.7 shows sample C++ source code to define text with the following properties:

e Text: "Welcome to Geant4 Visualization”
 Position: (0.,0.,0.) in the world coordinates

276

Visualization

» Horizontal offset: 10 pixels
» Vertica offset: -20 pixels
 Colour: blue (default)

Example 8.7. An example of defining text.

[]----- Ct++ source codes: An exanple of defining a visualizable text
[]----- Instantiation
GAText text ;

text. Set Text ("Welcome to Geant4 Visualization");
text. Set Position (G4Poi nt3D(0.,0.,0.));

/1 These three |lines are equivalent to:

/] GAText text ("Welcone to Geant4 Visualization",
/1 G4Poi nt3D(0.,0.,0.));

[f----- Size (font size in units of pixels)
GAdoubl e fontsize = 24.; // Should be 24. * pixels - to be inplenented.
text. Set ScreenSi ze (fontsize);

[f----- O fsets

G4doubl e x_of f set 10.; // Should be 10. * pixels - to be inplenmented.
GAdoubl e y_of f set -20.; // Should be -20. * pixels - to be inplenented.
text.Set Offset(x_offset, y offset);

[]----- Color (Blue is the default setting, and so the codes bel ow are om ssi bl e)
G4Col our blue(0., 0., 1.);
GAVisAttributes att (blue);
text.SetVisAttributes (att);

[]----- end of C++ source codes

8.10. Making a Movie

These instructions are suggestive only. The following procedures have not been tested on al platforms. There
are clearly some instructions that apply only to Unix-like systems with an X-Windows based windowing system.
However, it should not be difficult to take the ideas presented here and extend them to other platformsand systems.

The procedures described here need graphics drivers that can produce picture files that can be converted to aform
suitable for an MPEG encoder. There may be other ways of capturing the screen images and we would be happy
to hear about them. Graphics drivers currently capable of producing picture files are: More informations about
MPEG encoder

Driver Filetype

DAWNFILE prim then eps using dawn
HepRepFile HepRepl

HepRep HepRep2

OGLX eps

Qt jpeg, eps, ppm, ...
RayTracer ipeg

VRMLFILE vrml

So far, only DAWNFILE, OGLX, OGLQt and RayTracer have been "road tested". Once in a standard format,
such as eps, the convert program from ImageMagick can convert to ppm files suitable for ppmtompeg available
here: http://netpbm.sourceforge.net/

8.10.1. OGLX

Make a macro something like this:

277

http://netpbm.sourceforge.net/
http://netpbm.sourceforge.net/
http://www.imagemagick.org

Visualization

/control/verbose 2

/vi s/ open OG. 600x600- 0+0

[vi s/ dr awMol une

[vis/viewer/reset

/vis/viewer/set/style surface
/vis/viewer/set/projection perspective 50 deg
/control/alias phi 30

/control /|l oop novie.loop theta 0 360 1

which invokes movie.loop, which is something like:

/vis/viewer/set/viewoint ThetaPhi {theta} {phi}
/vis/viewer/zoom 1. 005
/vis/ogl/print EPS

This produces lots of epsfiles. Then...

make_npeg2encode_parfil e.sh GA0penG_*eps

Then edit mpeg2encode.par to specify file type and size, etc.:

$ di ff npeg2encode. par~ npeg2encode. par

7c7

<1 /* input picture file format: 0=*.Y,*.U *.V, 1=*.yuv, 2=*. ppm */

> 2 /* input picture file format: 0=*.Y,*.U *.V, 1=*.yuv, 2=*. ppm */

15, 17c15, 17

< /* horizontal _size */

< [* vertical _size */

<8 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

> 600 /* horizontal _size */
> 600 /* vertical _size */
> 1 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

Then convert to ppm:

for i in G4OpenGL*eps;
do j =" basenane $i .eps’; command="convert $i $j.ppnt; echo $comrand; $command; done

Then

npeg2encode npeg2encode. par GAQpenG.. npg

Then, on Mac, for example:

open GA0penG.. nmpg

opens a QuickTime player.

8.10.2. Ot

The Qt driver provides one of the easiest ways to make a movie. Of course, you first need to add the Qt libraries
and link with Qt, but once you have that, Qt provides a ready-made function to store all updates of the OpenGL
frame into the movie format. Y ou then use loops (as defined in OGL X section above) or even move/rotate/zoom
you scene by mouse actions to form your movie.

The Qt driver automatically handlesall of the movie-making stepsdescribed in the OGL X section of this document
- storing the files, converting them and assembling the finished movie. You just have to take care of installing
an mpeg_encoder.

To make amovie:

 Right click to display a context menu, "Action"->"Movie parameters”.

278

./AllResources/Visualization/make_mpeg2encode_parfile.sh

Visualization

» Select MPEG encoder path if it was not found.
» Select the name of the output movie.
» Let go! Hit SPACE to Start/Pause recording, RETURN to STOP

Then, open your movie (on Mac, for example):

open A0penGL. nmpg

opens a QuickTime player.

8.10.3. DAWNFILE

You need to invoke dawn in "direct” mode, which picks up parameters from .DAWN_1.history, and suppress
the GUI:

al i as dawn='dawn -d
export DAWN_BATCH=1

Change OGL to DAWNFILE in the above set of Geant4 commands and run. Then convert to ppm files as above:
for i in g4_*.eps
do j =" basenanme $i .eps’; command="convert $i $j.ppnl'; echo $command; $comrand; done

Then make a .par file:

make_npeg2encode_parfile.sh g4_*ppm

and edit mpeg2encode.par:

$ di ff npeg2encode. par ~ npeg2encode. par

7c7

<1 /* input picture file format: 0=*.Y,*.U *.V, 1=*.yuv, 2=*. ppm */
> 2 /* input picture file format: 0=*.Y,*.U *.V, 1=*.yuv, 2=* ppm */
9c9

<1 /* nunber of first frame */

>0 /* nunber of first frame */

15, 16c15, 16

< /* horizontal _size */

< /* vertical _size */
> 482 /* horizontal _size */
> 730 /* vertical _size */

Then encode and play:

npeg2encode npeg2encode. par DAWN. npg
open DAWN. npg

8.10.4. RayTracerX

/control/verbose 2

/vi s/ open RayTracer X 600x600- 0+0

(Raytracer doesn't need a scene; snoother not to /vis/drawol une.)
/vis/viewer/reset

/vis/viewer/set/style surface

/vis/viewer/set/projection perspective 50 deg

/control/alias phi 30

/control /|l oop novie.loop theta 0 360 1

where movie.loop is as above. This produces lots of jpeg files (but takes 3 days!!!). Then...

279

./make_mpeg2encode_parfile.sh

Visualization

make_npeg2encode_parfil e. sh g4RayTracer*j peg

Then edit mpeg2encode.par to specify file type and size, etc.:

$ di ff npeg2encode. par. ori g npeg2encode. par

7c7

<1 /* input picture file format: 0=*.Y,*.U *.V, 1=*.yuv, 2=*.ppm */

> 2 /* input picture file format: 0=*.Y,*.U *.V, 1=*.yuv, 2=*.ppm */

15, 17c15, 17

< /* horizontal _size */

< [* vertical _size */

< 8 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

> 600 /* horizontal _size */
> 600 /* vertical _size */
> 1 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

Then convert to ppm, encode and play:

for i in g4*jpeg

do j ="basenane $i .jpeg ; command="convert $i $j.ppnt'; echo $command; $command; done

npeg2encode npeg2encode. par g4RayTracer . npg
open g4RayTracer. npg

280

./make_mpeg2encode_parfile.sh

Chapter 9. Analysis

9.1. g4tools
9.1.1. inlib, exlib, g4tools

g4t ool s is a"namespace protected” part of i nl i b and ex| i b which is of some interest for Geant4, mainly
the histograms, the ntuples and the code to write them at the ROOT, AIDA XML, CSV and HBOOK file formats.
The idea of g4t ool s isto cover, with a very light and easy to install package, what is needed to do analysis
in a"Geant4 batch program".

Asg4t ool s isdistributed through Geant4 and in order to avoid potential namespace clasheswith other codesthat
usethei nl i b/ exl i b todo Geant4 visuaization (asfor theg4vi ewapplication or some of the exlib examples),
the inlib and exlib namespaces had been automatically changed to toolsin the g4t ool s distribution. Sincein
principle Geant4 users will not have to deal directly with the g4t ool s classes, but will manipulate histograms
and ntuples through the G4AnalysisManager, we are not going to extensively document the g4t ool s classes
here. Interested people are encouraged to go at thei nl i b/ exl i b web pagesfor that (see inlib/exlib site).

9.1.2. g4tools code is pure header

Asexplainedini nl i b/ exl i b, the code found in g4t ool s is"pure header". This comes from the need to
have an easy way to build applications, asthei oda one, from smartphone, passing by tablets and up to various
desktops (UNIX and Windows). For example, if building an application targeted to the AppStore and Android
market, the simplest way isto pass through Xcode and the Android make system (or Ecl i pse), and having not
to build libraries simplifies alot the handling of all these IDEs for the same application. A fallback of that isthat
theinstallation of g4t ool s (if not using the one coming with Geant4) is straightforward, you simply unzip the
file containing the source code! To build an application using g4t ool s, asfori nl i b/ exl i b, yousimply have
to declare to your build system the "-1" toward the unfolded directory and do "Build and Run".

Note that there is no need to have CLHEP and Geant4 installed to use g4t ool s, but you may have to install
CERNLIB (and aFORTRANT7Y7 compiler!) if wanting to use the classes dealing with HBOOK .

9.1.3. g4tools test

g4t ool s comes with test programs of its own that may be useful in case of problems (for example porting on
anot yet covered platform). Y ou can build and run them with :

UNI X> <get g4tool s. zi p>
UNI X> <unzi p g4t ool s. zi p>
UNI X> cd g4t ool s/test/cpp
UNI X> ./build

UNI X> ./tool s_test_histo
UNI X> ./tool s_test_w oot
UNI X> etc. ..

and on Windows :

DOS> <get g4t ool s. zi p>

DOS> <unzi p g4tool s.zi p> (you can use the unzip.exe of CYGA N)
DOS> cd g4t ool s\test\cpp

DOS> .\ bui | d. bat

DOS> . \tool s_test_histo. exe

DOS> . \tool s_test_w oot.exe

DOS> etc. ..

Note that there is no need to have CLHEP and Geant4 installed to build and run the g4t ool s test programs,
but you may have to install the CERNLIB (and a FORTRAN77 compiler!) if wanting to use the classes related
to HBOOK.

281

http://inexlib.lal.in2p3.fr

Anaysis

9.1.4. g4tools in Geant4

The g4t ool s header filesare distributed in the Geant4 sourceinthesour ce/ anal ysi s/ i ncl ude/ t ool s
directory and in the Geant4 installation, they are installed in i ncl ude/ t ool s directory. The g4t ool s
test programs, included only in Geant4 development versions, can be downloaded with the g4t ool s-
[version]. zi p filefromthei nexl i b download page).

9.2. Analysis Manager Classes

The analysis manager classes provide uniform interfaces to the g4tool s package and hide the differences between
use of g4tools classes for the supported output formats (ROOT, AIDA XML, CSV and HBOOK).

An analysis manager classis available for each supported output format:

* G4CsvAnalysisManger

* G4RootAnalysisManger

* G4Xml AnalysisManger

* ExG4HbookAnalysisManger

All these manager classesimplement:

* the common interfaces defined in the G4VAnalysisManager base class
* gspecific access functions (with a return type specific to the output format)
» the singleton access method Instance()

In order to avoid a dependence of the Geant4 kernel libraries on CERNL 1B the ExG4HbookAnalysisManger class
is not included in the Geant4 analysis class category but in exanpl es/ ext ended/ conmon/ anal ysi s to-
gether with all necessary configuration files for its build with the CERNLIB libraries.

The G4AnalysisMessenger classimplements commandsfor creating histograms and setting histograms properties.

9.2.1. Histograms

9.2.1.1. Basic Histograms

An example of use of analysis manager classes is provided in basic example B4, in the BARunAction and
B4EventAction classes. The code for handling histograms given in the following example is extracted from these
classes.

Example9.1. Exanpl e wi th Hi st ograns

#i ncl ude "B4Anal ysi s. hh"

voi d B4RunActi on: : Begi nOf RunActi on(const G4Run* run)
{
/] Get/create anal ysis manager
G Anal ysi sManager* man = G4Anal ysi sManager: : | nstance();

/] Open an output file
man- >QpenFi | e("B4");
man- >Set Fi rst Hi stol d(1);

/] Create histogran(s)
man- >Creat eH1(" 1", "Edep in absorber", 100, 0., 800*MeV);
man- >Cr eat eH1(" 2", "Edep in gap", 100, 0., 100*MeV);

}

voi d Bd4aEvent Acti on: : EndCOf Event Acti on(const GARun* aRun)
/1 Fill histograns

G Anal ysi sManager* man = G4Anal ysi sManager: : | nstance();
man->Fi | | HL(1, fEnergyAbs);

282

http://softinex.lal.in2p3.fr/download/g4tools/

Anaysis

man->Fi | | HL(2, fEnergyGap);
}

voi d B4RunActi on: : EndOf RunActi on(const GARun* aRun)
{

/] Save hi stograns

G4Anal ysi sManager* man = G4Anal ysi sManager: : | nst ance();
man->Wite();

man->Cl oseFi |l e();

/] Conpl ete cl ean-up

del ete AAnal ysi sManager: : | nstance();

}

The code specific to the output format is hidden in B4Anal ysi s. hh where the selection of the output format
takes place.

#i f ndef B4Anal ysis_h
#define B4Analysis_h 1

#i ncl ude "g4root. hh"
/[#i ncl ude "g4xm . hh"
/'] #i ncl ude "g4csv. hh" /1 can be used only with ntuples

#endi f

If afile extension is not specified in the call to G4AnalysisManager::OpenFile(), it is automatically completed
according to a selected output format.

9.2.1.2. Histogram ldentifiers

The histogram names "1", "2" were kept as they are defined in the analogous example in ext ended/ anal y-

si s/ AnaEx01. They have no relation to the histogram ID which is used afterwords in histograms fill. The
histogram ID is automatically generated when a histogram is created by G4AnalysisManager::CreateH1(), and
its value is returned from this function. The default start value O is in this example changed to 1 with the
G4AnalysisManager-> SetFirstHistol d(G4int) method.

9.2.1.3. Histogram Objects

It is also possible to access directly the histogram objects by the manager class. The concrete histogram typeis
hidden behind a selected namespace. In example B4, the histogram functions mean() and rms() are called:

G Anal ysi sManager * anal ysi sManager = G4Anal ysi sManager: : | nstance();
if (anal ysi sManager->CGet H1(1)) {

GAcout << "\n ----> print histogranms statistic \n" << Gdendl ;
G4cout << " EAbs : nmean = " << anal ysi sManager - >Get H1(1) - >nean()
<< " rme = " << anal ysi sManager->Get H1(1) - >rns(),

<< Hendl ;

...
}

9.2.1.4. Activation of Histograms

The activation option allows the user to activate only selected histograms. When this option is activated, only the
histograms marked as activated are returned, filled or saved in afile. This feature is intensively used in extend-
ed/electromagnetic examples where all histograms are first created inactivated:

G4Anal ysi sManager * anal ysi sManager = G4Anal ysi sManager: : | nstance();
anal ysi sManager - >Set Acti vati on(true);

/] define histogram paraneters nane, title, nbins, vmn, vmax

G4int id = anal ysi sManager->CreateHl(nane, title, nbins, vmn, vmax);
anal ysi sManager - >Set Acti vati on(&4VAnal ysi sManager: : kH1, id, false);

and then selected histograms are activated in macros, using the analysis "set" command:

283

Anaysis

/anal ysis/hl/set 1 100 0 50 cm #track length of primary
/anal ysi s/hl/set 2 100 O 300 none #nb steps of primry

When no parameters need to be changed a histogram can be activated using "setActivation” command:

[anal ysi s/ hl/set Activation 1 true
[anal ysi s/ hl/set Activation 2 true

9.2.1.5. Histograms Properties

The following properties, additional to those defined in gdtools, can be added to histograms via
G4AnalysisManager:

» Unit: if ahistogram is defined with a unit, all filled values are automatically converted to this defined unit and
the unit is added to the histogram axistitle.

 Function: if a histogram is defined with a function, the function is automatically executed on the filled values
and its name is added to the histogram axis title. When a histogram is defined with both unit and function the
unit is applied first. The available functions: log, 10910, exp .

 Activation: see previous section.

* ACII option: if activated the histogram is aso printed in an ASCII file when G4AnalysisManager::Write()
function is called.

9.2.2. Analysis Messenger

The G4AnalysisMessenger class implements the commands for creating histograms and setting histograms prop-
erties described below.

The commands for handling files, directories and general options:

[anal ysi s/ set Fi | eName nane # Set name for the histograns and ntuple file
[anal ysi s/ set Hi st oDi r Nane nane # Set nane for the histograms directory

[anal ysi s/ set Nt upl eDi r Nane nane # Set name for the histograns directory

[anal ysi s/ set Activation true|false # Set activation option

[anal ysi s/ ver bose | evel # Set verbose |evel

The commands to create or define 1D histogram:

[anal ysi s/ hl/create
nane title [nbin min max] [unit] [fcn] # Create 1D hi stogram
/anal ysis/hl/set id nbin min max [unit] [fcn] # Set paraneters for the 1D histogramof #id :

The commands to create or define 2D histogram:

[anal ysi s/ h2/ create # Create 2D hi stogram
name title [nxbin xm n xmax xunit xfcn nybin ymn ynmax yunit yfcn]
[anal ysi s/ h2/ set # Set paraneters for the 2D hi stogram of #id

id nxbin xmn xmax xunit xfcn nybin ymn ynax yunit yfcn

The commands for 1D, 2D histogram control:

[anal ysi s/ hl/setAscii id true|false # Print 1D histogram of #id on ascii file.
/anal ysis/hl/setTitle id title # Set title for the 1D hi stogram of #id

/anal ysi s/hl/setXaxis id title # Set x-axis title for the 1D hi stogram of #id
/anal ysi s/ hl/setYaxis id title # Set y-axis title for the 1D hi stogram of #id
[anal ysi s/ hl/set Activation id true|fal se # Set activation for the 1D histogram of #id

[anal ysi s/ hl/set ActivationToAl | true|false # Set activation to all 1D hi stograns.

The same set of commandsis available for 2D histograms, under "/analysigh2" directory.

284

Anaysis

9.2.3. Ntuples

In the following example the code for handling ntuples extracted from basic example B4, from the B4RunAction
and B4EventAction classes, is presented.

Example9.2. Exanple with Ntuple

#i ncl ude "B4Anal ysi s. hh"

voi d B4RunActi on: : Begi nOf RunActi on(const G4ARun* run)
{

/] Get/create anal ysis manager
G4 Anal ysi sManager* man = G4Anal ysi sManager: : I nstance();

/] Open an output file
man- >QpenFi | e("B4") ;

/] Create ntuple

man- >Cr eat eNt upl e("B4", "Edep and TrackL");
man- >Cr eat eNt upl eDCol unm(" Eabs") ;

man- >Cr eat eNt upl eDCol urm(" Egap") ;

man- >Fi ni shNt upl e() ;

}

voi d N4Event Acti on: : EndCf Event Acti on(const G4Run* aRun)

{
G Anal ysi sManager* man = G4Anal ysi sManager: : | nstance();

man- >Fi | | Nt upl eDCol um(0, fEner gyAbs);
man- >Fi | | Nt upl eDCol um(1, fEnergyGap);
man- >AddNt upl eRow() ;

}

Inasimilar way asfor histogram 1D, the ntuple column ID is automatically generated when the ntuple columniis
created by G4AnalysisManager :: CreateNtupleTColumn(), and itsvalueisreturned from this function. The default
start value O can be again changed with the G4AnalysisManager:: SetFirstNtupleld(G4int) method. The ntuple
column ID is specific to each ntuple column type. If the third ntuple column of a different type than double (int
or float) is created, its 1D will have the value equal 0.

9.2.4. Coexistence of Several Managers

The specific manager classes are singletonsand so it isnot possible to create more than one instance of an analysis
manager of onetype, eg. G4RootAnalysisManager. However two analysis manager objects of different types can
coexist. Then instead of G4AnalysisManager typedef from g4anal ysi s_def s. hh the concrete type of each
manager has to be given explicitly.

Example9.3. Exanple with two anal ysi s nmanager instances
#i ncl ude " &AACsvManager . hh"

#i ncl ude " &4Xm Manager . hh"

GACsvivanager * csvianager = (ACsvManager: : | nstance();
&AXml Manager * xml Manager = GAXml Manager: : | nst ance() ;

Or:

#i ncl ude "g4anal ysi s_defs. hh"

(ACsv: : HAAnal ysi sManager * csvManager
&AXnl : : GAAnal ysi sManager * xnl Manager

(ACsv: : HAAnal ysi sManager: : | nst ance() ;
G4Xm : : GAAnal ysi sManager: : | nst ance() ;

9.2.5. Supported Features and Limitations

Thefirst version of the analysis category based on g4toolsis provided with certain limitations that can be reduced
according to the feedback from Geant4 users and developers.

285

Anaysis

Below isasummary of currently supported features and limitations in manager classes:

» Histogram types. H1, H2 of double

* Ntuple column types: int, float, double

» Only one ntuple can be created/handled.

» No limitation for the number of histograms

» Direct accessto the ntuple object is not provided.

» The directory structure in the output file is fixed to one directory for histograms and one for an ntuple, users
can change the names of these directories.

» G4CsvAnalysisManager can be used only with ntuples.

Supported features and limitations in g4tools:

 Histogram types: H1, H2, H3 of double
 Profiletypes. P1, P2 of double

* Ntuple column types: int, float, double

» Csv classes can be used only with ntuples.

286

Chapter 10. Examples
10.1. Introduction

The Geant4 toolkit includes several fully coded examples that demonstrate the implementation of the user classes
required to build a customized simulation.

The new "basic" examples cover the most typical use-cases of a Geant4 application while keeping ssimplicity and
ease of use. They are provided as a starting point for new Geant4 application devel opers.

The "novice" examples range from the simulation of a non-interacting particle and atrivia detector to the simu-
lation of electromagnetic and hadronic physics processes in acomplex detector. Asaresult of continuous Geant4
development and the enhancing of examples code most of these examples have become too complex for novice
users. The new set of "basic" examples is now provided for beginners. The intention is to remove the "novice"
examples completely in the next Geant4 release.

A set of "extended" examples implement simulations of actual high energy physics detectors and many require
some libraries in addition to those of Geant4. The "advanced" examples cover cases useful to the devel opment
of the Geant4 toolkit itself.

All examples can be compiled and run without modification. Most of them can be run both in interactive and batch
mode using the input macro files (*. i n) and reference output files (* . out) provided. Most examples are run
routinely as part of the validation, or testing, of official releases of the Geant4 toolKkit.

10.2. Basic Examples

10.2.1. Basic Examples Summary

Descriptions of the 4 basic examples are provided here along with links to source code documentation automati-
cally generated with Doxygen.

Exanpl e Bl (seeadso Doxygen page)

» Simple geometry with afew solids

» Geometry with simple placements (G4PV Placement)
 Scoring total dose in a selected volume in user action classes
» Geant4 physicslist (QBBC)

Exampl e B2 (seeadso Doxygen page)

» Simplified tracker geometry with uniform magnetic field

» Geometry with simple placements (G4PV Placement) and parameterisation (G4PV Parameterisation)
 Scoring within tracker via G4 sensitive detector and hits

» Geant4 physicslist (FTFP_BERT) with step limiter

« Started from novice NO2 example

Exanpl e B3 (seeadso Doxygen page)

 Schematic Positron Emission Tomography system

» Geometry with simple placements with rotation (G4PV Placement)
+ Radioactive source

 Scoring within Crystals via G4 scorers

Modular physicslist built via builders provided in Geant4

Exanpl e B4 (seeadso Doxygen page)

» Simplified calorimeter with layers of two materials

287

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB2.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB3.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB4.html

Examples

» Geometry with replica (G4PV Replica)
 Scoring within layers in four ways:. via user actions (@), via user own object (b), via G4 sensitive detector and

hits (c) and via scorers (d)
» Geant4 physicslist (FTFP_BERT)

 Saving histograms and ntuplein afile using new analysistools
» Ul commans defined using G4GenericM essenger

* Started from novice/NO3 example

Table 10.1 and Table 10.2 display the "item charts' for the examples currently prepared in the basic level.

Example B1 Example B2
Description Simple application for accounting|Fixed target tracker geometry
dose in a selected volume
Geometry solids: box, cons, trd solids: box, tubs
» simple placements with transla-|» simple placements with transla-
tion tion (a)
 parameterised volume (b)
 uniform magnetic field
Physics Geant4 physicslist: QBBC Geant4 physicslist: FTFP_BERT

Primary generator

Particle gun

Particle gun

Scoring User action classes Sensitive detector & hits
Visg/GUI Detector & trajectory drawing Detector, trajectory & hits draw-
ing
* GUI
Stacking - -
Anaysis - -

Table10.1. The"item chart"

for basic level examplesB1 and B2.

builders

Example B3 Example B4
Description Schematic Positron Emitted Tomog- | Simplified cal orimeter with layers of
raphy system two materias
Geometry solids: box, tubs » solids: box
» simple placementswith rotation |» simple placements with transla-
tion
* replica
* uniform magnetic field
Physics Modular physics list with Geant4|Geant4 physicslist: FTFP_BERT

Primary generator

Radioactive source (particle gun
with Fluor ions)

Particle gun

Scoring

Multi functional (sensitive) detector
& scorers

(@) User action classes

* (b) User own object (runData)

* (c) Sensitive detector & hits

* (d) Multi functional (sensitive) de-
tector & scorers

Vis/GUI

Detector, trajectory & hits drawing

Detector, trgjectory & hits draw-
ing
* GUI

Stacking

Killing all neutrina

Anaysis

Histograms 1D, ntuple

Table10.2. The"item chart" for basic level examples B3 and B4.

288

Examples

10.2.2. Basic Examples Macros

All basic examples can be run either interactively or in abatch mode (see section Section 2.1 and Section 2.9) and
they are provided with the following set of macros:

einit.mac, init_vis.nac
e Vis.nmac

e [gui.nmac]

e runl. mac, run2.nac

e exanpl eBN.in

Oneof themacrosi nit. mac ori ni t_vi s. mac isaways executed just after the Geant4 kernel initialization.
The selection is done automatically according to the application build configuration. If the example is built with
any visualization driver, thei ni t _vi s. nac macro, which callsthevi s. mac macro, is executed, otherwise it
isthei ni t . mac macro with no reference to visualization.

Thevi s. mac macros in each of the examples al have the same structure - except for example B1, see below.
There are only afew lines in each example with a setting different from the other examples and so they can be
easily spotted when looking in the macro. Various commands are proposed in commented blocks of lines with
explanations so that auser can just uncomment lines and observe the effect. Additionally, in example B4, thereare
some visualization tutorial macrosin macr os/ vi sTut or/ . See more on visualization in section Section 2.10
and chapter Chapter 8.

From Release 9.6 thevi s. nac macro in example B1 has additional commands that demonstrate additional func-
tionality of the vis system, such as displaying text, axes, scales, date, |ogo and shows how to change viewpoint and
style. Consider copying these to your favourite example or application. To see even more commands use hel p
or | s or browse the available Ul commands in section Section 7.1.

The gui . mac macros are provided in examples B2 and B4. This macro is automatically executed if Geant4 is
built with any GUI session. See more on graphical user interfacesin section Section 2.8.

When running interactively, the example program stops after processing the Geant4 kernel initialization and the
init.macorinit_vis.mc macro with the prompt | dl e>. At this stage users can type in the commands
fromr unl. mac lineby line (recommended when running the examplefor thefirst time) or executeall commands
at onceusingthe"/ control / execute runl. mac" command.

The r un2. mac macros define conditions for execution a run with a larger number of events and so they are
recommended to be executed in a batch. The exanpl eBN. i n macros are also supposed to be run in a batch
mode and their outputs from the Geant4 system testing are available in the filesexanpl eBN. out .

10.2.3. Example Bl

Basic concept:

Thisexample demonstrates asimple (medical) application within which userswill familiarizethemselveswith sim-
ple placement, usethe NIST material database, and can utilize electromagnetic and/or hadronic physics processes.
Two items of information are collected in this example: the energy deposited and the total dose for a selected
volume.

This example uses the Geant4 physics list QBBC, which is instantiated in the main() function. It requires data
files for electromagnetic and hadronic processes. See more on installation of the datasetsin Geant4 Installation
Guide, Chapter 3.3: Note On Geant4 Datasets . Thefollowing datasets: GALEDATA, GALEVELGAMMADATA,
GANEUTRONXSDATA and G4SAIDXSDATA are mandatory for this example.

Classes:

B1DetectorConstruction

The geometry is constructed in the B1Det ect or Const r uct i on class. The setup consists of a box shaped
envel ope containing two volumes: a circular cone and a trapezoid.

289

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/ch03s03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/ch03s03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB1DetectorConstruction.html

Examples

Some common materials from medical applications are used. The envelope is made of water and the two inner
volumes are made from tissue and bone materials. These materials are created using the G4NistManager class,
which allows one to build a material from the NIST database using their names. Available materials and their
compositions can be found in the Appendix Section 10.

The physical volumes are made from Constructive Solid Geometry (CSG) solids and placed without rotation
using the G4PVPlacement class.

B1PrimaryGeneratorAction

Thedefault kinematicsisa6 MeV gamma, randomly distributed in front of the envel ope across 80% of thetrans-
verse (X,Y) plane. Thisdefault setting can be changed via the Geant4 built-in commands of the G4ParticleGun
class.

B1SteppingAction

Itisin the User SteppingAction() function that the energy deposition is collected for a selected volume.
B1EventAction

The statistical event by event accumulation of energy deposition and total dose is done within this class.

B1RunAction

Information about the primary particleisprinted in this classa ong with the computation of the dose. An example
of creating and computing new units (e.g., dose) is aso shown in the class constructor.

10.2.4. Example B2

This example simulates a simplified fixed target experiment. To demonstrate alternative ways of constructing the
geometry two variants are provided: B2a (explicit construction) and B2b (parametrized volumes).

The set of available particles and their physics processes are defined in the FTFP_BERT physicslist. This Geant4
physicslistisinstantiated in the main() function. It requires datafiles for electromagnetic and hadronic processes.
See more on ingtallation of the datasets in Geant4 Installation Guide, Chapter 3.3: Note On Geant4 Datasets .
The following datasets: GALEDATA, GALEVELGAMMADATA and GASAIDXSDATA are mandatory for this
example.

This example aso illustrates how to introduce tracking constraints like maximum step length via G4StepLimiter,
and minimum kinetic energy, etc., via the G4User Special Cuts processes. This is accomplished by adding
G4StepLimiterBuilder to the physics list.

Classes:

B2[a, b]DetectorConstruction

The setup consists of a target followed by six chambers of increasing transverse size at defined distances
from the target. These chambers are located in a region called the Tracker region. Their shape are cylin-
ders constructed as simple cylinders (in B2aDet ect or Const r uct i on) and as parametrised volumes (in
B2bDet ect or Constructi on) - seeaso B2bChamberParameterisation class.

In addition, a global, uniform, and traverse magnetic field can be applied (see B2MagneticField,
B2aDetectorMessenger and B2bDetectorMessenger classes) and set viainteractive command. An instance of
the B2Tr acker SD class is created and associated with each logical chamber volume (in B2a) and with the
one G4Logical Volume associated with G4PVParameterised (in B2b).

One can change the materials of the target and the chambers interactively via the commands defined in
B2aDet ect or Messenger (or B2bDet ect or Messenger).

290

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB1PrimaryGeneratorAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB1SteppingAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB1EventAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB1RunAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB2.html
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/ch03s03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2aDetectorConstruction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2bDetectorConstruction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2bChamberParameterisation.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2MagneticField.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2aDetectorMessenger.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2bDetectorMessenger.html

Examples

This example aso illustrates how to introduce tracking constraints like maximum step length, minimum ki-
netic energy etc. via the G4UserLimits class and associated G4StepLimiter and G4UserSpecial Cuts process-
es. The maximum step limit in the tracker region can be set by the interactive command defined in
B2aDet ect or Messenger (or B2bDet ect or Messenger).

B2PrimaryGeneratorAction

The primary generator action class employs the G4ParticleGun. The primary kinematics consists of a single
particle which hits the target perpendicular to the entrance face. The type of the particle and its energy can be
changed via the G4 built-in commands of the G4ParticleGun class.

B2EventAction

The event number is written to the log file every requested number of events in BeginOfEventAction() and
EndOfEventAction(). Moreover, for the first 100 events and every 100 events thereafter information about the
number of stored tragjectoriesintheevent isprinted aswell asthe number of hits stored in the G4VHitsCollection.

B2RunAction

The run number is printed at BeginOfRunAction(), where the G4ARunManager is also informed how to SetRan-
domNumber Store for storing initial random number seeds per run or per event.

B2TrackerHit

The tracker hit classis derived from G4VHit. In this example, atracker hit is a step by step record of the track
identifier, the chamber number, the total energy deposit in this step, and the position of the energy deposit.

B2TrackerSD

The tracker sensitive detector class is derived from G4VSensitiveDetector. In ProcessHits() - called from the
Geant4 kernel at each step - it creates one hit in the selected volume so long as energy isdeposited in the medium
during that step. This hit is inserted in a HitsCollection. The HitsCollection is printed at the end of each event
(viathe method B2Tracker SD:: EndOfEvent()), under the control of the "/hits/verbose 2" command.

10.2.5. Example B3

This example simulates a Schematic Positron Emission Tomography system.

Classes:
Geant4 Installation Guide, Chapter 3.3: Note On Geant4 Datasets

B3DetectorConstruction

Crystalsare circularly arranged to form aring. A number rings make up the full detector (gamma camera). This
is done by positionning Crystals in Ring with an appropriate rotation matrix. Several copies of Ring are then
placed in the full detector.

The Crystal material, LUu2SiO5, is not included in the G4Nist database. Therefore, it is explicitly built in De-
fineMaterials().

Crystals are defined as scorers in DetectorConstruction::CreateScorers(). There are two
G4MuultiFunctional Detector objects: onefor the Crystal (EnergyDeposit), and onefor the Patient (DoseDeposit).

B3PhysicsList

The physicslist contains standard el ectromagnetic processes and the radioactiveDecay module for Genericlon.
It is defined in the B3Physi csLi st class as a Geant4 modular physics list with registered Geant4 physics
builders:

291

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2PrimaryGeneratorAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2EventAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2RunAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2TrackerHit.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB2TrackerSD.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB3.html
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/ch03s03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB3DetectorConstruction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB3PhysicsList.html

Examples

e G4DecayPhysics
» G4RadioactiveDecayPhysics
¢ G4EmSandardPhysics

B3PrimaryGeneratorAction

The default particle beam is an ion (F18), at rest, randomly distributed within a zone inside a patient and is
defined in GeneratePrimaries().

B3EventAction , B3RunAction

Energy depositedin crystalsissummed by G4Scorer. B3EventAction: : EndOfEventAction() collectsinformation
event by event from the hits collections, and accumul ates statistics for B3RunAction: : EndOfRunAction().

B3StackingAction

Beta decay of Fluorine generates a neutrino. One wishes not to track this neutrino; therefore one kills it imme-
diately, before created particles are put in a stack.

10.2.6. Example B4

This example simulates a simple Sampling Calorimeter setup. To demonstrate several possible ways of data scor-
ing, the example is provided in four variants: B4a, B4b, B4c, B4d. (See a so examples/extended/el ectromagnet-
ic/TestEm3).

The set of available particles and their physics processes are defined in the FTFP_BERT physicslist. This Geant4
physicslistisinstantiated in the main() function. It requires datafiles for electromagnetic and hadronic processes.
See more on installation of the datasets in Geant4 Installation Guide, Chapter 3.3: Note On Geant4 Datasets .
The following datasets: GALEDATA, GALEVELGAMMADATA and G4ASAIDXSDATA are mandatory for this
example.

Classes:

B4[c, d]DetectorConstruction

The calorimeter is a box made of a given number of layers. A layer consists of an absorber plate and of a
detection gap. The layer isreplicated. In addition atransverse uniform magnetic field can be applied and set via
the interactive command defined using the G4GenericM essenger class.

B4PrimaryGeneratorAction

The primary generator action class uses G4ParticleGun. It defines a single particle which hits the calorimeter
perpendicular to the input face. The type of the particle can be changed via the G4 built-in commands of the
G4ParticleGun class.

B4RunAction

It accumulates statistics and computes dispersion of the energy deposit and track lengths of charged particles
with the aid of analysis tools. H1D histograms are created in BeginOfRunAction() for the energy deposit and
track length in both Absorber and Gap volumes. The same values are also saved in an ntuple. The histograms
and ntuple are saved in the output file in aformat accoring to a selected technology in B4Anal ysi s. hh. In
EndOfRunAction(), the accumulated statistics and computed dispersion are printed.

Classes in B4a (scoring via user actions):

B4aSteppingAction

In User SeppingAction() the energy deposit and track lengths of charged particles in each step in the Absober
and Gap layers are collected and subsequently recorded in B4aEvent Act i on.

292

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB3PrimaryGeneratorAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB3EventAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB3RunAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB3StackingAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB4.html
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/ch03s03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4DetectorConstruction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4cDetectorConstruction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4dDetectorConstruction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4PrimaryGeneratorAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4RunAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4aSteppingAction.html

Examples

B4aEventAction

It defines data members to hold the energy deposit and track lengths of charged particles in the Absober and
Gap layers and the data member to define the frequency of printing the accumulated quantities. Its value can be
changed via the interactive command defined using the G4GenericM essenger class.

Classes in B4b (via user own object):
B4bRunRata

A data class which defines data membersto hold the energy deposit and track lengths of charged particlesin the
Absober and Gap layers. The data are collected step by step in B4bSt eppi ngAct i on, and the accumulated
values are entered in histograms and an ntuple event by event in BAbEvent Act i on.

B4bSteppingAction

In User SeppingAction() the energy deposit and track lengths of charged particles in Absorber and Gap layers
are collected and subsequently recorded in BAbRunDat a.

B4bEventAction

In EndOfEventAction(), the accumulated quantities of the energy deposit and track lengths of charged particles
in Absorber and Gap layers are printed and then stored in BAbRunDat a. It defines a data member to define
the frequency of printing the accumulated quantities. Its value can be changed via a command defined in the
B4bEventActionM essenger class.

Classes in B4c (via Geant4 sensitive detector and hits):

B4cDetectorConstruction

In addition to materials, volumes and uniform magnetic field definitionsasin B4Det ect or Const r ucti on,
in DefineVolumes() two instances of theB4c Cal or i net er SD classare created and associated with Absorber
and Gap volumes.

B4cCalorHit

The calorimeter hit classis derived from G4VHit. It defines data members to store the energy deposit and track
lengths of charged particles in a selected volume.

B4cCalorimeterSD

The calorimeter sensitive detector classis derived from G4VSensitiveDetector. Two instances of this class are
created in B4cDet ect or Const r uct i on and associated with Absorber and Gap volumes. In Initialize(), it
creates one hit for each calorimeter layer and one more hit for accounting the total quantitiesin all layers. The
values are accounted in hitsin the ProcessHits() function, which is called by the Geant4 kernel at each step.

B4cEventAction

In EndOfEventAction(), the accumulated quantities of the energy deposit and track lengths of charged particles
in Absorber and Gap layers are printed and then stored in the hits collections. It defines a data member to define
the frequency of printing the accumulated quantities. Its value can be changed via a command defined in the
B4cEventA ctionM essenger class.

Classes in B4d (via Geant4 scorers):

B4dDetectorConstruction

In addition to materials, volumes and uniform magnetic field definitionsasin B4Det ect or Constr ucti on,
in DefineVolumes() sensitive detectors of G4MultiFunctional Detector type with primitive scorers are created
and associated with Absorber and Gap volumes.

293

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4aEventAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4bRunData.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4bSteppingAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4bEventAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4bEventActionMessenger.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4cDetectorConstruction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4cCalorHit.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4cCalorimeterSD.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4cEventAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4cEventActionMessenger.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4dDetectorConstruction.html

Examples

B4dEventAction

In EndOfEventAction(), the accumulated quantities of the energy deposit and track lengths of charged particles
in Absober and Gap layers are printed and then stored in the hits collections. It defines a data member to define
the frequency of printing the accumulated quantities. Its value can be changed via a command defined in the
B4dEventActionMessenger class.

10.3. Novice Examples

Seven "novice" examples are provided ranging from the simulation of a non-interacting particle and a trivial
detector, to the simulation of electromagnetic and hadronic physics processesin acomplex detector. Each example
may be used as a base from which more detailed applications can be devel oped.

With a continuous Geant4 development and enhancing the examples code most of these examples became too
complex for novice users. The new set of "basic" examplesis now provied for beginners and is going to replace
the "novice" examples completely in the next Geant4 release.

10.3.1. Novice Example Summary

Descriptions of the 7 novice examples are provided here along with links to the code.
Exanpl eNO1 (Description below)

* Mandatory user classes
» Demonstrates how Geant4 kernel works

Exanpl eN02 (Description below)

» Simplified tracker geometry with uniform magnetic field
* Electromagnetic processes

Exanpl eNO3 (Description below)

» Simplified calorimeter geometry
* Electromagnetic processes
» Various materias

Exanpl eN04 (Description below)

» Simplified collider detector with a readout geometry
 Full “ordinary" processes

e PYTHIA primary events

Event filtering by stack

Exanpl eNO5 (Description below)

» Simplified BaBar calorimeter
» EM shower parametrisation

Exanpl eN06 (Description below)
» Optical photon processes
Exanpl eNO7 (Description below)

» Geometrical Regions for production thresholds
* Dynamic geometry setups between runs

* Primitive scorer and filter

 Derived run class and run action

294

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4dEventAction.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/classB4dEventActionMessenger.html
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N01/README
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/README
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/README
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/README
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/README
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N06/README
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/README

Examples

Table 10.3, Table 10.4 and Table 10.5 display the ““item charts" for the examples currently prepared in the novice

level.
Exanpl eNO1 Exanpl eNO2 Exanpl eNO3

comments minima set for geantino|fixed target tracker geome-| EM shower in calorimeter
transportation try

Run mai n() for hard coded|mai n() for interactive|s mai n() for interactive
batch mode mode

* SetCut and Process On/
Off

Event event generator selection|event generator selection|e eventgenerator selection
(particleGun) (particleGun) (particleGun)

e “end of event" simple
analysis in UserEven-
tAction

Tracking hard coded verbose level |selecting secondaries select trgjectories
Setting
Geometry geometry definition (CSG) [+ geometry definition (in-|» geometry definition (in-
cludes Parametrised vol-| cludes replica)
ume) uniform magnetic field
 uniform magnetic field
Hits/Digi - tracker type hits calorimeter-type hits
PIIM e minimal particle set e EM particles set * EM particles set
 single element material | mixtures and compound|e mixtures and compound
elements elements
Physics transportation EM physics EM physics
Vis - o detector & trajectory |detector & trajectory draw-
drawing ing
* tracker type hitsdrawing
(GUI - GUI selection GUI selection
Globa - - -
Table 10.3. The “item chart" for novice level examples NO1, NO2 and NO3.
Exanpl eNO4 Exanpl eNO5 Exanpl eNO6
comments simplified collider geome- | parametrised shower ex-|Optical photon example
try ample
Run mai n() for interactive|mai n() for interactive|mai n() for interactive
mode mode mode
Event eventgenerator selection|event generator selection|event generator selection
(HEPEVtInterface) (HEPEVtInterface) (particleGun)
 Stack control
Tracking select trgjectories - -
* selecting secondaries
Geometry » geometry definition (in-|{ghost volume for shower|geometry definition
cludes Param/Replica) | parametrisation (BREP with rotation)
e non-uniform magnetic
field
Hits/Digi e Tracker/calorime- Sensitive detector for -
ter/counter types shower parametrisation
* ReadOut geometry
PIIM Full particle set e EM set e EM set

295

Examples

e mixtures and compound
elements

« mixtures and compound
elements

* mixtures and compound
elements

Physics Full physics processes Parametrized shower Optical photon processes
Vis « detector & hit drawing |detector & hit drawing -
e caorimeter type hits
drawing
(GUI define user commands define user commands define user commands
Global - - random number engine

Table 10.4. The “item chart" for novice level examples NO4, NO5, and NO6.

Exanpl eNO7
comments Cuts per region
Run e mai n() for interactive mode
* Customized run class
Event event generator selection (particleGun)
Tracking
Geometry « geometry definition (includes Replica)
* Region
Hits/Digi * Primitive scorer
 Filter
PIIM « EM set
» mixtures and compound elements
Physics EM processes
Vis detector & trgjectory drawing
(GUI define user commands
Global

Table10.5. The “item chart" for novice level example NO7.

10.3.2. Example NO1

Basic concepts

» minimal set for geantino transportation

Classes

mai n() (sourcefile)

 hard coded batch

« construction and deletion of G4RunManager
* hard coded verbose level setting to G4ARunManager, G4EventManager and G4TrackingManager
* construction and set of mandatory user classes

 hard coded beantn()

» Hard coded Ul command application

ExNO1DetectorConstruction

(header file) (sourcefile)

 derived from G4V UserDetectorConstruction
« definitions of single element materials

* CSG solids

296

http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N01/exampleN01.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N01/include/ExN01DetectorConstruction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N01/src/ExN01DetectorConstruction.cc

Examples

» G4PVPlacement without rotation

ExNO1PhysicsList
(header file) (sourcefile)

¢ derived from G4VUser PhysicsList
* definition of geantino
 assignment of transportation process

ExNO1PrimaryGeneratorAction
(header file) (sourcefile)

« derived from G4VPrimaryGenerator Action
* construction of G4ParticleGun
* primary event generation via particle gun

10.3.3. Example NO2

Basic concepts

 Detector: fixed target type
* Processes: EM
« Hits: tracker type hits

Classes
mai n() (sourcefile)

» mai n() for interactive mode (and batch mode via macro file)
» construction and deletion of (G)UI session and VisManager
 random number engine

« construction and deletion of G4RunManager

* construction and set of mandatory user classes

ExNO2DetectorConstruction
(header file) (sourcefile)

* derived from G4VUser Detector Construction

« definitions of single-element, mixture and compound materials
» CSG solids

» Uniform magnetic field: construction of ExNO2MagneticField
Physical Volumes

e G4Placement volumes with & without rotation.

* G4PVParameterised volumes without rotation

ExNO2MagneticField
(header file) (sourcefile)

* derived from G4MagneticField
» Uniform field. EXNO2MagneticField

ExNO2PhysicsList

(header file) (sourcefile)

297

http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N01/include/ExN01PhysicsList.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N01/src/ExN01PhysicsList.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N01/include/ExN01PrimaryGeneratorAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N01/src/ExN01PrimaryGeneratorAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/exampleN02.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/include/ExN02DetectorConstruction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/src/ExN02DetectorConstruction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/include/ExN02MagneticField.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/src/ExN02MagneticField.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/include/ExN02PhysicsList.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/src/ExN02PhysicsList.cc

Examples

derived from G4VUserPhysicsList

definition of geantinos, €lectrons, positrons, gammas

utilisation of transportation and 'standard' EM-processes
Interactivity: chooses processes interactively (=> messenger class)

ExNO2PrimaryGeneratorAction

(header file) (sourcefile)

derived from G4VPrimaryGenerator Action
construction of G4ParticleGun
primary event generation via particle gun

ExNO2RunAction

(header file) (sourcefile)

derived from G4VUser RunAction
draw detector

ExNO2EventAction

(header file) (sourcefile)

derived from G4VUser EventAction
print time information

ExNO2TrackerSD

(header file) (sourcefile)

derived from G4VSensitiveDetector
tracker-type hit generation

ExNO2TrackerHit

(header file) (sourcefile)

derived from G4VHit
draw hit point

10.3.4. Example NO3

Basic concepts

Visualize Em processes.

Interactivity: build messenger classes.

Gun: shoot particle randomly.

Tracking: collect energy deposition, total track length

Classes

mai n() (sourcefile)

mai n() for interactive mode and batch mode via macro file
construction and deletion of G4ARunManager

construction and deletion of (G)UI session and VisManager
construction and set of mandatory user classes

automatic initialization of geometry and visualization viaamacro file

298

http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/include/ExN02PrimaryGeneratorAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/src/ExN02PrimaryGeneratorAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/include/ExN02RunAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/src/ExN02RunAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/include/ExN02EventAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/src/ExN02EventAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/include/ExN02TrackerSD.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/src/ExN02TrackerSD.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/include/ExN02TrackerHit.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N02/src/ExN02TrackerHit.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/exampleN03.cc

Examples

DetectorConstruction
(header file) (sourcefile)

* derived from G4VUser Detector Construction

« definitions of single materials and mixtures

» CSG solids

» G4PVPlacement without rotation

* Interactivity: change detector size, material, magnetic field. (=>messenger class)
 visualization

PhysicsList
(header file) (sourcefile)

* derived from G4VUserPhysicsList

» definition of geantinos, gamma, leptons, light mesons barions and ions
» Transportation process, 'standard’ Em processes, Decay

* Interactivity: SetCut, process on/off. (=> messenger class)

PrimaryGeneratorAction

(header file) (sourcefile)

¢ derived from G4VPrimaryGenerator Action

» construction of G4ParticleGun

» primary event generation via particle gun

* Interactivity: shoot particle randomly. (=> messenger class)

RunAction
(header file) (sourcefile)

¢ derived from G4VUserRunAction

* draw detector and tracks

Interactivity: SetCut, process on/off.

* Interactivity: change detector size, material, magnetic field.

EventAction
(header file) (sourcefile)

* derived from G4VUser EventAction
» dtoretrgjectories
* print end of event information (energy deposited, etc.)

SteppingAction
(header file) (sourcefile)

* derived from G4VUser SeppingAction
* collect energy deposition, etc.

10.3.5. Example NO4

Basic concepts

» Simplified collider experiment geometry

299

http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/include/DetectorConstruction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/src/DetectorConstruction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/include/PhysicsList.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/src/PhysicsList.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/include/PrimaryGeneratorAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/src/PrimaryGeneratorAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/include/RunAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/src/RunAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/EventAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/EventAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/include/SteppingAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N03/src/SteppingAction.cc

Examples

 Full hitg/digits/trigger
Classes

mai n() (sourcefile)

« construction and deletion of ExXNO4RunManager
« construction and deletion of (G)UI session and VisManager
* construction and set of user classes

ExNO4DetectorConstruction

(header file) (sourcefile)

* derived from G4VUser Detector Construction

« construction of ExNO4MagneticField

« definitions of mixture and compound materials

» material-dependent CutOff

» simplified collider geometry with Param/Replica
* tracker/muon -- parametrised

 calorimeter -- replica
ExNO4TrackerParametrisation

(header file) (sourcefile)

» derived from G4VPVParametrisation
 parametrised sizes

ExNO4CalorimeterParametrisation
(header file) (sourcefile)

 derived from G4VPVParametrisation
 parametrized position/rotation

ExNO4MagneticField
(header file) (sourcefile)

* derived from G4MagneticField
* solenoid and toroidal fields

ExNO4TrackerSD
(header file) (sourcefile)

 derived from G4VSensitiveDetector
* tracker-type hit generation

ExNO4TrackerHit
(header file) (sourcefile)

 derived from G4VHit
* draw hit point

ExNO4CalorimeterSD

(header file) (sourcefile)

300

http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/exampleN04.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04DetectorConstruction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04DetectorConstruction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04TrackerParametrisation.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04TrackerParametrisation.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04CalorimeterParametrisation.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04CalorimeterParametrisation.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04MagneticField.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04MagneticField.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04TrackerSD.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/src/ExN04TrackerSD.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04TrackerHit.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04TrackerHit.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04CalorimeterSD.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04CalorimeterSD.cc

Examples

* derived from G4VSensitiveDetector
« calorimeter-type hit generation

ExNO4CalorimeterHit
(header file) (sourcefile)

o derived from G4VHit
e draw physical volume with variable color

ExNO4MuonSD

(header file) (sourcefile)

* derived from G4VSensitiveDetector
* Scintillator-type hit generation

ExNO4MuonHit

(header file) (sourcefile)

* derived from G4VHit
* draw physical volume with variable color

ExNO4PrimaryGeneratorAction
(header file) (sourcefile)

« derived from G4VPrimaryGenerator Action
* construction of G4AHEPEWtInterface
 primary event generation with PY THIA event

ExNO4EventAction
(header file) (sourcefile)

* storetheinitial seeds
ExNO4StackingAction
(header file) (sourcefile)

* derived from G4User SackingAction
e ““stage" control and priority control
* event abortion

ExNO4StackingActionMessenger
(header file) (sourcefile)

* derived from G4Ulmessenger
« define abortion conditions

ExNO4TrackingAction
(header file) (sourcefile)

* derived from G4User TrackingAction
 select trgjectories
* select secondaries

301

http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04CalorimeterHit.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04CalorimeterHit.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N01/include/ExN04MuonSD.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N01/src/ExN04MuonSD.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04MuonHit.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04MuonHit.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04PrimaryGeneratorAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04PrimaryGeneratorAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04EventAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04EventAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04StackingAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04StackingAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04StackingActionMessenger.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04StackingActionMessenger.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/include/ExN04TrackingAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N04/src/ExN04TrackingAction.cc

Examples

10.3.6. Example NO5

Basic concepts

» Use of shower parameterisation:
* definition of an EM shower model
e assignment to aLogical Volume
« (definition of ghost volume when ready)
o Interactivity: build of messengers classes
» Hits/Digi: filled from detailed and parameterised simulation (cal orimeter type hits ?)

Classes

mai n() (sourcefile)

* mai n() for interactive mode

« construction and deletion of G4RunManager

* construction and set of mandatory user classes

* construction of the G4Global FastS mulationmanager

* construction of a G4FastSmulationManager to assign fast smulation model to alogical volume (envelope)
* (definition of ghost volume for parameterisation)

* construction EM physics shower fast simulation model

ExNO5SEMShowerModel

(header file) (sourcefile)

* derived from G4VFastS mulationModel
* energy deposition in sensitive detector

ExNO5PionShowerModel

(header file) (sourcefile)

* derived from G4VFastS mulationModel
* energy deposition in sensitive detector

ExNO5DetectorConstruction

(header file) (sourcefile)

 derived from G4VUser Detector Construction
« definitions of single materials and mixtures
» CSG solids

» G4PVPlacement

ExNO5PhysicsList
(header file) (sourcefile)

¢ derived from G4VUserPhysicsList
 assignment of G4FastSmulationManager Process

ExNO5PrimaryGeneratorAction

(header file) (sourcefile)

* derived from G4VPrimaryGenerator Action
* construction of G4ParticleGun

302

http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/exampleN05.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/include/ExN05EMShowerModel.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/src/ExN05EMShowerModel.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/include/ExN05PionShowerModel.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/src/ExN05PionShowerModel.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/include/ExN05DetectorConstruction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/src/ExN05DetectorConstruction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/include/ExN05PhysicsList.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/src/ExN05PhysicsList.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/include/ExN05PrimaryGeneratorAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/src/ExN05PrimaryGeneratorAction.cc

Examples

e primary event generation via particle gun
ExNO5RunAction
(header file) (sourcefile)

» derived from G4VUserRunAction
» draw detector
* (activation/deactivation of parameterisation ?)

ExNO5EventAction
(header file) (sourcefile)

* derived from G4VUser EventAction
e print timeinformation

10.3.7. Example NO6

Basic concepts

* Interactivity : build messenger classes.

» Event: Gun, shoot charge particle at Cerenkov Radiator and Scintillator.

PIIM : material/mixture with optical and scintillation properties.

Geometry : volumes filled with optical materials and possessing surface properties.
Physics : define and initialize optical processes.

Tracking : generate Cerenkov radiation, collect energy deposition to produce scintillation.

Hits/Digi : PMT as detector.
 Visualization : geometry, optical photon trajectories.

Classes
mai n() (sourcefile)

« mai n() for interactive mode and batch mode via macro file
 random number engine

« construction and deletion of G4RunManager

* construction and set of mandatory user classes

¢ hard coded beantn

ExNO6DetectorConstruction

(header file) (sourcefile)

« derived from G4VUser Detector Construction

* definitions of single materials and mixtures

 generate and add Material Properties Table to materials
» CSG and BREP solids

» G4PVPlacement with rotation

« definition of surfaces

» generate and add Material Properties Table to surfaces
* visuaization

ExNO6PhysicsList

(header file) (sourcefile)

¢ derived from G4VUserPhysicsList
« definition of gamma, leptons and optical photons

303

http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/include/ExN05RunAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/src/ExN05RunAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/include/ExN05EventAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N05/src/ExN05EventAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N06/exampleN06.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N06/include/ExN06DetectorConstruction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N06/src/ExN06DetectorConstruction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N06/include/ExN06PhysicsList.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N06/src/ExN06PhysicsList.cc

Examples

« transportation, 'standard’ EM-processes, decay, Cerenkov, scintillation, 'standard' optical and boundary process
» modify/augment optical process parameters

ExNO6PrimaryGeneratorAction

(header file) (sourcefile)

* derived from G4VPrimaryGenerator Action
* construction of G4ParticleGun
* primary event generation via particle gun

ExNO6RunAction

(header file) (sourcefile)

» derived from G4VUserRunAction
» draw detector

10.3.8. Example NO7

Basic concepts

» Geometry : Changing geometry of three simplified sandwitch calorimeters without re-building aworld volume.

* Region : Defining geometrical regions ans setting production thresholds for each region.

* Run : Utilizing a concrete run class derived from G4Run base class for accumulating physics quantities and
hitsasarun.

* Hits: Demonstrating the use of primitive scorer and filter classes without implementing sensitive detector class.

Classes
mai n() (sourcefile)

» mai n() for interactive mode and batch mode via macro file

« construction and deletion of G4RunManager

* construction and deletion of G4VisExective and G4UITerminal
» construction and set of mandatory user classes

* construction and set of ExNO7RunAction

ExNO7DetectorConstruction
(header file) (sourcefile)

« derived from G4VUser Detector Construction

« definitions of materials and mixtures

» G4Box with G4PVPlacement and G4PVReplica

» Dynamic changing of size, position, orientation and number of volumes
» G4Region for each calorimeter tower

e G4VPrimitiveScorer and G4VSDFilter

* visualization

ExNO7DetectorMessenger
(header file) (sourcefile)

* derived from G4UIMessenger
« definition of example-specific geometry commands

ExNO7PhysicsList

(header file) (sourcefile)

304

http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N06/include/ExN06PrimaryGeneratorAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N06/src/ExN06PrimaryGeneratorAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N06/include/ExN06RunAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N06/src/ExN06RunAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/exampleN07.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/include/ExN07DetectorConstruction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/src/ExN07DetectorConstruction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/include/ExN07DetectorMessenger.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/src/ExN07DetectorMessenger.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/include/ExN07PhysicsList.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/src/ExN07PhysicsList.cc

Examples

« derived from G4VUserPhysicsList

* difine all types of particles

» define standard EM and decay processes
* production thresholds for each region

ExNO7PrimaryGeneratorAction
(header file) (sourcefile)

* derived from G4VPrimaryGenerator Action
* construction of G4ParticleGun
* primary event generation via particle gun

ExNO7RunAction
(header file) (sourcefile)

¢ derived from G4UserRunAction
« constructing ExNO7Run class object
* print out arun summary with ExXNO7Run class object

ExXNO7Run
(header file) (sourcefile)

* derived from G4Run
* uses GATHitsMap template class to accumulate physics quantities
* extracts event data from G4Event and add up to run data

10.4. Extended Examples
10.4.1. Extended Example Summary

Geant4 extended examples serve three purposes:

* testing and validation of processes and tracking,
» demonstration of Geant4 tools, and
* extending the functionality of Geant4.

The code for these examples is maintained as part of the categories to which they belong. Links to descriptions
of the examples are listed below.

10.4.1.1. Analysis

e AOL - hit-scoring and histogramming using the AIDA interface

» AnaEx0l1 - histogram and tuple manipulations using Geant4 internal g4tools system
» AnaEx02 - histogram and tuple manipulations using ROOT

e AnaEx03 - histogram and tuple manipulations using the AIDA interface

» NO3Con - modified novice example NO3 showing how to use a Convergence Tester

10.4.1.2. Common

» ReadMe - aset of common classes which can be reused in other examples demonstrating just a particular
feature. This module is going to be enhanced in future.

10.4.1.3. Electromagnetic

e TestEmO - how to print cross-sections and stopping power used in input by the standard EM package

305

http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/include/ExN07PrimaryGeneratorAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/src/ExN07PrimaryGeneratorAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/include/ExN07RunAction.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/src/ExN07RunAction.cc
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/include/ExN07Run.hh
http://cern.ch/geant4/geant4_public/source/geant4/examples/novice/N07/src/ExN07Run.cc
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleA01.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleAnaEx01.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleAnaEx02.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleAnaEx03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleN03Con.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_common.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm0.html

Examples

TestEm1 - how to count processes, activate/inactivate them and survey the range of charged particles. How
to define a maximum step size

TestEm2 - shower development in an homogeneous materia : longitudinal and lateral profiles

TestEm3 - shower development in a sampling calorimeter : collect energy deposited, survey energy flow and
print stopping power

TestEm4 - 9 MeV point like photon source: plot spectrum of energy deposited in a single media

TestEmS - how to study transmission, absorption and reflection of particlesthrough asingle, thin or thick, layer.
TestEm6 - physicslist for rare, high energy, electromagnetic processes: gamma conversion and e+ annihilation
into pair of muons

TestEm7 - how to produce a Bragg curve in water phantom. How to compute dosein tallies

TestEm8 - test of photo-absorption-ionisation model in thin absorbers, and transition radiation

TestEm9 - shower development in acrystal calorimeter; cut-per-region

TestEm10 - XTR transition radiation model, investigation of ionisation in thin absorbers

TestEm11 - how to plot a depth dose profile in arectangular box

TestEm12 - how to plot adepth dose profile in spherical geometry : point like source

TestEm13 - how to compute cross sections of EM processes from rate of transmission coefficient

TestEm14 - how to compute cross sections of EM processes from direct evaluation of the mean-free path. How
to plot final state

TestEm15 - compute and plot final state of Multiple Scattering as an isolated process

TestEm16 - simulation of synchrotron radiation

TestEm17 - check the cross sections of high energy muon processes

TestEm18 - energy lost by a charged particlein asingle layer, due to ionization and bremsstrahlung

Check basic quantities

Total cross sections, mean free paths ...

EmO, Em13, Em14

Stopping power, particle range ...

EmO, Em1, Em5, Em11, Em12

Final state : energy spectra, angular distributions

Emi4

Energy loss fluctuations

Em18

Multiple Coulomb scattering

as an isolated mechanism

Em15

as aresult of particle transport

Em5

More global verifications

Single layer: transmission, absorption, reflexion Em5
Bragg curve, tallies Em7
Depth dose distribution Em11, Em12
Shower shapes, Moliere radius Em2
Sampling calorimeters, energy flow Em3
Crystal calorimeters Em9

Other specialized programs

High energy muon physics Em17
Other rare, high energy processes Em6
Synchrotron radiation Em16
Transition radiation Em8
Photo-absorption-ionization model Em10

Table 10.6. TestEm by theme

10.4.1.4. Error Propagation

» ReadMe - error propagation utility

306

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm1.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm2.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm3.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm4.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm5.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm6.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm7.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm8.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm9.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm10.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm11.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm12.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm13.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm14.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm15.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm16.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm17.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleTestEm18.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Exampleerrorpropagation.html

Examples

10.4.1.5. Event Biasing

» Variance Reduction - examples (BO1 and B0O2) on variance reduction techniques and scoring and application
of Reverse MonteCarlo in Geant4 ReverseMC

10.4.1.6. Event Generator

* HepMCExO01 - simplified collider detector using HepM C interface and stacking

» HepMCEXO02 - connecting primary particlesin Geant4 with various event generators using the HepM C interface

* MCTruth - demonstrating a mechanism for Monte Carlo truth handling using HepM C as the event record

» exgps - illustrating the usage of the G4Gener al Par ti cl eSour ce utility

 particleGun - demonstrating three different ways of usage of G4Par t i cl eGun, shooting primary particles
in different cases

* pythia - illustrating the usage of Pythia as Monte Carlo event generator, interfaced with Geant4, and showing
how to implement an external decayer (example decayer6)

10.4.1.7. Exotic Physics

» Monopole - illustrating how to measure energy deposition in classica magnetic monopole
» Phonon - demonstrates simulation of phonon propagation in cryogenic crystals

10.4.1.8. Fields

BlineTracer - tracing and visualizing magnetic field lines

field01 - tracking using magnetic field and fiel d-dependent processes

field02 - tracking using electric field and field-dependent processes

field03 - tracking in amagnetic field where field associated with selected logical volumes varies

field04 - definition of overlapping fields either magnetic, electric or both

field05 - demonstration of "spin-frozen" condition, how to cancel the muon g-2 precession by applying an
electricfield

 fieldO6 - exercising the new (in 9.5) capability of tracking massive particlesin a gravity field

10.4.1.9. Geant3 to Geant4

* General ReadMe - converting simple geometries in Geant3.21 to their Geant4 equivalents (example clGeom-
etry)

10.4.1.10. Geometry

* General ReadMe
* OLAP - debugging tool for overlapping geometries
* transforms - demonstrating various ways of definition of 3D transformations for placing volumes

10.4.1.11. Hadronic

* HadrO0O - example demonstrating the usage of G4PhysListFactory to build physics lists and usage of
G4HadronicProcessStore to access the cross sections

» HadrO1 - example based on the application IION developed for simulation of proton or ion beam interaction
with awater target. Different aspects of beam target interaction are included

» Hadr02 - example application providing simulation of ion beam interaction with different targets. Hadronic
aspects of beam target interaction are demonstrated including longitudinal profile of energy deposition, spectra
of secondary particles, isotope production spectra.

» Hadr03 - example demonstrating how to compute total cross section from the direct evaluation of the mean
free path, how to identify nuclear reactions and how to plot energy spectrum of secondary particles

10.4.1.12. Medical Applications

* DICOM - geometry set-up using the Geant4 interface to the DICOM image format

307

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_biasing.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleReverseMC01.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleHepMCEx01.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleHepMCEx02.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleMCTruth.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Exampleexgps.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleparticleGun.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_pythia.html
http://www.thep.lu.se/~torbjorn/Pythia.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplemonopole.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplephonon.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleBlineTracer.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplefield01.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplefield02.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplefield03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplefield04.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplefield05.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplefield06.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_g3tog4.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_geometry.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleOLAP.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Exampletransforms.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleHadr00.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleHadr01.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleHadr02.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleHadr03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleDICOM.html

Examples

« electronScattering - benchmark on electron scattering

« electronScattering2 - benchmark on electron scattering (second way to implement the same benchmark as the
above)

e GammaTherapy - gammaradiation field formation in water phantom by electron beam hitting different targets

« fanoCavity - dose deposition in an ionization chamber by a monoenergetic photon beam

« fanoCavity2 - dose deposition in an ionization chamber by an extended one-dimensional monoenergetic elec-
tron source

10.4.1.13. Optical Photons

» General ReadMe
e LXe - optical photonsin aliquid xenon scintillator
« WLS - application simulating the propagation of photons inside a Wave Length Shifting (WLS) fiber

10.4.1.14. Parallel Computing

* General ReadMe

e MPI -interfaceand examplesof applications (exMPI101 and exMP102) parallelized with different MPI compliant
libraries, such as LAM/MPI, MPICH2, OpenMPI, etc.

e ParGeant4 - set of examples (ParNO2 and ParN04) derived from novi ce using parallelism at event level with
the TopC application

10.4.1.15. Parameterisations

e Gflash - Demonstrates the use of the GFLASH parameterisation library. It uses the GFLASH equations(hep-
ex/0001020, Grindhammer & Peters) to parametrise el ectromagnetic showersin matter

10.4.1.16. Persistency

» General ReadMe

e GDML - examples set (G01, G02, GO3 and G04) illustrating import and export of a detector geometry with
GDML, and how to extend the GDML schema or use the auxiliary information field for defining additional
persistent properties

e PO1 - storing calorimeter hits using reflection mechanism with Root

e P02 - storing detector description using reflection mechanism with Root

e P03 -illustrating import and export of a detector geometry using ASCI| text description and syntax

10.4.1.17. Polarisation

e Pol01 - interaction of polarized beam (e.g. circularly polarized photons) with polarized target

10.4.1.18. Radioactive Decay

 rdecayOl - demonstrating basic functionality of the GARadi oact i veDecay process
 rdecay02 (Exrdm) - decays of radioactive isotopes as well as induced radioactivity resulted from nuclear in-
teractions

10.4.1.19. Run & Event

e REO1 - information between primary particles and hits and usage of user-information classes

» REO2 - simplified fixed target application for demonstration of primitive scorers

e REO3 - use of Ul-command based scoring; showing how to create parallel world(s) for defining scoring
mesh(es)

» REO4 - demonstrating how to define alayered mass geometry in parallel world

10.4.1.20. Visualization

» Genera ReadMe - examples (perspective, standalone and userVisAction) of customisation for visualization

308

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleelectronScattering.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleelectronScattering2.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleGammaTherapy.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExamplefanoCavity.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExamplefanoCavity2.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_optical.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleLXe.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplewls.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_parallel.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_MPI.html
http://cern.ch/geant4/geant4_public/source/geant4/examples/extended/parallel/info/README.html
http://www.ccs.neu.edu/home/gene/topc.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplegflash.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_persistency.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_gdml.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleP01.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleP02.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleP03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExamplePol01.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplerdecay01.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examplerdecay02.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleRE01.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleRE02.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleRE03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleRE04.html
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_visualization.html

Examples

10.5. Advanced Examples

Geant4 advanced examples illustrate realistic applications of Geant4 in typical experimental environments. Most
of them also show the usage of analysis tools (such as histograms, ntuples and plotting), various visualization
features and advanced user interface facilities, together with the simulation core.

Note: Maintenance and updates of the code is under the responsibility of the authors. These applications are
therefore not subject to regular system testing and no guarantee can be provided.

The advanced examples include:

e amsEcal , illustrating simulation in the AMS el ectro-magnetic calorimeter.

» brachytherapy, illustrating atypical medical physics application simulating energy deposit in aPPhantom filled
with soft tissue.

» ChargeExchangeMC , The program was used to simulate real experiments in Petersburg Nuclear Physics
Ingtitute (PNPI, Russia).

» composite calorimeter , test-beam simulation of the CMS Hadron calorimeter at LHC.

» eRosita, simplified version of the simulation of the shielding of the eROSITA X-ray mission; it demonstrates
the simulation of PIXE (Particle Induced X-ray Emission) asdescribed in M.G. Piaet a., PIXE simulation with
Geant4, |EEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3614-3649, 2009.

» gamma-knife , reproducing in details a gamma-knife device for stereotactic radiosurgery. In particular, the
gamma-knife model Cissimulated, which is characterized by a symmetrical displacement of the Co60 sources.
Dose distributions are acquired in a water spherical phantom using voxelized geometries. The possibility to
changethe source pattern in order to simulate different gamma-knife modelsisin devel opment and new versions
with these additional features will be released.

* gammaray_telescope, illustrating an application to typical gammaray telescopeswith aflexible configuration.

» hadrontherapy , is an example for people interested in Monte Carlo studies related to proton/ion therapy.
Hadrontherapy permits the ssimulation of a typical hadron therapy beam line (with al its elements) and the
calculation of fundamentals quantities of interest: 3D dose distributions, fluences, stopping powers, for both
primary and secondary particles, etc.. A '‘complete’ version of Hadrontherapy with some additional featuresis
asoreleased by the authors, if required. Thisversionincludes LET and RBE computations and the simulation of
different transport beam lines. Please, contact the authors (cirrone@Ins.infn.it, francesco.romano@Ilns.infn.it)
if you areinterested in that.

* human_phantom , implementing an Anthropomorphic Phantom body built importing the description from a
GDML representation.

* iort_therapy , specificaly developed to address typical needs related to the IntraOperative Radio-Therapy
(IORT) technique. Thistechnique deliversasingle dose of radiation directly to the tumor bed, or to the exposed
tumor, during surgery. The idea of iort_therapy is to provide a useful tool for Users interested to radiation
dosimetry, dose planning and radio-protection studies in IORT. In fact, the application allows to reconstruct
dose distribution curves in water or other materials, to plan dose distribution in the tumor treatment region
with different clinical set-up, and to optimize radio-protection of normal patient tissues simulating a composite
metallic shielding disc. iort_therapy simulates the collimator beam line system of a typical medical mobile
linac, the phantom, the detector and the composite metallic shielding disc. Via external macro commandsit is
possible to change the physic models, the collimator beam line, the phantom, the detector and shielding disc
geometries, the visualization, the beam particle characteristics, and to activate the Graphical Users Interface
(QT libraries are requested)

» medical_linac, illustrating atypical medical physics application simulating energy deposit in a Phantom filled
with water for atypical linac used for intensity modulated radiation therapy. The experimental set-up is very
similar to one used in clinical practice.

* microbeam , simulates the cellular irradiation beam line installed on the AIFIRA electrostatic accelerator fa-
cility located at CENBG, Bordeaux-Gradignan, France.

* microdosimetry , simulatesthetrack of a10 keV Helium+ (positive chargeis +e) particlein liquid water using
very low energy electromagnetic Geant4 DNA processes.

» nanobeam , simulates the beam optics of the "nanobeam line" installed on the AIFIRA electrostatic accel erator
facility located at CENBG, Bordeaux-Gradignan, France.

e purging_magnet , illustrating an application that simulates electrons traveling through a 3D magnetic field;
used in amedical environment for simulating a strong purging magnet in a treatment head.

309

http://geant4advancedexampleswg.wikispaces.com/file/view/EcalDocumentationFile.pdf
http://geant4advancedexampleswg.wikispaces.com/brachytherapyExample
http://geant4advancedexampleswg.wikispaces.com/CexmcExample
http://geant4advancedexampleswg.wikispaces.com/CompositeCalorimeter
http://www.ge.infn.it/geant4/physics/pixe/erosita.html
http://geant4advancedexampleswg.wikispaces.com/Gamma-Knife
http://geant4advancedexampleswg.wikispaces.com/Gamma-rayTelescope
http://geant4advancedexampleswg.wikispaces.com/Hadrontherapy
http://geant4advancedexampleswg.wikispaces.com/Human_Phantom
http://cern.ch/gdml/
http://geant4advancedexampleswg.wikispaces.com/iort_therapy
http://geant4advancedexampleswg.wikispaces.com/medical_linac
http://geant4advancedexampleswg.wikispaces.com/microbeamExample/
http://geant4advancedexampleswg.wikispaces.com/microdosimetryExample/
http://geant4advancedexampleswg.wikispaces.com/nanobeamExample/
http://geant4advancedexampleswg.wikispaces.com/PurgingMagnet

Examples

« radioprotection , illustrating an application to evaluate the dose in astronauts, in vehicle concepts and Moon
surface habitat configurations, in a defined interplanetary space radiation environment.

» xray_telescope, illustrating an application for the study of the radiation backgroundinatypical X-ray telescope.

» xray_fluorescence, illustrating the emission of X-ray fluorescence and PIXE.

e underground_physics, illustrating an underground detector for dark matter searches.

e |Ar_calorimeter , smulating the Forward Liquid Argon Calorimeter (FCAL) of the ATLAS Detector at LHC.

For documentation about the analysis tools used in these exampl es, see Appendix Section 2 of this manual.

310

http://geant4advancedexampleswg.wikispaces.com/Radioprotection/
http://geant4advancedexampleswg.wikispaces.com/X-rayTelescope/
http://geant4advancedexampleswg.wikispaces.com/X-rayFluorescence/
http://geant4advancedexampleswg.wikispaces.com/UndergroundPhysics/
http://geant4advancedexampleswg.wikispaces.com/lArCalorimeter

Chapter FAQ. Frequentry Asked Questions

FAQ.1. Installation

Q:

A:

When | download the source from the web, and unpack the tar file, some files unpack into the top level
directory.

The problem you describe usually is the result of using "UNIX" tar to unpack the gtar ("GNU-tar") file,
or vice versa, or using zip on either the gtar or tar file. Please make certain that you download the correct
file for your system, and that you use the correct unpacking tool. Note that for Linux you must download
the gtar.gz file.

| cannot find CLHEP files or library and | haveit installed in my system.

If the standard CLHEP installation procedure has been adopted, the variable CLHEP_BASE_DI R should
point totheareawherei ncl ude/ andl i b/ directoriesfor CLHEP headers & library areinstalled in your
system. In case the library file name is different than the one expected (I i bCLHEP. a), you should either
create a symbolic link with the expected name, or define the variable CLHEP_LI B in your environment
which explicitly setsthe name of the CLHEP library. If anon-standard CLHEP installation has been adopt-
ed, definevariables CLHEP_| NCLUDE_DI R, CLHEP_LI B_DI R (and CLHEP_LI B) to refer explicitly to
the place where headers, library (and library-name) respectively are placed in your system. On Windows
systems, the full library file name (with extension) should be specified as CLHEP_LI B, while for UNIX-
like systems, just the nameisrequired (i.e. CLHEP for | i bCLHEP. a).

While installing the Geant4 libraries | get the following message printed:
gmeke[1] : cernlib: Command not found

Has Geant4 been installed properly ? What to do to solve this error ?

The message:
gmeke[1]: cernlib: Command not found

shows that you don't have the 'cernlib’ command installed in your system; ‘cernlib’ is a command from
the CERN program library (cernlib) returning alist of libraries needed to link a cernlib application. This
command is only used in the 'g3tog4' module, however, if you do not make use of the 'g3tog4’ toal, it's
harmless. The cernlib script (and the needed cernlib libraries) are available from: http://cern.ch/cernlib.

Trying building the Geant4 libraries | see several of these errors appearing and my installation fails:

..... GAException.d:1: *** pmissing separator. Stop.
..... | (ADal i t zDecayChannel . d: 1: *** m ssing separator. Stop.

Has Geant4 been installed properly ? What to do to solve this error ?

It looks like some file dependencies (.d) are corrupted, possibly due to previous build attempts which failed
for some reason. Y ou need to remove each of them. A quick recipe for doing thisisto:

 Configure the environment with the installation to be repaired
» Unset the GAWORKDIR environment variable (in case it is eventually set)
e Type

311

Frequentry Asked Questions

gmake cl ean dependenci es=""

from the affected module (i.e. for this case, from $G4INSTALL/source/global/management and
$GAINSTAL L/source/particles’'management) and rebuild. Alternatively, you may use:

gmeke cl ean dependenci es=""

from $G4INSTALL/source and rebuild.

FAQ.2. Run Time Problems

On Linux, | get a segmentation fault as soon as | run one of the official examples.

Check that the CLHEP library has been installed and compiled coherently with the same compiler you use
for installing Geant4 and for the same version of Linux distribution. For example, a binary object produced
with Red-Hat 7.X is not fully compatible with binaries running on RH 9.X or higher, due to different libc
used in the two configurations.

| installed Geant4 libraries and built my application, when | try to runiit | get:

error in |oading shared |ibraries:
I'i bCLHEP. so: cannot open shared object file:
No such file or directory.

Your installation of CLHEP includes shared libraries. Y ou need to specify the path where libCLHEP.so is
installed through your environment variable LD LI BRARY_PATH. For example, in tcsh UNIX shell:

setenv LD LI BRARY_PATH ${LD_L| BRARY_ PATH}: $CLHEP_BASE DI R/l i b

On my system | get a Floating Point Exception (FPE) since some physics processes sometimes return
DBL_MAX asinteraction length and this number is afterwards multiplied by a number greater than 1.

Geant4 coding conventions and installation setup explicitly follow the ANSI/IEEE-754 Standard for the
initialization of floating-point arithmetic hardware and portability. The Standard foresees floating-point
arithmetic to be nonstop and underflowsto be gradual. On DEC platforms, for example, the ANSI/IEEE-754
Standard compliance needs to be explicitly set (since deactivated by default); in this case we use infact the
option "-ieee" on the DEC/cxx native C++ compiler to achieve this. Y ou should check if your compiler
provides compilation options for activating Standard initialization of FP arithmetic (it may be platform
specific).

FAQ.3. Geometry

Q:

| have ageneric point and | would like to know in which physical volume I'm located in my detector geom-
etry.

The best way of doing thisis by invoking the G4Navigator. First get a pointer of the navigator through the
GATransportationManager, and then locate the point. i.e.

#i ncl ude "&ATransport ati onManager . hh"
#i ncl ude "&Navi gat or. hh"
GAThreeVector nmyPoint =;

_ G4Navi gat or* theNavi gator = GATransportati onManager: : Get Tr ansport at i onManager ()

- >Cet Navi gat or For Tr acki ng() ;
G4VPhysi cal Vol une* nyVol ume = t heNavi gat or - >Locat ed obal Poi nt AndSet up(nyPoi nt) ;

Frequentry Asked Questions

Note

by using the navigator for tracking as shown above, the actual particle gets also -relocated- in the
specified position. Therefore, if thisinformation is needed during tracking time, in order to avoid
affecting tracking, you should either use an alternative G4Navigator object (which you then assign
to your world-volume), or you access the information through the track or touchable as specified
in the FAQ for tracking and steps.

Q: How can | access the daughter volumes of a specific physical volume?

A: Through the associated logical volume.

GAVPhysi cal Vol une* nyPVol ume =;
GALogi cal Vol ume* nyLVol ume = rryPVoI ume- >Cet Logi cal Vol une() ;
for (G4int i=0; iGetNoDaughters(); i++)

nmyPVol une = nyLVol une- >Get Daughter (i) ;

Q: How can | identify the exact copy-number of a specific physical volumein my mass geometry?| tried with
GetCopyNo() from my physical volume pointer, but it doesn't seem to work!

A: Thecorrect way to identify -uniquely- a physical volume in your mass geometry is by using the touchables
(see also section 4.1.5 of the User's Guide for Application Developers), as follows:

GASt ep* aStep =

GASt epPoi nt* preStepPoi nt = aSt ep->CGet PreSt epPoint () ;

GATouchabl eHandl e t heTouchabl e = preSt epPoi nt - >Get Touchabl eHandl e() ;
G4i nt copyNo = theTouchabl e- >Get CopyNunber () ;

G4i nt not her CopyNo = t heTouchabl e- >Get CopyNunber (1) ;

where Copy here staysfor any duplicated instance of a physical volume, either if itisa4APVPI acenent
(multiple placements of the same logical volume) or a GAPVRepl i ca/ GAPVPar anet eri sed. The
method Get CopyNo() ismeant to return only the serial number of placements not duplicated in the geom-
etry tree.

Q: How canl determinethe exact position in global coordinatesin my mass geometry during tracking and how
can | convert it to coordinates local to the current volume ?

A: You need again to do it through the touchables (see also section 4.1.5 of the User's Guide for Application
Developers), as follows:

AStep* aStep = .
GASt epPoi nt* preStepPoi nt = aSt ep->CGet PreSt epPoi nt () ;
GATouchabl eHandl e t heTouchabl e = preSt epPoi nt - >Get Touchabl eHandl e() ;
GAThr eeVect or wor | dPosition = preStepPoi nt->Get Position();
GAThreeVect or | ocal Position = t heTouchabl e->Get Hi story()->
Get TopTr ansf or () . Tr ansf or nPoi nt (wor | dPosi ti on) ;

wherewor | dPosi t i on here staysfor the position related to theworld volume, whilel ocal Posi ti on
refers to the coordinates local to the volume where the particle is currently placed.

FAQ.4. Tracks and steps

Q: How canl accessthetrack information through the step object and what information am | allowed to access ?

A: A GASt ep object consists of two points:

GASt epPoi nt* pointl
GASt epPoi nt* poi nt 2

st ep- >Get Pr eSt epPoi nt () ;
st ep- >Get Post St epPoi nt () ;

313

Frequentry Asked Questions

To get their positionsin the global coordinate system:

GAThr eeVect or posl
GAThr eeVect or pos2

poi nt 1- >Get Posi ti on();
poi nt 2- >Get Posi tion();

Hereafter wecall current volumethe volume where the step hasjust gone through. Geometrical informations
are available from pr eSt epPoi nt . &AVTouchabl e and its derivates keep these geometrical informa-
tions. Weretrieve atouchable by creating a handle for it:

GATouchabl eHandl e touchl = poi nt 1- >Get Touchabl eHandl e() ;

To get the current volume:

GAVPhysi cal Vol une* vol ume = touchl->Get Vol une() ;

To get its name:

GAString name = vol une- >Get Nane() ;

To get the physical volume copy number:

G4i nt copyNunber = touchl->Get CopyNunber () ;

To get logical volume:

GALogi cal Vol ume* | Vol unme = vol une- >Get Logi cal Vol une() ;

To get the associated material: the following statements are equivalent:

GMaterial * material
GAMaterial * material

pointl ->GetMaterial();
I Vol ume ->Get Material ();

To get the geometrical region:

GARegi on* regi on = | Vol une- >CGet Regi on() ;

To get its mother volume:

GAVPhysi cal Vol une* not her = touchl->Get Vol une(dept h=1);
grandibt her: depth=2 ...etc...

Frequentry Asked Questions

To get the copy number of the mother volume:

G4i nt copyNumber = touchl->Get CopyNunber (dept h=1) ;
grandibt her: depth=2 ...etc...

To get the process which has limited the current step:

GAVProcess* aProcess = poi nt2->Cet ProcessDefi nedSt ep();

To check that the particle has just entered in the current volume (i.e. it is at the first step in the volume; the
pr eSt epPoi nt isat the boundary):

i f (pointl->CGetStepStatus() == f GeonBoundary)

To check that the particle is leaving the current volume (i.e. it is at the last step in the volume; the
post St epPoi nt isat the boundary):

i f (point2->CetStepStatus() == f GeonBoundary)

In the above situation, to get touchable of the next volume:

GATouchabl eHandl e touch2 = poi nt 2- >Get Touchabl eHandl e() ;

Fromt ouch2, all informations on the next volume can be retrieved as above.

Physics quantities are available from the step (G4 St ep) or from the track (G4 Tr ack).

To get the energy deposition, step length, displacement and time of flight spent by the current step:
GAdoubl e eDeposi t
G4doubl e sLength

GAThr eeVect or di spl ace
G4doubl e tof

st ep- >Get Tot al Ener gyDeposi t () ;
st ep- >CGet St epLengt h() ;

st ep- >Get Del t aPosi tion();

st ep->CGet Del t aTi me() ;

To get momentum, kinetic energy and global time (time since the beginning of the event) of the track after
the completion of the current step:

GATrack* track

GAThr eeVect or nonent um
G4doubl e ki nEner gy
G4doubl e gl obal Ti ne
...etc...

st ep- >Get Track() ;
track->Get Monent un() ;
track->GCet Ki neti cEnergy();
track->Get @ obal Ti ne();

Remark

Totransform aposition from theglobal coordinate system to thelocal system of the current volume,

cothan

Q: How can | get and store (or plot) informations at tracking time from a given volume ?

A" To aat the information at trackina time in a adiven voliime A one can adont either one or a combination

Frequentry Asked Questions

1. If the geometry issimple enough, and wish to score some commonly used physics quantities (e.g. energy
deposition, dose, flux, etc.), just activate G4Scor i ngManager in your main program, and use the
scorer-based Ul commands to transform volume A into a scorer.

See Option 6 below, and the example REO3 in exanpl es/ ext ended/ r unAndEvent .

2. Through the St eppi ngAct i on, check that the particle is inside volume A and do whatever needed.
Hints can be found in the previous section of this FAQ document.

Usually, the hits containers and histograms are attributes of a Track, Event or Run and can be managed
through either aTr acki ngAct i on, Event Act i on and/or RunAct i on and eventually messaging
their pointer to the St eppi ngAct i on.

A similar approach isillustrated in exanpl es/ basi ¢ B2, B4, ext ended/ el ect r onagneti c,
opt i cal , and many others...

3. In Det ect or Const ructi on, by declaring volume A as a Sensi ti veDet ect or. At stepping
time, the Geant4 kernel will automatically check that a particle is inside volume A and will handle the
control to aspecific function G4VSensi ti veDet ect or: : ProcessHi t s() . Itisjust necessary to
instanciate a class inherited from G4VSensi ti veDet ect or, say Vol unmeA_SD, and do whatever
needed by implementing the function Vol uneA_SD: : ProcessHi t s(), as described in Option 2
above.

4. In addition to Option 3 above, should create a Hi t sCol | ecti on to store the information. A

Hi t sCol | ecti on can be created in Vol uneA SD::Initialize().A Ht can be created or
filled in Vol umeA _SD: : ProcessHi t s() . Additional operations on Hi t sCol | ecti on can be
performed in Vol unmeA _SD: : EndCOf Event () .

This approach is illustrated in exanpl es/ basi ¢ B2, B4 and ext ended/ anal ysi s, ext end-
ed/ runAndEvent REOL, etc...

5. In Det ect or Constructi on, volume A can be declared as Sensi ti veDet ect or, and one
or severa pre-defined scorers can be attached to volume A. In this case, neither a St eppi ngAc-
ti on nor a spcific Vol uneA_SD sensitive detector is needed any longer. It is just necessary to cre-
ate a dedicated scorer, eg. MyRunScor er, inherited from G4Run, and handle the Hi t sCol | ec-
ti ons within MyRunScor er: : Recor dEvent () . MyRunScor er itself can be instanciated from
RunActi on: : Gener at eRun() .

This approach isillustrated in exanpl es/ novi ce NO7, ext ended/ r unAndEvent REO2.

6. A set of build-in scorer-based Ul commands allows to perform most possible operations described
through the previous Option 5 directly from run-time macros.

See example ext ended/ r unAndEvent REQ03.

FAQ.5. Physics and cuts

Q:

How do production cuts (in range) work in Geant4 ? Are they also used in tracking ? If a particle has an
energy lower than the converted cut in energy for the given material and the distance to the next boundary
issmaller than the cut in range, isthe particle killed ?

Geant4 does NOT have a "tracking cut”. The toolkit's default behaviour is to track particles down to zero
range (i.e. zero energy). Of coursg, it is possible for the user to create and register a process that kills
particles below acertain energy or range; thisishowever NOT provided by default in Geant4. So there'sNO
"tracking cut". For example, suppose a particle that is nearing zero energy will at some point be proposed
by its lonisation process to undergo one final step, from its current energy down to zero energy. Thisis till
only aproposal. If during this step the particle crosses aboundary, then the transportation will limit the step
at a length smaller than the lonisation -- so the particle will still see and cross the relevant boundary, and
another step will occur on the other side of that boundary. In summary the " production threshold" range and

316

Frequentry Asked Questions

its equivalent in energy are not utilised as a "tracking cut". A particle is not abandoned by Geant4 below a
certain range/energy unless the user registers a process to do this by him/her-self.

FAQ.6. Visualization

Q:
A:

| have set G4VIS... environmental variables but visualization does not appear to be enabled.

This might be because you set the environment variables * after* already compiling. The environment vari-
ables control C-pre-processor macros of the same name and therefore influence what code gets compiled.
It is suggested to proceed with the following manual procedure to correct the current installation:

» Configure the environment according to the installation making sure to -unset- the GAWORKDI R envi-
ronment variable, if set.

» Verify and eventually set the environment variables of the visualization module [name] concerned (setenv
or export both AVl S_BUI LD [nanme] _DRI VERand G4Vl S_USE [nane] variables according to
the UNIX shell used), and then proceed as follows:

cd $AI NSTALL/ sour ce/ vi sual i zati on
gmake cl ean

gmake

cd $HAI NSTALL/ source/interfaces
grmake cl ean

gnmake

cd $AI NSTALL/ sour ce

gnmeke |i bmap

set env. GAWORKDI R [your wor ki ng directory] (or export)
cd [your application directory]
grmake cl ean

gnmake

While visualizing my geometry setup | often see the following error message printed out:

Bool eanProcessor: bool ean operation failed .

Thereisaknown limitation for the visualization of Boolean solids in the so-called Bool eanProcessor which
is used to make polyhedrafor visualisation. It does not affect the tracking which is done through such solids.
So the error message you see does not affect the simulation in any way. The workaround is to move one of
the affected solids by a small distance in order to avoid shared surfaces.

FAQ.7. User Support Policy

Q:

A:

If | need to discuss technical matters specific to my simulation application or ask for first-aid help, who
can | contact?

Every institute and experiment participating in Geant4 has a G4 Technical Steering Board (TSB) represen-
tative who may be contacted for help with problems relating to simulations. Please contact the TSB repre-
sentative closest to your project or to your laboratory. To find out who your TSB representativeisgoto G4
Technical Board. Y ou may also post your question in the Geant4 HyperNews Forum.

If I find abug or other problem with the code, who should be informed?

A WWW interface, available at Problem tracking system, will forward the bug report to the person respon-
sible for the affected Geant4 domain. The Geant4 web makes available a database of open incident reports,
tagging the ones already fixed and showing their status. An acknowledgement of the bug report will be sent.

If | propose afix, who is responsible for approving it?

Theresponsible person istheworking group coordinator of the domain in which thefix isto be applied. This
person is usualy also a TSB member. If the fix affects more than one domain, the matter will be addressed
by the TSB.

317

http://geant4.web.cern.ch/geant4/
http://geant4.web.cern.ch/geant4/
http://geant4-hn.slac.stanford.edu:5090/Geant4-HyperNews/index
http://bugzilla-geant4.kek.jp/

Frequentry Asked Questions

To whom should | send aproposal for an improvement in Geant4 functionality?

Any new requirement should be submitted via the automatic web system. It will be discussed at the Geant4
TSB. Youmay asoask your TSB representativeto forward your requirement tothe TSB. A new requirement
will trigger a cycle of analysis, design, implementation, testing and documentation, which may involve
different working groups. Any new software or enhancement which will become a part of Geant4 must be
agreed upon by the TSB, which is charged with ensuring the consistency of the entire toolkit.

Isthere aregular user meeting which | should attend?

There is only one Geant4 workshop per year. However, many experiments and institutes in the Geant4
collaboration organize their own regular and/or special Geant4 user workshops.

Where can | find solutions to particular problems as well as general user support?

Solutions and tipsfor solving practical problems can befound on the current FAQ page. General and specific
user support information is available at the User Support page.

318

http://geant4.web.cern.ch/geant4/support/index.shtml

Appendix . Appendix

1. Tips for Program Compilation

This section is dedicated to illustrate and justify some of the options used and fixed by default in the compilation
of the Geant4 toolkit. It is also meant to be a simple guide for the user/installer to avoid or overcome problems
which may occur on some compilers. Solutions proposed here are based on the experience gained while porting
the Geant4 code to different architectures/compilers and are specific to the OS's and compiler's version valid at
the current time of writing of this manual.

It's well known that each compiler adopts its own internal techniques to produce the object code, which in the
end might be more or less perfomant and more or less optimised, depending on severa factors also related to the
system architecture which it applies to.

After theinstallation of the libraries, we strongly suggest to always distinguish between the installation directory
(identified by $G4INSTALL) and the working directory (identified by $G4WORKDIR), in order not to alter the
installation area.

1.1. Unix/Linux - g++

OS: Linux
Compiler: GNU/gcc

Strict ISO/ANSI compilation is forced (- ansi - pedant i ¢ compiler flags), also code is compiled with high
verbosity diagnostics (- Val | flag). The default optimisation level is- O2. The CMake build mode Rel W t h-
Debl nf o allowsfor an optimised build of the libraries but including debug symbols (- O2 - g flagson g++, flag
HAOPTDEBUGINn the GNUMake system).

Note

Additional compilation options (- mar ch=XXX - nf pmat h=sseYYY) to adopt chip specific float-
ing-point operations on the SSE unit, can be activated by adapting the XXX, YYY options to your chip
and adding these to the CMAKE_CXX_FLAGS variable viaccnake or the CMake GUI (or by uncom-
menting the relevant part in the Li nux- g++. gk configuration script for the GNUMake system). By
doing so, agreater stability of results has been verified, making possible reproducibility of exact outputs
between debug, non-optimised and optimised runs. A little performance improvement (in the order of
2%) can also be achieved in some cases. To be considered that binaries built using these chip-specific
optionswill likely NOT be portable cross platforms; generated applications will only run on the specific
chip-based architectures.

1.2. Windows - MS Visual C++

OS: MS/Windows

Compiler: MSVC++

Since version .NET 7.0 of the compiler, ISO/ANSI compliance is required.

See Section 3.1 of the Installation Guide for more detailed information. See also Section 7.1 for more tips.

1.3. Mac OS X - g++
OS: Darwin
Compiler: GNU/gcc

The setup adopted for the g++ compiler on Mac OS X resembles in most parts the one for Linux systems.

319

Appendix

The default optimisation level in thiscaseis- C2.
Dynamic libraries (. dyl i b) are supported as well; once built, in order to run the generated application, the user

must specify the absolute path in the system where they're installed with the DYLD LI BRARY_ _PATH system
variable.

2. Histogramming

Geant4 is independent of any histogramming package. The Geant4 toolkit has no drivers for histogramming, and
no drivers are needed in Geant4 to use a histogramming package. The code for generating histograms on some of
the distributed examples should be compliant with the AIDA abstract interfaces for Data Analysis.

Consequently, you may use your favourite package together with the Geant4 toolkit.
Since release 9.5, Geant4 offers basic analysis functionalities by including anew anal ysi s module providing

managers for generation of histograms in the form of Root n-tuple/trees and AIDA XML, based on tools from
the Inlib/Exlib package.

2.1. JAS

Please refer to the JAS documentation on histogramming for using the JAVA Analysis Studio tool.

2.2. iAida

Please refer to the iAIDA (an implementation of AIDA in C++) documentation : tool for generating histograms
with AIDA to HBook, Root and AIDA-native compressed XML format.

2.3. Open Scientist Lab

Please refer to the Open Scientist Lab documentation on histogramming for using the Lab Analysis plug-in for
the OnX package.

2.4. rAIDA

Pleaserefer tothe rAIDA documentation (aRoot implementation of AIDA): Root plugin for generating histograms
with AIDA.

2.5. Examples

Examples in Geant4 showing how to use AIDA compliant tools for histogramming are available in the code
distribution in the following directories:

» geant 4/ exanpl es/ ext ended/ anal ysi s,
» geant 4/ exanpl es/ ext ended/ el ect romagneti c
e geant 4/ exanpl es/ advanced

Examples in Geant4 showing how to use the embedded Inlib/Exlib tool for histogramming are available in the
code distribution in the following directory:

e geant 4/ exanpl es/ basi c,

3. CLHEP Foundation Library

CLHEPisaset of Class Libraries containing many basic classes for use in High Energy Physics.

Both a CLHEP Reference Guide and a User Guide are available.

320

http://aida.freehep.org/
http://inexlib.lal.in2p3.fr/
http://jas.freehep.org/documentation.htm
http://iaida.dynalias.net/
http://openscientist.lal.in2p3.fr/
http://ilcsoft.desy.de/portal/software_packages/raida/
http://root.cern.ch/
http://cern.ch/clhep/
http://cern.ch/clhep/manual/RefGuide/
http://cern.ch/clhep/manual/UserGuide/

Appendix

Origin and current situation of CLHEP

CLHEP started in 1992 as alibrary for fundamental classes mostly needed for, and in fact derived from, the MC
event generator MC++ written in C++. Since then various authors added classesto this package, including several
contributions made by developersin the Geant4 Collaboration.

Geant4 and CLHEP

The Geant4 project contributed to the development of CLHEP. The random number package, physics units and
constants, and some of the numeric and geometry classes had their originsin Geant4.

Geant4 also benefits from the development of CLHEP. In addition to the already mentioned classes for random
numbers and numerics, we use the classes for points, vectors, and planes and their transformations in 3D space,
and lorentz vectors and their transformations. Although these classes have Geant4 names like GAThreeVector,
these are just typedefs to the CLHEP classes.

Sincerelease 9.5 of Geant4, therelevant classes of the CLHEP libraries are distributed as embedded modulewithin
Geant4. It istherefore no longer necessary to build and link against an external CLHEP installation (solution which
is still supported as option).

4. C++ Standard Template Library

Overview

The Standard Template Library (STL) isageneral-purpose library of generic algorithms and data structures. It is
part of the C++ Standard Library. Nowadays, most compiler vendors include aversion on STL in their products,
and there are commercial implementations available as well.

Good bookson STL are:

* Nicolai M. Josuttis: The C++ Standard Library. A Tutorial and Reference[Josuttis1999 |

* David R. Musser, Atul Saini: STL Tutorial and Reference Guide/ C++ Programming with the Standard Tem-
plate Library [Musser1996 |

» Scott Meyers: Effective STL [Meyers2001]

Resources available online include the reference of the SGI implementation:
» SGI STL homepage, thisis the basis of the native egcs STL implementation.
STL in Geant4

Since release 0.1, Geant4 supports STL, the Standard Template Library. From release 1.0 of Geant4, STL is
required.

Native implementations of STL are foreseen on all supported platforms.

5. Geant4Config.cmake CMake Config File
5.1. Usage of Geant4Config.cmake

CGeant 4Conf i g. cmake isdesigned to be used with CMake's fi nd_package command. When found, it
sets several CMake variables and provides a mechanism for checking and activating optional features of Geant4.
Thisallows you to use it in many ways in your CMake project to configure Geant4 for use by your application.

The most basic usage of Geant 4Confi g. cnake in a CMakelists.txt file is just to locate Geant4 with no
requirements on its existence, version number or components:

321

http://www.sgi.com/tech/stl/
http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:find_package

Appendix

find_package(Geant 4)

If you must find Geant4, then you can use

find_package(Geant 4 REQUI RED)

Thiswill cause CMake to fail should an install of Geant4 not be located.

When an install of Geant4 is found, the module sets a sequence of CMake variables that can be used elsawhere
in the project:

Geant 4_FOUND
Set to CMake boolean true if an install of Geant4 was found.
Geant 4_| NCLUDE DI RS

Set to alist of directories containing headers needed by Geant4. May contain paths to third party headers if
these appear in the public interface of Geant4.

Geant 4_LI BRARI ES
Set to thelist of libraries that need to be linked to an application using Geant4.
Geant 4_DEFI NI TI ONS

The list of compile definitions needed to compile an application using Geant4. This is most typically used to
correctly activate Ul and Visualization drivers.

Geant 4_CXX_FLAGS
The compiler flags used to build thisinstall of Geant4. Usually most important on Windows platforms.
Geant 4_USE_FI LE

A CMake script which can be included to handle certain CMake steps automatically. Most useful for very basic
applications.

Thetypical usage of f i nd_package and these variables to configure a build requiring Geant4 is thus:

find_package(Geant 4 REQUI RED) # Find Geant4

i ncl ude_directories(${Geant 4_| NCLUDE_DI RS}) # Add -1 type paths
add_def i ni ti ons(${Geant 4_DEFI NI TI ONS}) # Add -D type defs
set (CMAKE_CXX_FLAGS ${ Geant 4_CXX_FLAGS}) # Optional

add_execut abl e(myg4app nyg4app. cc) # Conpil e application

target _link_libraries(nmygdapp ${Geant4_LIBRARIES}) # Link it to Geant4

Alternatively, the CMake script pointed to by Geant 4_USE_FI LE may be included:

find_package(Geant 4 REQUI RED) # Find Geant4
i ncl ude(${ Geant 4_USE_FI LE}) # Auto configure includes/flags
add_execut abl e(myg4app myg4app. cc) # Conpil e application

target _link_libraries(nygdapp ${Geant4_LIBRARIES}) # Link it to Geant4

Thisisvery useful for basic applications, but if you need fine control, you should use the variables directly.

By default, CMake will look in severa platform dependent locations for the Geant 4Confi g. cnake file
(see find_package for listings). You can aso specify the location yourself when running CMake by setting the

322

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:find_package

Appendix

Geant 4_DI Rvariableto the path of the directory holding Geant 4Conf i g. cmake. It may be set on the com-
mand lineviaa- D option, or by adding an entry to the CMake GUI. For example, if we have an install of Geant4
located in

+- opt/
+- Ceant 4/
+- 1ibl/
+- |ibGAgl obal . so
+-
+- Ceant4-9.6.0/
+- Ceant 4Confi g. cmake

then we would pass the argument - DGeant 4_DI R=/ opt / Geant 4/ 1 i b/ Geant 4- 9. 6. 0 to CMake.

You can aso, if you wish, build an application against a build of Geant4 without installing it. If you look
in the directory where you built Geant4 itself (e.g. on UNIX, where you ran make), you see there is a
CGeant 4Conf i g. cmake file. Thisisaperfectly validfile, so you can also point CMaketo thisfilewhen building
your application. Simply set Geant 4_DI R to the directory where you built Geant4. This feature is most useful
for Geant4 developers, but it can be useful if you cannot, or do not want to, install Geant4.

A version number may also be supplied to search for a Geant4 install greater than or equal to the supplied version,
eg.

find_package(Geant4 9.5.0 REQUI RED)

would make CMake search for a Geant4 install whose version number is greater than or equal to 9.5.0. An exact
version number may also be specified:

find_package(Geant4 9.6.0 EXACT REQUI RED)

In both cases, CMake will fail with an error if a Geant4 install meeting these version requirementsis not located.

Geant4 can be built with many optional components, and the presence of these can al so be required by passing extra
"component" arguments. For example, to require that Geant4 is found and that it support Qt Ul and visualization,
we can do

find_package(Geant4 REQUI RED qt)

Inthiscase, if CMake finds a Geant4 install that does not support Qt, it will fail with an error. Multiple component
arguments can be supplied, for example

find_package(CGeant4 REQUI RED qt gdml)

requires that we find a Geant4 instal that supports both Qt and GDML. If the component(s) is(are)
found, any needed header paths, libraries and compile definitions are appended to the variables
Geant _| NCLUDE_DI RS, Geant4_LIBRARI ES and Geant 4_DEFI NI TI ONS respectively. Variables
Geant 4_<COVPONENTNAME>_FOUND are set to TRUE if component COMPONENTNANE is supported by the
installation.

If you want to activate options only if they exist, you can use the pattern

find_package(Geant 4 REQUI RED)
find_package(Geant4 QUI ET COMPONENTS qt)

whichwill require CMaketo locate acoreinstall of Geant4, and then check for and activate Qt support if theinstall
provides it, continuing without error otherwise. A key thing to note here is that you can call f i nd_package

323

Appendix

multipletimesto append configuration of components. If you usethis pattern and need to check if acomponent was
found, you can usethe Geant 4_<COVPONENTNAME> FOUND variables described earlier to check the support.

The components which can be supplied tof i nd_package for Geant4 are asfollows:
e gdm
Geant4_gdm _FOUNDis TRUE if the install of Geant4 was built with GDML support.
* g3tog4
Geant 4_g3t og4_FOUNDIis TRUE if theinstall of Geant4 provides the G3ToG4 library.
e ui _tcsh
Geant4_ui _tcsh_FOUNDisTRUE if theinstall of Geant4 providesthe TCsh command line User Interface.
e ui_wn32

Geant4_ui _w n32_FOUNDis TRUE if theinstall of Geant4 provides the Win32 command line User Inter-
face.

e notif

Geant4_notif_ FOUNDis TRUE if theinstall of Geant4 provides the Motif(Xm) User Interface and Visu-
adization driver.

. qt
Geant 4_qt _FOUNDIisTRUE f theinstall of Geant4 providesthe Qt4 User Interface and Visualization driver.
e vis_networ k_dawn

Geant4_vi s_networ k_dawn_FOUNDis TRUE if theinstall of Geant4 providesthe Client/Server network
interface to DAWN visualization.

e vis_network _vrm

Geant4_vis_network_vrm FOUNDisTRUEIf theinstall of Geant4 providesthe Client/Server network
interface to VRML visuaization.

e vis_opengl x11

Geant4_vis_opengl x11 FOUND is TRUE if the install of Geant4 provides the X11 interface to the
OpenGL Visualization driver.

e vis_opengl _w n32

Geant4_vi s_opengl _w n32_FOUNDisTRUE if theinstall of Geant4 providesthe Win32 interfaceto the
OpenGL Visualization driver.

* Vi s_openi nvent or

Geant 4_vi s_openi nvent or _FOUND is TRUE if the install of Geant4 provides the Openl nventor Visu-
adization driver.

e ui _all
Activates al available Ul drivers. Does not set any variables, and never causes CMake to fail.

e vis_all

324

Appendix

Activates all available Visualization drivers. Does not set any variables, and never causes CMake to fail.

Please note that whilst the above ams to give a complete summary of the functionality of
Geant 4Conf i g. cmake, it only gives a sampling of the waysin which you may useit, and other CMake func-
tionality, to configure your application. We a so wel come feedback, suggestions for improvement and bug reports
on Geant 4Confi g. cnake.

5.2. Building an Application against a Build of Geant4

A typical use case for Geant4 developersisto build small testing applications against a fresh build of Geant4. If
rebuilds are frequent, then the testing application builds are also frequent.

CMake can be used to build these test applications using f i nd_package and Geant 4Conf i g. cnake, as
a special version of the latter is created in the Geant4 build directory. This sets up the variables to point to the
headers in the Geant4 source directory, and the freshly built librariesin the current build directory.

Applications may therefore be built against a non-installed build of Geant4 by running CMake for the application
and setting Geant 4_DI Rto point to the current build directory of Geant4.

6. GNUMake System: Makefiles and Environment
Variables

This section describes how the Geant4 GNUMake infrastructure is implemented in Geant4 and provides a quick
reference guide for the user about the most important environment variables that can be set to configure its be-
haviour.

This system is now deprecated for building Geant4 itself, though it is still provided through the SVN repository
for developers, and isinstalled by CMake to provide backward compatibility for user applications.

6.1. Geant4Make System

Asdescribed in Section 2.1 of the Installation Guide, the GNUmake process in Geant4 is mainly controlled by the
following GNUmake script files (*. gnk scripts are placed in $G41 NSTALL/ confi g):

e archi tecture. gnk: defining al the architecture specific settings and paths. System settings are stored in
$GAI NSTALL/ confi g/ sys in separatefiles.

» common. gnk: defining all general GNUmake rules for building objects and libraries.

» gl obl i b. gnk: defining all general GNUmake rules for building compound libraries.

* bi nmake. gnk: defining the general GNUmake rules for building executables.

» GNUnmake scripts: placed inside each directory in the G4 distribution and defining directives specific to build
alibrary (or aset of sub-libraries) or and executable.

To build a single library (or a set of sub-libraries) or an executable, you must explicitly change your current
directory to the one you're interested in and invoke the "make" command from there ("nmake gl obal " for
building acompound library). Hereisalist of the basic commands or GNUmake "targets' one can invoketo build
libraries and/or executables:

* make

starts the compilation process for building a kernel library or a library associated with an example. Kernel
libraries are built with maximum granularity, i.e. if a category is a compound, this command will build all
the related sub-libraries, not the compound one. The top level GNUmakef i | e in $G41 NSTALL/ sour ce
will aso build in this case a dependency map | i bnane. map of each library to establish the linking order
automatically at the bi n step. The map will be placed in $GALI B/ $SASYSTEM

* make gl obal

325

Appendix

starts the compilation process to build a single compound kernel library per category. If issued after "make",
both ‘granular’ and ‘compound' libraries will be available (NOTE: thiswill consistently increase the disk space
required. Compound libraries will then be selected by default at link time, unless G4LIB_USE_ GRANULAR
is specified).

e nake bi nor make (only for examples/)

starts the compilation process to build an executable. This command will build implicitly the library associated
with the example and link the final application. It assumes all kernel libraries are already generated and placed
in the correct $G41 NSTALL path defined for them.

The linking order is controlled automatically in case libraries have been built with maximum granularity, and
thelink list is generated on the fly.
* make dl |

On Windows systemsthiswill start the compilation processto build single compound kernel library per category
and generate Dynamic Link Libraries (DLLS). Once the libraries are generated, the process will imply aso the
deletion of al temporary files generated during the compilation.

[ib/ bin/ andtnp/ directories

The $G41 NSTALL environment variable specifies where the installation of the Geant4 toolkit should take place,
therefore kernel libraries will be placed in $G41 NSTALL/ | i b. The $&AWORKDI R environment variable is set
by the user and specifies the path to the user working directory; temporary files (object-files and data products
of the installation process of Geant4) will be placed in $G4AWORKDI R/ t mp, according to the system architecture
used. Binaries will be placed in $G4WORKDI R/ bi n, according to the system architecture used. The path to
$SAWORKDI R/ bi n/ $GASYSTEMshould be added to $PATH in the user environment.

6.2. Environment variables

Here is alist of the most important environment variables defined within the Geant4 GNUmake infrastructure,
with a short explanation of their use.

Werecommend that those environment variableslisted here and marked with (*) NOT beoverriden or set
(explicitly or by accident). They are already set and used internally in the default setup !

System configuration

$CLHEP BASE DIR
Specifies the path where the CLHEP packageisinstalled in your system.

$G4SYSTEM
Defines the architecture and compiler currently used.

NOTE: Thisvariableis set automatically if the Conf i gur e script is adopted for the installation. This will
result inthe proper settingsalso for configuring the environment with the generated shell scriptsenv. [c] sh.

Installation paths

$GAINSTALL
Defines the path where the Geant4 toolkit is located. It should be set by the system installer. By default, it
setsto $SHOVE/ geant 4, assuming the Geant4 distribution is placed in $SHOVE.

$GABASE (*)
Defines the path to the source code. Internally used to define $CPPFLAGS and $LDFLAGS for -1 and -L
directives. It hasto be set to $G41 NSTALL/ src.

$GAWORKDIR
Definesthe path for the user'sworkdir for Geant4. It is set by default to SHOVE/ geant 4, assuming the user's
working directory for Geant4 is placed in $HOVE.

326

Appendix

$G4INCLUDE
Defines the path where source header files may be mirrored at installation by issuing gnake i ncl udes
(default is set to $G41 NSTALL/ i ncl ude)

$G4BIN, $G4BINDIR (*)
Used by the system to specify the place where to store executables. By default they're set to $GAWORKDI R/
bi n and $GABI N $GASYSTEM respectively. The path to $GAWORKDI R/ bi n/ $G4SYSTEM should be
added to $PATH in the user environment. $&4BI N can be overridden.

$GATMP, $GATMPDIR (*)
Used by the system to specify the place where to store temporary files products of the compilation/build of
auser application or test. By default they're set to $GAWORKDI R/ t np and $GATMP/ $GASYSTEMrespec-
tively. $GATMP can be overridden.

$GALIB, $GALIBDIR (*)
Used by the system to specify the place where to install libraries. By default they're set to $G41 NSTALL/
l'i b and $GALI B/ $GASYSTEMrespectively. $G4LI B can be overridden.

Build specific

$GATARGET
Specifies the target (name of the source file defining the main()) of the application/example to be built. This
variableis set automatically for the examples and tests placed in $G41 NSTALL/ exanpl es.

$GADEBUG
Specifies to compile the code (libraries or examples) including symbolic information in the object code for
debugging. The size of the generated object code can increase considerably. By default, code is compiled in
optimised mode ($GACPTI M SE s&t).

$GA40OPTDEBUG
Only availablefor the g++ compiler, specifiesto compile the code (libraries or exampl es) in optimised mode,
but including symbolic information in the object code for debugging.

$GANO_OPTIMISE
Specifies to compile the code (libraries or examples) without compiler optimisation.

$GAPROFILE
On Li nux systems with the g++ compiler, it alows to build libraries with profiling setup for monitoring
with the gpr of tool.

$G4 NO_VERBOSE
Geant4 codeis compiled by default in high verbosity mode ($G4 VERBCSE flag set). For better performance,
verbosity code can be left out by defining $G4 _NO VERBCOSE.

$GALIB_BUILD_SHARED
Flag specifying if to build kernel libraries as shared libraries (libraries will be then used by default). If not
set, static archive libraries are built by default.

$GALIB_BUILD_STATIC
Flag specifying if to build kernel libraries as static archive libraries in addition to shared libraries (in case
$GAALI B_BU LD_SHAREDis set as well).

$GALIB_BUILD_DLL (*)
Internal flag for specifying to build DLL kernel libraries for Windows systems. The flag is automatically set
when requested to build DLLs.

$GALIB_USE DLL
For Windows systems only. Flag to specify to build an application using the installed DLL kernel libraries
for Windows systems. It is required to have this flag set in the environment in order to successfully build an
application if the DLL libraries have been installed.

327

Appendix

$GALIB_USE_GRANULAR
To force usage of "granular” libraries against "compound” libraries at link time in case both have been in-
stalled. The Geant4 building system chooses "compound" libraries by default, if installed.

Ul specific

The most relevant flags for User Interface drivers are just listed here. A more detailed description is given also
in section 2. of this User's Guide.

G4Ul_USE_TERMINAL
Specifies to use dumb terminal interface in the application to be built (default).

G4UI_USE_TCSH
Specifiesto use the tcsh-shell like interface in the application to be built.

G4Ul_BUILD_XM_SESSION
Specifiesto include in kernel library the XM Motif-based user interfaces.

G4UI_USE_XM
Specifiesto use the XM interfaces in the application to be built.

G4Ul_BUILD_WIN32_SESSION
Specifiesto include in kernel library the WIN32 terminal interface for Windows systems.

G4UI_USE_WIN32
Specifiesto use the WIN32 interfaces in the application to be built on Windows systems.

G4UI_BUILD_QT_SESSION
Specifies to include in kernel library the Qt terminal interface. $QTHOME should specify the path where Qt
libraries and headers are installed

G4UI_USE_QT
Specifiesto use the Qt interfaces in the application to be built.

G4Ul_NONE
If set, no Ul sessions nor any Ul libraries are built. This can be useful when running a pure batch job or in
a user framework having its own Ul system.

Visualization specific

The most relevant flags for visualization graphics drivers are just listed here. A description of these variablesis
given also in section 2. of this User's Guide.

$G4VIS BUILD_OPENGLX_DRIVER
Specifiesto build kernel library for visualization including the OpenGL driver with X 11 extension. It requires
$OGLHOVE set (path to OpenGL installation).

$G4VIS USE OPENGLX
Specifiesto use OpenGL graphics with X11 extension in the application to be built.

$G4VIS BUILD_OPENGLXM_DRIVER
Specifiesto build kernel library for visualization including the OpenGL driver with XM extension. It requires
$OGLHOVE set (path to OpenGL installation).

$G4VIS_USE_OPENGLXM
Specifiesto use OpenGL graphics with XM extension in the application to be built.

G4VIS BUILD_OPENGLQT_DRIVER
Specifiesto build kernd library for visualization including the OpenGL driver with Qt extension. It requires
$QTHOME set to specify the path where Qt libraries and headers are installed.

328

Appendix

G4VIS_USE_OPENGLQT
Specifies to use OpenGL graphics with Qt extension in the application to be built.

$G4VIS BUILD_OI_DRIVER
Specifiesto build kernel library for visualization including the Openlnventor driver. It requires $O HOVE set
(pathsto the Openl nvent or instalation).

$G4VIS _USE_Ol
Specifies to use Openlnventor graphics in the application to be built.

$G4VIS BUILD_OIX_DRIVER
Specifiesto build the driver for the free X11 version of Openlnventor.

$G4VIS USE_OIX
Specifiesto use the free X11 version of Openlnventor.

$G4VIS BUILD_RAYTRACERX_DRIVER
Specifies to build kernel library for visualization including the Ray-Tracer driver with X11 extension. It re-
quires X11 installed in the system.

$G4VIS USE_RAYTRACERX
Specifiesto use the X11 version of the Ray-Tracer driver.

$G4VIS BUILD_OIWIN32_DRIVER
Specifiesto build the driver for the free X11 version of Openlnventor on Windows systems.

$G4VIS_USE_OIWIN32
Specifiesto use the free X11 version of Openlnventor on Windows systems.

$G4VIS BUILD_DAWN_DRIVER
Specifiesto build kerndl library for visualization including the driver for DAWN.

$G4VIS USE_DAWN
Specifiesto use DAWN as a possible graphics renderer in the application to be built.

$GADAWN_HOST_NAME
To specify the hostname for use with the DAWN-network driver.

$G4VIS_NONE
If specified, no visualization drivers will be built or used.

Hadronic physics specific

$GANEUTRONHP_USE_ONLY_PHOTONEVAPORATION
When using high precision neutron code, user may choose to force the use of Photon Evaporation model
instead of using the neutron capture final state data.

$GANEUTRONHP_SKIP_MISSING_ISOTOPES
User can force high precison neutron code to use only exact isotope data files instead of allowing nearby
isotope files to be used. If the exact file is not available, the cross section will be set to zero and a warning
message will be printed.

$GANEUTRONHP_NEGLECT_DOPPLER
Sets neglecting doppler broadening mode for boosting performance.

GDML, zl i b and g3t og4 modules

$G4ALIB_BUILD_GDML
If set, triggers compilation of aplugin modulegdm for allowing import/export of detector description setups
(geometrical volumes, solids, materials, etc.). By default, the flag is not set; if set, the path to the installation
of XercesC package must be specified through the variable $XERCESCROOCT.

329

Appendix

$GALIB_USE_GDML
Specifies to use the gdml module. The flag is automatically set if $GALI B_BUI LD _GDM. is set in the
environment.

$G4LIB_BUILD ZLIB
If set, triggers compilation of a specific zI i b module for the compression of output files (mainly in use
currently for the HepRep graphics driver). By default, the flag is not set and the built-in system library for
compression isadopted instead. Setting thisflag will alsoimplicitely set the flag below. On Windows systems,
if OpenGL or Openlnventor visualization drivers are built, this module is automatically built.

$GALIB_USE_ZLIB
Specifiesto usethe zIl i b module, either system built-in or Geant4 specific.

$GALIB_BUILD_G3TOG4
If set, triggers compilation of theg3t 0g4 modulefor conversions of simplelegacy geometries descriptionsto
Geant4. By default, theflagisnot set and the modul€'slibrary isnot built. Setting thisflag will alsoimplicitely
set the flag below.

$GALIB_USE_G3TOG4
Specifiesto use the g3t 0g4 module, assuming the related library has been aready installed.

Analysis specific

$GAANALY SIS USE
Specifies to activate the appropriate environment for analysis, if an application includes code for histogram-
ming based on AIDA. Additional setup variables are required (FGAANALYSI S_Al DA _CONFI G_CFLAGS,
$HAANALYSI S_Al DA _CONFI G_LI BS) to define config options for AIDA ("ai da-config --
cflags" and "ai da-config --1ibs"). Seeingalation instructions of the specific analysis tools for
details.

Directory paths to Physics Data

$GANEUTRONHPDATA
Path to external data set for Neutron Scattering processes.

$GANEUTRONXSDATA
Path to external data set for evaluated neutron cross-sections.

$GALEDATA
Path to external data set for low energy electromagnetic processes.

$G4PIIDATA
Path to external data set for shell ionisation cross-sections.

$GALEVELGAMMADATA
Path to the data set for Photon Evaporation.

$GARADIOACTIVEDATA
Path to the data set for Radiative Decay processes.

$G4ABLADATA
Path to nuclear shell effects data set for INCL/ABLA hadronic model.

$GAREALSURFACEDATA
Path to the data set for measured optical surface reflectance for precise optical physics.

6.3. Linking External Libraries with Geant4

The Geant4 GNUmake infrastructure allows to extend the link list of libraries with external (or user defined)
packages which may be required for some user's applications to generate the final executable.

330

Appendix

6.3.1. Adding external libraries which do *not* use Geant4

In the GNUmakef i | e of your application, before including bi nmake. gnk, specify the extra library in EX-
TRALI BS either usingthe- L. . . -1 ... syntax or by specifying the full pathname, e.g.:

EXTRALIBS : = -L<your-path>/1lib -I|<nyExtralLi b>

or

EXTRALI BS : = <your-path>/1ib/|ib<nmyExtraLib>.a

You may aso specify EXTRA LI NK_DEPENDENCI ES, which is added to the dependency of the target exe-
cutable, and you may also specify arule for making it, e.g.:

EXTRA_LI NK_DEPENDENCI ES : = <your-path>/1ib/lib<nyExtralLi b>. a

<your-pat h>/1ib/ i b<nyExtraLi b>. a:
cd <your-path>/1ib; $(MAKE)

Note that you almost certainly need to augment CPPFLAGS for the header files of the external library, e.g.:

CPPFLAGS+=- | <your - pat h>/i ncl ude
See Example 88.

Example 88. An example of a customised GNUmakefile for an application or example
using an external module not bound to Geant4.

nanme := sim
GATARGET : = $(nane)
AEXLIB : = true

CPPFLAGS += -1 $(HOME)/ Xpl otter/incl ude

EXTRALI BS += -L$(HOVE)/ Xplotter/lib -1 Xplotter

EXTRA_LI NK_DEPENDENCI ES : = $(HOME)/ Xpl otter/lib/libXplotter.a
. PHONY: al |

all: lib bin

i ncl ude $(GAlI NSTALL)/ confi g/ bi nnake. gk

$(HOME) / Xpl otter/lib/libXplotter. a:
cd $(HOVE)/ Xpl otter; $(MAKE)

6.3.2. Adding external libraries which use Geant4

In addition to the above, specify, in EXTRALI BSSOURCEDI RS, alist of directories containing source filesin its
src/ subdirectory. Thus, your GNUmakef i | e might contain:

EXTRALI BS += $(GAWORKDI R) / t mp/ $(GASYSTEM) / <nyApp>/| i b<nyApp>. a \

- L<your-path>/lib -I<myExtraLi b>
EXTRALI BSSOURCEDI RS += <your - pat h>/ <nyApp> <your - pat h>/ <MyExt r aMbdul e>
EXTRA_LI NK_DEPENDENCI ES : = $(GAWORKDI R) / t np/ $(GASYSTEM) / <nyApp>/ | i b<nyApp>. a

MYSOURCES : = $(w | dcard <your - pat h>/ <myApp>/ src/ *cc)
$(GAVORKDI R) / t mp/ $(GASYSTEM) / <nyApp>/ | i b<nmyApp>. a: $(MYSOURCES)

331

Appendix

cd <your - pat h>/ <nyApp>; $(MAKE)

See Example 89.

Example 89. An example of a customised GNUmakefile for an application or example
using external modules bound to Geant4.

GNUmakefile for the application "phys" depending on nmodul e "reco"
B o m m o e e o o e o e mme e e
nane := phys

GATARCGET : = $(nane)
GAEXLIB : = true

EXTRALI BS += $(GAWORKDI R) / t np/ $(GASYSTEM / $(nane) / | i bphys. a \
-L$(HOME) /reco/lib -lIreco
EXTRALI BSSOURCEDI RS += $(HOME) / phys $(HOME)/reco
EXTRA LI NK_DEPENDENCI ES : = $(GAWORKDI R) / t np/ $(ASYSTEM / $(nane) / | i bphys. a

. PHONY: all
all: lib bin

i ncl ude $(G4l NSTALL)/ confi g/ bi nmake. gnk
MYSOURCES : = $(wi | dcard $(HOME)/ phys/ src/*cc)

$(AWORKDI R) / t mp/ $(GASYSTEM) / $(nane) / | i bphys. a: $(MYSOURCES)
cd $(HOME)/ phys; $(MAKE)

7. Step-by-Step Installation Guides

Y ou can find below some useful pages collecting instructions on how to install Geant4 in a detailed step-by-step
tutorial:

 Step by step Installation Guides.

7.1. Building on MS Visual C++

Geant4 now builds on Windows using CMake to configure MS Visua Studio solutions which compile Geant4
using the Visual Studio C++ compiler. Cygwin is no longer required.

If your use case mandates Cygwin, you can also use CMake inside Cygwin just as you would on a Unix platform
and the Visua Studio C++ compiler can be used. However, thisis not supported or tested at present. If your use
case mandates the use of Cygwin, then the GNUMake system can still be used, and Geant4 can still be compiled
with the C++ compiler of MS Visual Studio C++ and Section 6 should be consulted to determine the needed
Makefile and environment variables.

Listed below are some useful pages with instructions on how to start with the installation of CygWin, and also
tipsfor creating a project under Visual Studio:

* Getting started with Cygwin.
» Cygwin Installation Notes.
* BuildingaMSVC++ Visua Studio 2010 Geant4 project.

8. Development and Debug Tools

Although not in the scope of this user manual, in this appendix section we provide a set of references to rather
known and established development tools and environments we think are useful for code development in C++ in
generd. It'sarather limited list, far from being complete of course.

8.1. Unix/Linux

e The KDevelop environment on Linux systems.

332

http://geant4.slac.stanford.edu/tutorial/installation/
http://cywin.com
http://www.lcsim.org/docs/gettingstarted/Cygwin/
http://cern.ch/geant4/support/windows_note.shtml
http://www.lcsim.org/docs/gettingStarted/Geant4MSVC%2B%2B/VisualStudio2010/
http://kdevelop.org/

Appendix

The GNU Data Display Debugger (DDD).

Valgrind, a system for debugging and profiling Linux programs.

» Parasoft Insuret++ run-time debugger and memory checker

» Parasoft C++ Test source code analyzer.

Borland Together Visual Modeling for Software Architecture Design tool.

8.2. Windows

» Microsoft Visual Studio development environment.

» Parasoft Insuret+ run-time debugger and memory checker

e Parasoft C++ Test source code analyzer.

* Enterprise Architect UML Visua Modeling tool.

» Borland Together Visual Modeling for Software Architecture Design tool.

9. Python Interface

Pythonisapopular scripting language with an interactive interpreter. Geant4Py, a Geant4-Python bridge, provides
abridgefor Geant4 classes. Thisenablesto directly access Geant4 classes from Python scripting. User applications
can be easily configured with many Python third-party modules, such as PyROQOT, on the Python software bus.

Geant4Py is supplied in the directory envi r onnent s/ g4py/ of the Geant4 source package.

9.1. Installation

9.1.1. Software Requirements

Geant4Py requires the Boost-C++ external library, which helps Python binding of C++ codes.
9.1.2. Building Geant4Py module

Geant4Py provides a configure script for building modules.

“configure' configures Geant4Py to adapt to many kinds of systens.

Usage: ./configure SYSTEM[OPTION ... [VAR=VALUE]...

SYSTEM System type (see Supported Arhitectures)

Opti ons:
-h, --help Di splay this help and exit
Installation directories:
- - pref i x=PREFI X Installation prefix [./]
--1libdir=DR Pyt hon nodul es dir [PREFI X/ |i b]

Fine tuning of the library path:
--with-gdinstall-dir=DIR GCeant4 installed dir

--w t h-python-incdir=DI R Python header dir [/usr/include/python(2.#)],
(location of pyconfig.h)

--with-python-libdir=DIR Python library dir [/usr/lib(64)]

--wi t h-python3 Use Python3

--W th-boost-incdir=DIR BOOST-C++ header dir [/usr/include],
(l ocation of boost/)
--wi th-boost-libdir=DIR BOOST-C++ library dir [/usr/lib]
--w t h-boost - pyt hon-1i b=LIB |ibrary nanme of |ibboost_python.so [boost_python]

--w th-extra-dir=D R Install path for extra packages [/usr/l|ocal]

--w t h-xercesc-incdi r=DI R Xerces-C header dir [/usr/include]
--with-xercesc-1ibdir=DIR Xerces-C library dir [/usr/lib(64)]

333

http://www.gnu.org/software/ddd/
http://valgrind.org/
http://www.parasoft.com/jsp/products/home.jsp?product=Insure&
http://www.parasoft.com/jsp/products/home.jsp?product=CppTest
http://www.borland.com/products/Together/
http://msdn.microsoft.com/vstudio/
http://www.parasoft.com/jsp/products/home.jsp?product=Insure&
http://www.parasoft.com/jsp/products/home.jsp?product=CppTest
http://www.sparxsystems.com.au/products/ea/
http://www.borland.com/products/Together/
http://www.boost.org/

Appendix

Enabl e/ di sabl e options: prefix with either --enable- or --disable-
opengl x OpenGLX support [aut o]
opengl xm OpenGLXm suppor t [di sabl e]
raytracerx RayTracer X support [disabl e]

Supported Architectures:

i nux for Linux gcc (32bit)
i nux64 for Linux gcc (64bit)
i nuxx8664gcc for Linux gcc (64bit)
MACOSX for Apple OS X with gcc

For example, you run it like

./configure linux64 -with-g4install-dir=[geant4 install path with CMvake]

The configure script automatically check your environment, and createconf i g/ conf i g. gk, which describes
your envrionment. After executing the configure script successfully, then

make
make install

9.2. Using Geant4Py

PYTHONPATH environment variable should be set at tuntime. PY THONPATH environment variableindicates
Python modul e search directories, given by a colon-separated list of directories. Practically, the variableis (your
g4py directory)/lib.

9.2.1. Import Geant4

To use Geant4Py, you start with importing the module called " Geant4".

python

Python 2.6.2 (r262: 71600, Cct 24 2009, 03:15:21)

[GCC 4.4.1 [gce-4_4-branch revision 150839]] on |inux2

Type "hel p", "copyright", "credits" or "license" for nore infornation.
>>> from Ceant4 inport *

R

CGeant 4 versi on Nane: geant4-09-03 (18- Decenber - 2009)
Copyright : Geant4 Col | aboration
Reference : NIM A 506 (2003), 250-303
WAW : http://cern.ch/geant4

E

Vi sual i zati on Manager instantiating...
>>>

9.2.2. Access to Geant4 Globals

When importing the Geant4 module, the GARunManager object will be automatically instantiated. Geant4 sin-
gleton abjects are also automatically instantiated. These singleton objects can be accessed by "gX XX X" variables,
like "gRunManager".

gLossTabl eManager gTerm nate
gAppl yU Comrand gMateri al Tabl e gTr acki ngManager
gCont r ol Execut e gNi st Manager gTransport ati onManager
gEl enent Tabl e gParticlelterator gUl manager
gEntCal cul at or gParticl eTabl e gVi sManager
gEvent Manager gProcessTabl e
gExcept i onHandl er gProduct i onCut sTabl e
gHADat e gRunManager
gGAVERSI ON_NUMBER gRunManager Ker nel

334

Appendix

gGAVer si on gSt ackManager
gGeonet r yManager gStart U Sessi on
gGet Current Val ues gSt at eManager

9.2.3. Call Geant4 Methods

Once aPython object of aGeant4 classinstantiated, Geant4 methods can be directly called the sameway asin C++.

>>> from Geant4 inport *

R

Geant 4 version Nane: geant4-09-03 (18- Decenber - 2009)
Copyright : Geant4 Col | aboration
Reference : NIM A 506 (2003), 250-303
WA : http://cern.ch/geant4

L

Vi sual i zati on Manager instantiating...

>>> print gRunManager. Get VersionString()
Ceant 4 version Nane: geant4-09-03 (18- Decenber - 2009)

9.3. Site-modules

Geant4Py provides additional utility modules called "gdpy" inthedirectory si t e- nodul es. It consists of pred-
ifined geometries, materials, physics lists, primary generator actions, and so on.

9.3.1. ezgeom module

The ezgeom module provides an alternative way of defining simple geometry. An example code for defining a
simple geometry is shown here:

i nport g4py.ezgeom
from g4py. ezgeom i nport GAEzVol une

def Construct Geon():
print "* Constructing geonetry..."
reset world material
air= GAMvaterial . Getaterial ("G4_AR")
g4py. ezgeom Set Wor | dvat eri al (air)

a target box is placed

gl obal target

target = GAEzVol une(" Target")

au= AMaterial.CGetMaterial ("GA_Au")

target. Creat eTubeVol une(au, 0., 1.*cm 1.*nm)
target. Pl acel t (G4ThreeVector (0., 0.,-10.*cm))

9.3.2. NISTmaterials module

The NI STmaterials module provides an instant use of Geant4 NIST materials. An example codefor creating NIST
materials:

from Geant4 inport *
inport g4py.N STmaterials

g4py. Nl STmat eri al s. Construct ()
print Geant4.gMaterial Tabl e

9.3.3. ParticleGun module

The ParticleGun module provides aprimary generator actionwith G4Par t i cl eGun. Anexamplecodeisshown
here:

335

Appendix

i mport g4py. Particl eGun

normal way for constructing user primary generator action
#pgPGA= g4py. Parti cl eGun. Parti cl eGunActi on()

#gRunManager . Set User Act i on(pgPGA)

#pg= pgPGA. Get Parti cl eGun()

2nd way, short-cut way
pg= g4py. Particl eGun. Construct ()

set paraneters of particle gun

pg. Set Parti cl eByNane("e-")

pg. Set Parti cl eEner gy(300. * MeV)

primary_position= GAThreeVector(0.,0., -14.9*cm
primary_directi on= GAThreeVector(0.2, 0., 1.)

pg. Set Parti cl ePosi ti on(pri mary_position)

pg. Set Parti cl eMoment unDi recti on(pri mary_direction)

9.4. Examples

There are some examples of Geant4Py in the directories"t est s/ " and " exanpl es/".
Inthe"t ests/" directory,

gtest0l : exposes a user application

gtest02 : test for using site-nodul e packages

gtest03 : test for ezgeom package

gtest04 : test for getting command tree and comrand i nformation
gtest05 : test for constructing CSG geonetries in Python
gtest06 : test for constructing/visualizing bool ean geoentries
gtest07 : test for checking overl apped geonetries

The" exanpl es/ " directory contains a set of examples of Geant4Py.

demos/water_phantom
An example of "water phantom dosimetry". Thisdemo program showsthat a Geant4 application well coworks
with Root on Python front end. VisManager, PrimaryGeneratorAction, UserAction-s, histogramming with
Root are implemented in Python;

* dose calculation in awater phantom

Python overloading of user actions
« on-line histogramming with Root
* visualization

education
Educational examples with Graphical User Interface using TKi nt er

* |essonl
Thefirst version of the courseware of the mass attenuation coefficient.
* |esson2

GUI interface of EXNO3, which can control geometry configuration, intial particle condition, physics process-
es, cut value, magnetic field and visualization outputs.

emplot
Examples of plotting photon cross sections and stopping powers with Root.

gdml
Examples of writing/reading user's geometry to/from a GDML file

336

Appendix

10. Geant4 Material Database
10.1. Pure Materials

z Nane ChFor nul a density(g/cmt3) 1 (eV)
1 ™&4_H 8. 3748e- 05 19.2
2 GA_He 0. 000166322 41.8
3 GA_Li 0.534 40
4 G4_Be 1.848 63.7
5 &4_B 2.37 76
6 G4_C 2 81
7 G4_N 0. 0011652 82
8 &40 0. 00133151 95
9 G&4_F 0. 00158029 115
10 ™4 _Ne 0. 000838505 137
11 A_Na 0.971 149
12 <My 1.74 156
13 ™<4_A 2.699 166
14 &A_Si 2.33 173
15 ™4_P 2.2 173
16 &*4_S 2 180
17 ©4_d 0. 00299473 174
18 ™A_Ar 0. 00166201 188
19 &4 K 0. 862 190
20 &4_Ca 1.55 191
21 &4_Sc 2.989 216
22 GA_Ti 4.54 233
23 *A_V 6.11 245
24 &A_Cr 7.18 257
25 4_M 7.44 272
26 GA_Fe 7.874 286
27 *A_Co 8.9 297
28 GA_N 8.902 311
29 *A_CQu 8. 96 322
30 &A4_Zn 7.133 330
31 &4A_ & 5.904 334
32 *A_Ge 5. 323 350
33 ™4_As 5.73 347
34 A_Se 4.5 348
35 4_Br 0. 0070721 343
36 G4_Kr 0. 00347832 352
37 4A_Ro 1.532 363
38 &A_Sr 2.54 366
39 &Y 4. 469 379
40 GA_Zr 6. 506 393
41 G4A_Nb 8.57 417
42 GA_Mo 10. 22 424
43 G4_Tc 11.5 428
44 GA_Ru 12. 41 441
45 GA_Rn 12. 41 449
46 GA_Pd 12.02 470
47 GA_Ag 10.5 470
48 G4 Cd 8. 65 469
49 G4_In 7.31 488
50 &4_Sn 7.31 488
51 &4_Sb 6. 691 487
52 A_Te 6.24 485
53 &4_| 4.93 491
54 (A4_Xe 0. 00548536 482
55 4_GCs 1.873 488
56 4_Ba 3.5 491
57 &4_La 6. 154 501
58 4_Ce 6. 657 523
59 &4_Pr 6.71 535
60 &4_Nd 6.9 546
61 &4_Pm 7.22 560
62 G4_Sm 7. 46 574
63 4_Eu 5.243 580
64 4. 7.9004 591
65 4_Tb 8. 229 614
66 4_Dy 8.55 628
67 4_Ho 8. 795 650

Appendix

68 GA_FEr 9. 066 658
69 GA_Tm 9.321 674
70 &_Yb 6.73 684
71 G4_Lu 9. 84 694
72 GA_H 13.31 705
73 A_Ta 16. 654 718
74 &AW 19.3 727
75 _Re 21.02 736
76 &4 _Os 22.57 746
77 GA_lr 22.42 757
78 _Pt 21.45 790
79 G4_Au 19. 32 790
80 G4_Hg 13. 546 800
81 GA_TI 11.72 810
82 G4_Pb 11. 35 823
83 G4_Bi 9. 747 823
84 G4_Po 9. 32 830
85 A_At 9. 32 825
86 G4_Rn 0. 00900662 794
87 GA_Fr 1 827
88 4 _Ra 5 826
89 A_Ac 10. 07 841
90 &_Th 11.72 847
91 4_Pa 15. 37 878
92 A_U 18. 95 890
93 & _Np 20.25 902
94 &4_Pu 19. 84 921
95 G4_Am 13. 67 934
96 G4_Cm 13.51 939
97 G4_Bk 14 952
98 (e e 10 966
10.2. NIST Compounds
Nconmp Nane density(g/cnmt3) I (eV)
6 G4_A-150_TI SSUE 1.127 65.1
1 0. 101327
6 0. 7755
7 0. 035057
8 0. 0523159
9 0. 017422
20 0. 018378
3 G4_ACETONE 0. 7899 64.2
1 0. 104122
6 0. 620405
8 0. 275473
2 G4_ACETYLENE 0. 0010967 58. 2
1 0.077418
6 0. 922582
3 G4_ADENI NE 1.35 71. 4
1 0. 037294
6 0. 44443
7 0.518276
13 G4_ADI POSE_TI SSUE_I CRP 0.92 63.2
1 0. 119477
6 0. 63724
7 0. 00797
8 0. 232333
11 0. 0005
12 2e-05
15 0. 00016
16 0. 00073
17 0. 00119
19 0. 00032
20 2e-05
26 2e-05
30 2e-05
4 G_AR 0. 00120479 85.7
6 0. 000124
7 0. 755268
8 0.231781
18 0. 012827
4 G4_ALANI NE 1.42 71.9

338

Appendix

14

Gi_

GA_

Gi_

Gi_

Gi_

Gi_

Gi_

0. 000826019

1.0235

1.283

4.89

0. 87865

1.85

1.85

1 0.0791899
6 0. 404439
7 0.157213
8 0. 359159
G4_ALUM NUM OXIDE Al 203 3.97
8 0. 470749
13 0. 529251
AVBER
1 0. 10593
6 0.788974
8 0. 105096
AMMVONI A
1 0. 177547
7 0. 822453
ANI LI NE
1 0. 075759
6 0.773838
7 0. 150403
ANTHRACENE
1 0. 05655
6 0.94345
B- 100_BONE
1 0. 0654709
6 0. 536944
7 0.0215
8 0. 032085
9 0.167411
20 0. 176589
BAKELI TE
1 0. 057441
6 0. 774591
8 0.167968
G4_BARI UM _FLUCRI DE
9 0.21672
56 0.78328
G4_BARI UM _SULFATE
8 0.274212
16 0.137368
56 0. 58842
BENZENE
1 0.077418
6 0. 922582
G4_BERYLLI UM OXI DE
4 0. 36032
8 0. 63968
BGO
8 0.154126
32 0. 17482
83 0. 671054
BLOOD | CRP
1 0.101866
6 0. 10002
7 0. 02964
8 0.759414
11 0.00185
12 4e- 05
14 3e-05
15 0. 00035
16 0.00185
17 0.00278
19 0.00163
20 6e- 05
26 0. 00046
30 le-05
G4_BONE_COWPACT | CRU
1 0. 063984
6 0.278
7 0.027
8 0. 410016
12 0.002
15 0.07
16 0.002
20 0.147
G4_BONE_CORTI CAL_| CRP
1 0.047234
6 0.14433
7 0.04199

145.2

63. 2

53.7

66. 2

69.5

85.9

72.4

375.9

285.7

63. 4

93.2

534.1

75.2

91.9

106. 4

339

Appendix

13

8 0. 446096
12 0.0022
15 0. 10497
16 0.00315
20 0.20993
30 0.0001
G4_BORON_CARBI DE
5 0.78261
6 0.21739
G4_BORON_OXI DE
5 0. 310551
8 0. 689449
G4_BRAIN_| CRP
1 0.110667
6 0. 12542
7 0.01328
8 0.737723
11 0.00184
12 0.00015
15 0. 00354
16 0.00177
17 0. 00236
19 0.0031
20 9e- 05
26 5e- 05
30 le-05
G4_BUTANE
1 0. 173408
6 0. 826592
G4_N-BUTYL_ALCOHOL
1 0. 135978
6 0.648171
8 0. 215851
&4_C 552
1 0.02468
6 0.501611
8 0. 004527
9 0. 465209
14 0.003973
G4_CADM UM TELLURI DE
48 0. 468355
52 0. 531645
G4_CADM UM TUNGSTATE
8 0.177644
48 0. 312027
74 0.510329
G4_CALClI UM CARBONATE
6 0. 120003
8 0. 479554
20 0. 400443
G4_CALCI UM FLUCRI DE
9 0. 486659
20 0.513341
G4_CALCI UM OXI DE
8 0. 285299
20 0.714701
G4_CALClI UM SULFATE
8 0. 470095
16 0. 235497
20 0. 294408
G4_CALCI UM TUNGSTATE
8 0.22227
20 0. 139202
74 0.638528
G4_CARBON DI OXI DE CO 2
6 0.272916
8 0.727084
G4_CARBON_TETRACHLORI DE
6 0.078083
17 0.921917
G4_CELLULOSE_CELLOPHANE
1 0.062162
6 0. 444462
8 0. 493376
G4_CELLULOSE_BUTYRATE
1 0.067125
6 0. 545403

1

1.

0

1

1

.52

812

03

. 00249343

. 8098

.76

.18

. 96

. 062

00184212

594

42

84.

99

73

48

59

86

5309.

468.

136.

166

176.

152.

395

85

166.

77

74.

Appendix

10

8 0.387472
G4_CELLULOSE_NI TRATE

1 0.029216

6 0.271296

7 0.121276

8 0.578212
G4_CERI C_SULFATE

1 0.107596

7 0. 0008

8 0. 874976

16 0.014627

58 0. 002001
G4_CESI UM _FLUCRI DE

9 0. 125069

55 0. 874931
G4_CESI UM | CDI DE

53 0. 488451

55 0.511549
G4_CHLOROBENZENE

1 0.044772

6 0. 640254

17 0.314974
G4_CHLOROFORM

1 0.008443

6 0.100613

17 0. 890944
G4_CONCRETE

1 0.01

6 0.001

8 0. 529107

11 0.016

12 0.002

13 0.033872

14 0.337021

19 0.013

20 0.044

26 0.014
G4_CYCLOHEXANE

1 0.143711

6 0. 856289
G4_1, 2- DI CHLOROBENZENE

1 0.027425

6 0. 490233

17 0. 482342
G4_DI CHLORODI ETHYL_ETHER

1 0. 0563811

6 0. 335942

8 0.111874

17 0. 495802
G4_1, 2- DI CHLOROETHANE

1 0. 04074

6 0.242746

17 0. 716514
G4_DI ETHYL_ETHER

1 0. 135978

6 0.648171

8 0. 215851
G4_N, N- DI METHYL_FORVAM DE

1 0. 096523

6 0. 492965

7 0.191625

8 0. 218887
G4_DI METHYL_SULFOXI DE

1 0. 077403

6 0. 307467

8 0.204782

16 0. 410348
G4_ETHANE

1 0.201115

6 0. 798885
G4_ETHYL_ALCOHOL

1 0. 131269

6 0.521437

8 0.347294
G4_ETHYL_CELLULCSE

1 0. 090027

6 0.585182

1

1

0

.49

.03

. 115

.51

. 1058

. 4832

. 779

3048

2199

. 2351

. 71378

9487

. 1014

. 00125324

. 7893

.13

87

76.7

440.7

553.1

89.1

156

135.2

56. 4

106.5

103.3

111.

60

66.

98.

45.

62.

69.

341

Appendix

0.00117497

8 0. 324791
G4_ETHYLENE

1 0. 143711

6 0. 856289
G4_EYE_LENS_| CRP 1.1

1 0. 099269

6 0. 19371

7 0. 05327

8 0. 653751
G4_FERRI C_OXI DE 5.2

8 0. 300567

26 0. 699433
(4_FERROBORI DE 7.15

5 0. 162174

26 0. 837826
4_FERROUS_OXI DE 5.7

8 0. 222689

26 0.777311
G4_FERROUS_SULFATE 1. 024

1 0. 108259

7 2.7e-05

8 0. 878636

11 2.2e-05

16 0. 012968

17 3. 4e-05

26 5. 4e- 05
G4_FREON- 12 1.12

6 0. 099335

9 0. 314247

17 0. 586418
GA_FREON- 12B2 1.8

6 0. 057245

9 0. 181096

35 0. 761659
G4_FREON- 13 0.95

6 0. 114983

9 0. 545621

17 0. 339396
A_FREON- 13B1 1.5

6 0. 080659

9 0. 382749

35 0. 536592
G4_FREON- 1311 1.8

6 0. 061309

9 0. 290924

53 0. 647767
G4_GADOLI Nl UM_OXYSULFIDE 7.44

8 0. 084528

16 0. 08469

64 0. 830782
G4_GALLI UM ARSENI DE 5.31

31 0. 482019

33 0.517981
4_GEL_PHOTO_EMULSI ON 1.2914

1 0. 08118

6 0. 41606

7 0.11124

8 0. 38064

16 0.01088
G4_Pyrex_d ass 2.23

5 0. 0400639

8 0. 539561

11 0. 0281909

13 0.011644

14 0.377219

19 0. 00332099
G4_GLASS_LEAD 6.22

8 0. 156453

14 0. 080866

22 0. 008092

33 0. 002651

82 0. 751938
G4_GLASS_PLATE 2.4

8 0. 4598

11 0. 0964411

14 0. 336553

20 0. 107205

50.

73.

227.

261

248.

76.

143

284.

126.

210.

293.

493.

384.

74

134

526.

145.

342

Appendix

13

G4_GLUCCSE
1 0.071204
6 0. 363652
8 0. 565144
G4_GLUTAM NE
1 0. 0689651
6 0. 410926
7 0.191681
8 0. 328427
&4_GLYCERCL
1 0. 0875539
6 0. 391262
8 0.521184
G4_GUANI NE
1 0. 033346
6 0.39738
7 0. 463407
8 0. 105867
G4_GYPSUM
1 0.023416
8 0. 557572
16 0.186215
20 0.232797
G4_N HEPTANE
1 0. 160937
6 0. 839063
G4_N- HEXANE
1 0. 163741
6 0. 836259
G4_KAPTON
1 0. 026362
6 0.691133
7 0. 07327
8 0. 209235
G4_LANTHANUM OXYBROM DE
8 0.068138
35 0.340294
57 0.591568
G4_LANTHANUM OXYSULFI DE
8 0.0936
16 0.093778
57 0.812622
G4_LEAD OXI DE
8 0.071682
82 0.928318
G4_LI THI UM AM DE
1 0. 087783
3 0. 302262
7 0. 609955
G4_LI TH UM CARBONATE
3 0.187871
6 0. 16255
8 0. 649579
G4_LI THI UM FLUCRI DE
3 0. 267585
9 0. 732415
G4_LI TH UM HYDRI DE
1 0. 126797
3 0. 873203
G4_LI THI UM | ODI DE
3 0. 051858
53 0.948142
G4_LI THI UM OXI DE
3 0. 46457
8 0.53543
G4_LI THI UM TETRABORATE
3 0. 082085
5 0. 25568
8 0. 662235
G4_LUNG | CRP
1 0.101278
6 0.10231
7 0. 02865
8 0. 757072
11 0.00184
12 0.00073
15 0.0008

6

5

2

.54

.46

. 2613

.58

.32

. 68376

. 6603

.42

28

86

.53

. 178

L1

. 635

. 82

. 494

. 013

44

.05

77.

73.

72.

75

129.

54

54

79.

439.

421.

766.

55.

87.

94

36.

485.

73.

94

75.

Appendix

13

16 0.00225

17 0.00266

19 0.00194

20 9e-05

26 0.00037

30 le-05
G4_MB_WAX

1 0.114318

6 0. 655824

8 0.0921831

12 0.134792

20 0.002883
G4_MAGNES! UM_CARBONATE

6 0. 142455

8 0. 569278

12 0.288267
G4_MAGNES! UM _FLUORI DE

9 0. 609883

12 0.390117
&4_MAGNESI UM OXI DE

8 0. 396964

12 0.603036
G4_MAGNES! UM TETRABORATE

5 0. 240837

8 0. 62379

12 0.135373
G4_MERCURI C_| ODI DE

53 0.55856

80 0.44144
G4_METHANE

1 0. 251306

6 0. 748694
G4_METHANOL

1 0. 125822

6 0. 374852

8 0. 499326
G4_M X_D_WAX

1 0. 13404

6 0.77796

8 0. 03502

12 0.038594

22 0.014386
G4_MB20_TI SSUE

1 0.081192

6 0. 583442

7 0.017798

8 0. 186381

12 0.130287

17 0.0009
G4_MJSCLE_SKELETAL_| CRP

1 0. 100637

6 0.10783

7 0.02768

8 0. 754773

11 0.00075

12 0.00019

15 0.0018

16 0.00241

17 0.00079

19 0.00302

20 3e-05

26 4e-05

30 5e-05
G4_MUSCLE_STRI ATED | CRU

1 0. 101997

6 0.123

7 0.035

8 0. 729003

11 0.0008

12 0.0002

15 0.002

16 0.005

19 0.003
&4 _MUSCLE_W TH_SUCROSE

1 0. 0982341

6 0. 156214

7 0. 035451

2

2

1

1

1

.05

958

.58

53

. 36

. 000667151

. 7914

.99

04

04

11

67

118

134.

143.

108.

684.

41.

67

60

75

75

74.

74.

Appendix

8 0. 710101
G4_MJSCLE_W THOUT SUCROSE 1.
1 0. 101969
6 0. 120058
7 0. 035451
8 0. 742522
G4_NAPHTHALENE 1
1 0. 062909
6 0. 937091
G4_NI TROBENZENE 1
1 0. 040935
6 0. 585374
7 0.113773
8 0. 259918
G4_NI TROUS_OXI DE 0
7 0. 636483
8 0. 363517
G4_NYLON- 8062 1
1 0. 103509
6 0. 648416
7 0. 0995361
8 0. 148539
G4_NYLON- 6/ 6 1
1 0.097976
6 0. 636856
7 0. 123779
8 0. 141389
G4 _NYLON- 6/ 10 1
1 0. 107062
6 0. 680449
7 0. 099189

8 0.1133
G4_NYLON-11_RI LSAN 1
1 0. 115476
6 0. 720818
7 0.0764169
8 0. 0872889
G4_OCTANE 0
1 0. 158821
6 0.841179
GA4_PARAFFI N 0
1 0. 148605
6 0. 851395
G4_N- PENTANE 0
1 0. 167635
6 0. 832365
G4_PHOTO_EMULSI ON 3

1 0.0141

6 0. 072261

7 0.01932

8 0. 066101

16 0.00189

35 0.349103

47 0.474105

53 0.00312
G4_PLASTI C_SC VI NYLTOLUENE 1.

1 0. 085

6 0.915
G4_PLUTONI UM DI OXI DE 11.

8 0. 118055

94 0.881945
G4_POLYACRYLONI TRI LE 1.

1 0. 0569829

6 0. 679055

7 0. 263962
G4_POLYCARBONATE 1.

1 0. 055491

6 0. 755751

8 0. 188758
G4_POLYCHLOROSTYRENE 1.

1 0. 061869

6 0. 696325

17 0.241806

G4_POLYETHYLENE

1 0.
6 0.

07

. 145

. 19867

. 00183094

.08

.14

.14

. 425

. 7026

.93

. 6262

. 815

032

46

74

68.

75.

84

64

63.

63.

61.

54

55.

53.

331

64

746.

69.

73.

81.

(C_2H_4) _N- Pol yet hyl ene

143711
856289

0

94

57.

Appendix

1.425

G4_POLYPROPYLENE (C_2H 4) _N-Pol ypropyl ene
0.9

1.06

2.1

1.76

1.25

0.00187939

0. 8035

0.9819

G4_MYLAR
1 0. 041959
6 0. 625016
8 0. 333025
G4_PLEXI GLASS
1 0. 080538
6 0. 599848
8 0.319614
G4_POLYOXYMETHYLENE
1 0.067135
6 0. 400017
8 0.532848
1 0. 143711
6 0. 856289
G4_POLYSTYRENE
1 0.077418
6 0. 922582
&4 _TEFLON
6 0. 240183
9 0. 759817
G4_POLYTR! FLUOROCHLORCETHYLENE
6 0. 20625
9 0. 489354
17 0.304395
G4_POLYVI NYL_ACETATE
1 0. 070245
6 0. 558066
8 0. 371689
G4_POLYVI NYL_ALCOHOL
1 0.091517
6 0. 545298
8 0. 363185
G4_POLYVI NYL_BUTYRAL
1 0. 092802
6 0. 680561
8 0. 226637
G4_POLYVI NYL_CHLORI DE
1 0. 04838
6 0. 38436
17 0.56726
G4_POLYVI NYLI DENE_CHLORI DE
1 0. 020793
6 0. 247793
17 0.731414
G4_POLYVI NYLI DENE_FLUORI DE
1 0.03148
6 0.375141
9 0. 593379
G4_POLYVI NYL_PYRROLI DONE
1 0.081616
6 0. 648407
7 0. 126024
8 0. 143953
G4_POTASSI UM | ODI DE
19 0.235528
53 0.764472
G4_POTASS| UM OXI DE
8 0. 169852
19 0.830148
G4_PROPANE
1 0. 182855
6 0.817145
G4_| PROPANE
1 0. 182855
6 0.817145
G4_N- PROPYL_ALCOHOL
1 0.134173
6 0. 599595
8 0. 266232
G4_PYRI DI NE
1 0. 06371
6 0. 759217
7 0.177073

G4_RUBBER BUTYL

78.

74

7.

56.

68.

99.

120.

73.

69.

67.

108.

134.

88.

67.

431.

189.

47.

52

61.

66.

56.

346

Appendix

13

13

1 0. 143711

6 0. 856289
G4_RUBBER NATURAL

1 0.118371

6 0. 881629
&4_RUBBER NEOPRENE

1 0. 05692

6 0. 542646

17 0.400434
G4 SILICON DIOXIDE SiO 2

8 0. 532565

14 0.467435
G4_SI LVER_BROM DE

35 0.425537

47 0.574463
G4_SI LVER CHLORI DE

17 0.247368

47 0.752632
G4_SI LVER HALI DES

35 0.422895

47 0.573748

53 0.003357
G4_SI LVER | ODI DE

47 0.459458

53 0.540542
G4_SKIN_| CRP

1 0. 100588

6 0.22825

7 0. 04642

8 0. 619002

11 7e-05

12 6e- 05

15 0.00033

16 0.00159

17 0.00267

19 0.00085

20 0.00015

26 1le-05

30 le-05
G4_SCDI UM _CARBONATE

6 0. 113323

8 0. 452861

11 0.433815
G4_SCDI UM | ODI DE

11 0.153373

53 0.846627
G4_SODI UM_MONOXI DE

8 0. 258143

11 0.741857
G4_SODI UM NI TRATE

7 0. 164795

8 0.56472

11 0.270485
G4_STI LBENE

1 0. 067101

6 0. 932899
G4_SUCRCSE

1 0. 064779

6 0. 42107

8 0.514151
G4_TERPHENYL

1 0. 044543

6 0. 955457
&4_TESTES | CRP

1 0. 104166

6 0. 09227

7 0.01994

8 0. 773884

11 0.00226

12 0.00011

15 0.00125

16 0.00146

17 0.00244

19 0.00208

20 0.0001

26 2e-05

30 2e-05

2

.92

.23

32

. 473

. 56

.47

.01

. 532

. 667

.27

. 261

. 9707

. 5805

. 234

.04

59.8

93

139.2

486. 6

398.4

487.1

543.5

72.7

125

452

148.8

114.6

67.7

77.5

71.7

75

347

Appendix

2 GA_TETRACHLOROETHYLENE 1.625 159. 2
6 0. 144856
17 0. 855144

2 GA_THALLI UM_CHLORI DE 7.004 690. 3

17 0.147822
81 0.852178

13 G4_TI SSUE_SOFT_| CRP 1 72.3
1 0. 104472
6 0. 23219
7 0. 02488
8 0. 630238
11 0.00113
12 0.00013
15 0.00133
16 0.00199
17 0.00134
19 0.00199
20 0.00023
26 5e-05
30 3e-05
4 G4_TI SSUE_SOFT_| CRU- 4 1 74.9
1 0.101172
6 0.111
7 0.026
8 0.761828
4 G4_TI SSUE- METHANE 0. 00106409 61.2
1 0. 101869
6 0. 456179
7 0. 035172
8 0. 40678
4 G4_TI SSUE- PROPANE 0. 00182628 59.5
1 0.102672
6 0. 56894
7 0. 035022
8 0. 293366
2 G4_TI TANI UM DI OXI DE 4.26 179.5
8 0. 400592
22 0.599408
2 G4_TOLUENE 0. 8669 62.5
1 0. 08751
6 0. 91249
3 G4_TRI CHLOROETHYLENE 1.46 148.1
1 0. 007671
6 0. 182831
17 0.809498
4 G4_TRI ETHYL_PHOSPHATE 1.07 81.2
1 0. 082998
6 0. 395628
8 0. 351334
15 0.17004
2 G4_TUNGSTEN HEXAFLUORIDE 2.4 354. 4
9 0. 382723
74 0.617277
2 G4_URANI UM DI CARBI DE 11. 28 752
6 0. 091669
92 0.908331
2 G4_URANI UM MONCCARBI DE~ 13. 63 862
6 0. 048036
92 0.951964
2 G4_URANI UM OXI DE 10. 96 720. 6
8 0. 118502
92 0.881498
4 G4_UREA 1.323 72.8
1 0.067131
6 0. 199999
7 0. 466459
8 0. 266411
4 G4_VALI NE 1.23 67.7
1 0. 0946409
6 0.512644
7 0. 119565
8 0.27315
3 G4_VI TON 1.8 98. 6
1 0.009417
6 0. 280555
9 0. 710028
2 G4_WATER H 20 1 75

Appendix

1 0.111894
8 0. 888106
2 GA_WATER_VAPOR H 20 Gas 0. 000756182 71.6
1 0.111894
8 0. 888106
2 G4_XYLENE 0.87 61.8
1 0. 094935
6 0. 905065
1 GA_GRAPHI TE Graphite 1.7 78
10.3. HEP Materials
Nconmp Nane density(g/cnm3) 1 (eV)
1 GA_| H2 0.0708 21.8
1 GA_| Ar 1.396 188
1 G4_| Kr 2.418 352
1 G4_| Xe 2.953 482
3 G4_PbwWoA 8.28 0
8 0. 140637
82 0. 455366
74 0. 403998
1 G4_@Gl actic le- 25 21.8

349

Bibliography

[Booch1994] Grady Booch. Object-Oriented Analysisand Design with Applications. The Benjamin/Cummings
Publishing Co. Inc. 1994 . ISBN: 0-8053-5340-2 .

[Ellis1990] Margaret Ellis and Bjarne Stroustrup. Annotated C++ Reference Manual (ARM) . Addison-Wesley
Publishing Co. . 1990 .

[Hecht1974] E. Hecht and A. Zajac. Optics. Addison-Wesley Publishing Co.. 1974. pp. 71-80 and pp. 244-246.

[Josuttis1999 | Nicolai M. Josuttis. The C++ Sandard Library - A Tutorial and Reference . Addison-Wedley
Publishing Co.. 1999 . ISBN: 0-201-37926-0 .

[Meyers2001] Scott Meyers. Effective STL . Addison-Wesley Publishing Co.. 2001 . ISBN: 0-201-74962-9 .

[Musser1996 | David R. Musser and Atul Saini. STL Tutorial and Reference Guide / C++ Programming with
the Sandard Template Library . Addison-Wesley Publishing Co.. 1996 . ISBN: 0-201-63398-1 .

[Plauger1995] P.J. Plauger. The Draft Sandard C++ Library . Prentice Hall, Englewood Cliffs. 1995 .

[Chauvie2007] S. Chauvie, Z. Francis, S. Guatelli, S. Incerti, B. Mascialino, P. Moretto, P. Nieminenand M. G.
Pia. Geant4 physics processes for microdosimetry simulation: design foundation and implementation
of thefirst set of models. To be published in IEEE Trans. Nucl. Sci., Dec. 2007 . 2007 .

350

