
®

General Edition for
Cobol, C, C++, Java, Perl,

PHP, Python, RPG, Ruby, and Tcl

PDFlib GmbH München, Germany

www.pdflib.com

Version 7.0.2

Tutorial for
PDFlib, PDI, and PPS

A library for generating PDF on the fly

http://www.pdflib.com

Copyright © 1997–2007 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH
Tal 40, 80331 München, Germany
www.pdflib.com
phone +49 • 89 • 29 16 46 87
fax +49 • 89 • 29 16 46 86

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AIX, IBM, OS/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a
trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE®
and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.
Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains modified parts of the following third-party software:
ICClib, Copyright © 1997-2002 Graeme W. Gill
GIF image decoder, Copyright © 1990-1994 David Koblas
PNG image reference library (libpng), Copyright © 1998-2004 Glenn Randers-Pehrson
Zlib compression library, Copyright © 1995-2002 Jean-loup Gailly and Mark Adler
TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-1998, Thomas G. Lane
Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)
Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.

Authors: Thomas Merz, Katja Schnelle Romaus
Design and illustrations: Alessio Leonardi
Quality control (manual): Katja Schnelle Romaus, Kurt Stützer
Quality control (software): a cast of thousands

http://www.pdflib.com
http://tech.groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
0 Applying the PDFlib License Key 9

1 Introduction 13

1.1 Roadmap to Documentation and Samples 13
1.2 PDFlib Programming 14
1.3 What’s new in PDFlib 7? 16
1.4 Features in PDFlib/PDFlib+PDI/PPS 7 19
1.5 Availability of Features in different Products 21

2 PDFlib Language Bindings 23

2.1 Cobol Binding 23
2.2 COM Binding 24
2.3 C Binding 25
2.4 C++ Binding 28
2.5 Java Binding 29
2.6 .NET Binding 32
2.7 Perl Binding 33
2.8 PHP Binding 35
2.9 Python Binding 37
2.10 REALbasic Binding 38
2.11 RPG Binding 39
2.12 Ruby Binding 42
2.13 Tcl Binding 43

3 PDFlib Programming 45

3.1 General Programming 45
3.1.1 Exception Handling 45
3.1.2 The PDFlib Virtual File System (PVF) 47
3.1.3 Resource Configuration and File Searching 48
3.1.4 Generating PDF Documents in Memory 51
3.1.5 Using PDFlib on EBCDIC-based Platforms 52
3.1.6 Large File Support 53

3.2 Page Descriptions 54
3.2.1 Coordinate Systems 54
3.2.2 Page Size 56
3.2.3 Paths 57
3.2.4 Templates 58

3.3 Working with Color 59
3.3.1 Patterns and Smooth Shadings 59

4 Contents

3.3.2 Spot Colors 59
3.3.3 Color Management and ICC Profiles 62

3.4 Interactive Elements 66
3.4.1 Examples for Creating Interactive Elements 66
3.4.2 Formatting Options for Text Fields 69

4 Unicode and Legacy Encodings 73

4.1 Overview 73

4.2 Important Unicode Concepts 74
4.3 Strings in PDFlib 76

4.3.1 String Types in PDFlib 76
4.3.2 Strings in Unicode-aware Language Bindings 76
4.3.3 Strings in non-Unicode-aware Language Bindings 77

4.4 8-Bit Encodings 81
4.5 Encodings for Chinese, Japanese, and Korean Text 85
4.6 Addressing Characters and Glyphs 88

4.6.1 Escape Sequences 88
4.6.2 Character References and Glyph Name References 89
4.6.3 Glyph Checking and Substitution 91
4.6.4 Checking Glyph Availability 92

5 Font Handling 95

5.1 Overview of Fonts and Encodings 95
5.1.1 Supported Font Formats 95
5.1.2 Font Encodings 96

5.2 Font Format Details 98
5.2.1 PostScript Type 1 Fonts 98
5.2.2 TrueType and OpenType Fonts 99
5.2.3 User-Defined (Type 3) Fonts 99

5.3 Locating, Embedding and Subsetting Fonts 101
5.3.1 Searching for Fonts 101
5.3.2 Host Fonts on Windows and Mac 103
5.3.3 Font Embedding 105
5.3.4 Font Subsetting 106

5.4 Miscellaneous Topics 109
5.4.1 Symbol Fonts and Font-specific Encodings 109
5.4.2 Glyph ID Addressing for TrueType and OpenType Fonts 110
5.4.3 The Euro Glyph 110
5.4.4 Unicode-compatible Fonts 111

5.5 Font Metrics and Text Variations 112
5.5.1 Font and Glyph Metrics 112
5.5.2 Kerning 113
5.5.3 Text Variations 114

5.6 Chinese, Japanese, and Korean Fonts 116

Contents 5

5.6.1 Standard CJK Fonts 116
5.6.2 Custom CJK Fonts 117

6 Importing Images and PDF Pages 121

6.1 Importing Raster Images 121
6.1.1 Basic Image Handling 121
6.1.2 Supported Image File Formats 122
6.1.3 Clipping Paths 124
6.1.4 Image Masks and Transparency 125
6.1.5 Colorizing Images 127
6.1.6 Multi-Page Image Files 128
6.1.7 OPI Support 128

6.2 Importing PDF Pages with PDI (PDF Import Library) 130
6.2.1 PDI Features and Applications 130
6.2.2 Using PDI Functions with PDFlib 130
6.2.3 Acceptable PDF Documents 132

7 Formatting Features 133

7.1 Placing and Fitting Single-Line Text 133
7.1.1 Simple Text Placement 133
7.1.2 Positioning Text in a Box 134
7.1.3 Fitting Text into a Box 135
7.1.4 Aligning Text at a Character 137
7.1.5 Placing a Stamp 138
7.1.6 Using Leaders 138

7.2 Multi-Line Textflows 140
7.2.1 Placing Textflows in the Fitbox 141
7.2.2 Paragraph Formatting Options 143
7.2.3 Inline Option Lists and Macros 143
7.2.4 Tab Stops 146
7.2.5 Numbered Lists and Paragraph Spacing 147
7.2.6 Control Characters, Character Mapping, and Symbol Fonts 148
7.2.7 Hyphenation 151
7.2.8 Controlling the Linebreak Algorithm 152
7.2.9 Wrapping Text 155

7.3 Placing Images and Imported PDF Pages 158
7.3.1 Simple Object Placement 158
7.3.2 Positioning an Object in a Box 158
7.3.3 Fitting an Object into a Box 159
7.3.4 Orientating an Object 160
7.3.5 Rotating an Object 162
7.3.6 Adjusting the Page Size 163

7.4 Table Formatting 164
7.4.1 Placing a Simple Table 165
7.4.2 Contents of a Table Cell 167
7.4.3 Table and Column Widths 168

6 Contents

7.4.4 Large Table Example 169
7.4.5 Table Instances 174

7.5 Matchboxes 177
7.5.1 Decorating a Text Line 177
7.5.2 Using Matchboxes in a Textflow 178
7.5.3 Matchboxes and Images 179

8 The pCOS Interface 183

8.1 Simple pCOS Examples 183

8.2 Handling Basic PDF Data Types 185
8.3 Composite Data Structures and IDs 186

8.4 Path Syntax 187

8.5 Pseudo Objects 189
8.6 Encrypted PDF Documents 195

9 Generating various PDF Flavors 197

9.1 Acrobat and PDF Versions 197
9.2 Encrypted PDF 199

9.2.1 Strengths and Weaknesses of PDF Security 199
9.2.2 Protecting Documents with PDFlib 200

9.3 Web-Optimized (Linearized) PDF 203

9.4 PDF/X for Print Production 204
9.4.1 The PDF/X Family of Standards 204
9.4.2 Generating PDF/X-conforming Output 204
9.4.3 Importing PDF/X Documents with PDI 207

9.5 PDF/A for Archiving 209
9.5.1 The PDF/A Standards 209
9.5.2 Generating PDF/A-conforming Output 209
9.5.3 Importing PDF/A Documents with PDI 212
9.5.4 Color Strategies for creating PDF/A 214
9.5.5 PDF/A Validation 215

9.6 Tagged PDF 216
9.6.1 Generating Tagged PDF with PDFlib 216
9.6.2 Creating Tagged PDF with direct Text Output and Textflows 218
9.6.3 Activating Items for complex Layouts 219
9.6.4 Using Tagged PDF in Acrobat 222

10 Variable Data and Blocks 225

10.1 Installing the PDFlib Block Plugin 225

10.2 Overview of the PDFlib Block Concept 227
10.2.1 Complete Separation of Document Design and Program Code 227
10.2.2 Block Properties 228
10.2.3 Linking multiple Textflow Blocks 229

Contents 7

10.2.4 Why not use PDF Form Fields? 230
10.3 Creating PDFlib Blocks 232

10.3.1 Creating Blocks interactively with the PDFlib Block Plugin 232
10.3.2 Editing Block Properties 234
10.3.3 Copying Blocks between Pages and Documents 235
10.3.4 Converting PDF Form Fields to PDFlib Blocks 237

10.4 Standard Properties for Automated Processing 240
10.4.1 General Properties 240
10.4.2 Text Properties 242
10.4.3 Image Properties 246
10.4.4 PDF Properties 246
10.4.5 Custom Properties 247

10.5 Querying Block Names and Properties with pCOS 248
10.6 PDFlib Block Specification 250

10.6.1 PDF Object Structure for PDFlib Blocks 250
10.6.2 Generating PDFlib Blocks with pdfmarks 252

A Revision History 255

Index 257

9

0 Applying the PDFlib License Key
All binary versions of PDFlib, PDFlib+PDI, and PPS supplied by PDFlib GmbH can be used
as fully functional evaluation versions regardless of whether or not you obtained a
commercial license. However, unlicensed versions will display a www.pdflib.com demo
stamp cross all generated pages. Companies which are seriously interested in PDFlib li-
censing and wish to get rid of the demo stamp during the evaluation phase or for proto-
type demos can submit their company and project details with a brief explanation to
sales@pdflib.com, and apply for a temporary license key (we reserve the right to refuse
evaluation keys, e.g. for anonymous requests).

Once you purchased a license key you must apply it in order to get rid of the demo
stamp. You can apply the license key with a PDFlib call at runtime, by preparing a li-
cense file, or (on Windows) using a registry key. If you are working with the Windows in-
staller you can enter a license key when you install the product.

Applying a license key at runtime. Add a line to your script or program which sets the
license key at runtime. The license parameter must be set immediately after instantiat-
ing the PDFlib object (i.e., after PDF_new() or equivalent call). The exact syntax depends
on your programming language:

> In C and Python:

PDF_set_parameter(p, "license", "...your license key...")

> In C++, Java, Ruby, and PHP 5 with the object-oriented interface:

p.set_parameter("license", "...your license key...")

> In Perl, PHP 4 and PHP 5 with the function-based interface:

PDF_set_parameter($p, "license", "...your license key...")

> In RPG:

c callp RPDF_set_parameter(p:%ucs2('license'):

c %ucs2('...your license key...'))

> In Tcl:

PDF_set_parameter $p, "license", "...your license key..."

Working with a license file. As an alternative to supplying the license key with a runt-
ime call, you can enter the license key in a text file according to the following format
(you can use the license file template licensekeys.txt which is contained in all PDFlib dis-
tributions):

PDFlib license file 1.0
Licensing information for PDFlib GmbH products
PDFlib 7.0.2 ...your license key...

The license file may contain license keys for multiple PDFlib GmbH products on sepa-
rate lines. Next, you must inform PDFlib about the license file, either by setting the
licensefile parameter immediately after instantiating the PDFlib object (i.e., after PDF_
new() or equivalent call) with a function call similar to the following:

10 Chapter 0: Applying the PDFlib License Key

> In C and Python:

PDF_set_parameter(p, "licensefile", "/path/to/licensekeys.txt")

> In C++, Java, and PHP 5 with the object-oriented interface:

p.set_parameter("licensefile", "/path/to/licensekeys.txt");

> In Perl, PHP 4 and PHP 5 with the function-based interface:

PDF_set_parameter($p, "licensefile", "/path/to/licensekeys.txt");

> In Tcl:

PDF_set_parameter $p, "licensefile", "/path/to/licensekeys.txt"

Alternatively, you can set the environment variable PDFLIBLICENSEFILE to point to your
license file. On Windows use the system control panel; on Unix apply a command simi-
lar to the following:

export PDFLIBLICENSEFILE=/path/to/licensekeys.txt

Windows registry. On Windows you can also enter the name of the license file in the
following registry key:

HKLM\Software\PDFlib\PDFLIBLICENSEFILE

Note that PDFlib, PDFlib+PDI, and PDFlib Personalization Server (PPS) are different prod-
ucts which require different license keys although they are delivered in a single pack-
age. PDFlib+PDI license keys will also be valid for PDFlib, but not vice versa, and PPS
license keys will be valid for PDFlib+PDI and PDFlib. All license keys are platform-depen-
dent, and can only be used on the platform for which they have been purchased.

Updates and Upgrades. If you purchased an update (change from an older version of a
product to a newer version of the same product) or upgrade (change from PDFlib to
PDFlib+PDI or PPS, or from PDFlib+PDI to PPS) you must apply the new license key that
you received for your update or upgrade. The old license key for the previous product
must no longer be used. Note that license keys will work for all maintenance releases of
a particular product version; as far as licensing is concerned, all versions 7.0.x are treat-
ed the same.

Evaluating features which are not yet licensed. You can fully evaluate all features by
using the software without any license key applied. However, once you applied a valid
license key for a particular product using features of a higher category will no longer be
available. For example, if you installed a valid PDFlib license key the PDI functionality
will no longer be available for testing. Similarly, after installing a PDFlib+PDI license key
the personalization features (block functions) will no longer be available.

When a license key for a product has already been installed, you can replace it with
the dummy license string "0" (zero) to enable functionality of a higher product class for
evaluation. This will enable the previously disabled functions, and re-activate the demo
stamp across all pages.

Licensing options. Different licensing options are available for PDFlib use on one or
more servers, and for redistributing PDFlib with your own products. We also offer sup-
port and source code contracts. Licensing details and the PDFlib purchase order form

11

can be found in the PDFlib distribution. Please contact us if you are interested in obtain-
ing a commercial PDFlib license, or have any questions:

PDFlib GmbH, Licensing Department
Tal 40, 80331 München, Germany
www.pdflib.com
phone +49 • 89 • 29 16 46 87, fax +49 • 89 • 29 16 46 86
Licensing contact: sales@pdflib.com
Support for PDFlib licensees: support@pdflib.com

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

1.1 Roadmap to Documentation and Samples 13

1 Introduction
1.1 Roadmap to Documentation and Samples

We provide the following material to assist you in using PDFlib products successfully:
> The mini samples (hello, image, pdfclock, etc.) are available in all packages and for all

supported language bindings. They provide minimalistic sample code for text out-
put, images, and vector graphics. The mini samples are mainly useful for testing
your PDFlib installation, and for getting a very quick overview of writing PDFlib ap-
plications.

> The starter samples are contained in all packages and are available for a variety of lan-
guage bindings. They provide a useful generic starting point for important topics,
and cover simple text and image output, Textflow and table formatting, PDF/A and
PDF/X creation and other topics. The starter samples demonstrate the basic tech-
niques for achieving a particular goal with PDFlib products. It is strongly recom-
mended to take a look at the starter samples.

Note On Windows Vista the mini samples and starter samples will be installed in the »Program
Files« directory by default. Due to a new protection scheme in Windows Vista the PDF output
files created by these samples will only be visible under »compatibility files«. Recommended
workaround: copy the examples to a user directory.

> The PDFlib Tutorial (this manual), which is contained in all packages as a single PDF
document, explains important programming concepts in more detail, including
small pieces of sample code. If you start extending your code beyond the starter
samples you should read up on relevant topics in the PDFlib Tutorial.

> The PDFlib Reference, which is contained in all packages as a single PDF document,
contains a concise description of all functions, parameters, and options which to-
gether comprise the PDFlib application programming interface (API). The PDFlib Ref-
erence is the definitive source for looking up parameter details, supported options,
input conditions, and other programming rules which must be observed. Note that
some other reference documents are incomplete, e.g. the Javadoc API listing for PD-
Flib and the PDFlib function listing on php.net. Make sure to always use the full PD-
Flib Reference when working with PDFlib.

> The PDFlib Cookbook is a collection of PDFlib coding fragments for solving specific
problems. Most Cookbook examples are written in the Java language, but can easily
be adjusted to other programming languages since the PDFlib API is almost identical
for all supported language bindings. The PDFlib Cookbook is maintained as a grow-
ing list of sample programs. It is available on the Web at the following URL:

www.pdflib.com/developercookbook

Note Most examples in this PDFlib Tutorial are provided in the Java language (except for the
language-specific samples in Chapter 2, »PDFlib Language Bindings«, page 23, and a few C-
specific samples which are marked as such). Although syntax details vary with each language,
the basic concepts of PDFlib programming are the same for all supported language bindings.

http://www.pdflib.com/developercookbook

14 Chapter 1: Introduction

1.2 PDFlib Programming
What is PDFlib? PDFlib is a development component which allows you to generate
files in Adobe’s Portable Document Format (PDF). PDFlib acts as a backend to your own
programs. While the application programmer is responsible for retrieving the data to be
processed, PDFlib takes over the task of generating the PDF output which graphically
represents the data. PDFlib frees you from the internal details of PDF, and offers various
methods which help you formatting the output. The distribution packages contain dif-
ferent products in a single binary:

> PDFlib contains all functions required to create PDF output containing text, vector
graphics and images plus hypertext elements. PDFlib offers powerful formatting
features for placing single- or multi-line text, images, and creating tables.

> PDFlib+PDI includes all PDFlib functions, plus the PDF Import Library (PDI) for in-
cluding pages from existing PDF documents in the generated output, and the pCOS
interface for querying arbitrary PDF objects from an imported document (e.g. list all
fonts on page, query metadata, and many more).

> PDFlib Personalization Server (PPS) includes PDFlib+PDI, plus additional functions
for automatically filling PDFlib blocks. Blocks are placeholders on the page which
can be filled with text, images, or PDF pages. They can be created interactively with
the PDFlib Block Plugin for Adobe Acrobat (Mac or Windows), and will be filled auto-
matically with PPS. The plugin is included in PPS.

How can I use PDFlib? PDFlib is available on a variety of platforms, including Unix,
Windows, Mac, and EBCDIC-based systems such as IBM eServer iSeries and zSeries.
PDFlib itself is written in the C language, but it can be also accessed from several other
languages and programming environments which are called language bindings. These
language bindings cover all current Web and stand-alone application environments.
The Application Programming Interface (API) is easy to learn, and is identical for all
bindings. Currently the following bindings are supported:

> COM for use with Visual Basic, Active Server Pages with VBScript or JScript, Borland
Delphi, Windows Script Host, and other environments

> ANSI C
> ANSI C++
> Cobol (IBM eServer zSeries)
> Java, including servlets
> .NET for use with C#, VB.NET, ASP.NET, and other environments
> PHP hypertext processor
> Perl
> Python
> REALbasic
> RPG (IBM eServer iSeries)
> Ruby, including Ruby on Rails
> Tcl

What can I use PDFlib for? PDFlib’s primary target is dynamic PDF creation within
your own software or on a Web server. Similar to HTML pages dynamically generated on
a Web server, you can use a PDFlib program for dynamically generating PDF reflecting
user input or some other dynamic data, e.g. data retrieved from the Web server’s data-
base. The PDFlib approach offers several advantages:

1.2 PDFlib Programming 15

> PDFlib can be integrated directly in the application generating the data.
> As an implication of this straightforward process, PDFlib is the fastest PDF-generat-

ing method, making it perfectly suited for the Web.
> PDFlib’s thread-safety as well as its robust memory and error handling support the

implementation of high-performance server applications.
> PDFlib is available for a variety of operating systems and development environ-

ments.

Requirements for using PDFlib. PDFlib makes PDF generation possible without wading
through the PDF specification. While PDFlib tries to hide technical PDF details from the
user, a general understanding of PDF is useful. In order to make the best use of PDFlib,
application programmers should ideally be familiar with the basic graphics model of
PostScript (and therefore PDF). However, a reasonably experienced application pro-
grammer who has dealt with any graphics API for screen display or printing shouldn’t
have much trouble adapting to the PDFlib API.

16 Chapter 1: Introduction

1.3 What’s new in PDFlib 7?
The following list discusses the most important new or improved features in PDFlib 7.

Table formatting. PDFlib includes a new table formatter which automatically places
rows and columns according to user preferences, and splits tables across multiple pag-
es. Table cells can hold single- or multi-line text, images, or PDF pages, and can be for-
matted according to a variety of options (e.g. border color, background, cell ruling). The
size of table rows and columns is calculated automatically subject to a variety of user
preferences.

Textflow enhancements. The Textflow engine for formatting text has been improved:
> Links and other interactive elements can automatically be created from text frag-

ments in a Textflow.
> Text can run around images.
> The Textflow formatter supports leaders,e.g. repeated dots between an entry in a ta-

ble of contents and the corresponding page number.
> Text contents and formatting options can be supplied separately to the Textflow en-

gine in an arbitrary number of steps. This eliminates the need for creating a buffer
containing the full text along with inline formatting options.

> Character classes for formatting decisions can now be redefined, e.g. specify whether
the »/« character will be treated as a letter or punctuation in formatting decisions.

> Formatting results can be queried programmatically.

Other formatting features.
> Decimal tabs and leader characters are supported in single-line text (in addition to

multi-line Textflows)
> A new stamp function calculates optimized size and position for text stamps across

a rectangle.
> Improved query functions for text geometry.

Font handling and Unicode. PDFlib’s font engine has been improved as follows:
> Users can query detailed properties of a loaded font, including typographic entries

in TrueType/OpenType fonts, number of available glyphs, etc.
> Font subsets can be created for Type 3 fonts.
> Unicode encoding is supported for all font types, including Type 3.
> Text can be supplied in the UTF-32 format, and surrogate pairs can be used for Uni-

code values beyond the Basic Multilingual Plane (i.e. beyond U+FFFF).
> PDFlib can create artificial font styles if a bold, italic, or bold-italic variant is not

available in a font family.
> Glyph replacement can be controlled by the user, e.g. if the Ohm glyph is not avail-

able in a font the greek letter Omega will be used instead. If this glyph still is not
available, a user-selected replacement glyph will be used. PDFlib can issue a warning
if a required glyph is not available in the font.

> In addition to numerical references, glyphs in a font can be addressed by name, e.g.
ligatures or stylistic variations.

> C- and Java-style backslash sequences are recognized in the text. This facilitates han-
dling of control characters or non-ASCII characters regardless of programming lan-
guage requirements and restrictions.

1.3 What’s new in PDFlib 7? 17

Improved handling of Chinese, Japanese, and Korean text. PDFlib 7 lifts a number of
restrictions related to CJK text handling in earlier versions:

> PDFlib fully supports glyph metrics for all standard CMaps; e.g. Shift-JIS text can be
formatted with Textflow.

> Vertical writing mode is supported for all TrueType and OpenType fonts.
> Chinese, Japanese, and Korean codepages (e.g. code page 932 for Shift-JIS) are now

supported on all platforms (previously only available on Windows).
> CJK CMaps are now also supported for interactive features such as bookmarks (for-

merly only for page content).
> Acrobat’s predefined CJK fonts can now be used with Unicode encoding.
> Font embedding is no longer forced for OpenType CID fonts loaded with one of the

predefined CMaps, resulting in smaller file size.

Matchboxes. The matchbox concept, which is supported in various text and image
functions, provides easy reference to the coordinates of formatted text or image ob-
jects. This can be used to automatically create annotations and decoration by simple
markup (instead of doing coordinate calculations), e.g. create links in Textflow-format-
ted text, add borders to individual portions of text, highlight text within a formatted
paragraph, etc.

pCOS interface integrated in PDI. PDI includes the pCOS 2.0 interface which can be
used to query arbitrary properties of an existing PDF document via a simple path syn-
tax. This can be used to list fonts, images, and color spaces; query page- or document-
related properties, PDF/A or PDF/X status, document info fields or XMP metadata, and
many more. Many features have been added to the set of core pCOS features as released
in the pCOS 1.0 product in 2005, e.g. image and color space properties, page labels, re-
sources, and others.

PDF import (PDI). PDI implements new workarounds for damaged PDF input (repair
mode). A new optimization step can remove redundant objects which may result from
importing a number of PDF documents. For example, if several imported PDF docu-
ments contain the same sets of fonts, the redundant fonts will no longer be included in
the output document but will be removed.

PDF/A for archiving. PDFlib can generate output according to the PDF/A-1a and PDF/A-
1b standards, formally known as ISO 19005-1. PDF/A specifies a standardized subset of
PDF for long-term preservation and archiving of PDF documents. Existing PDF/A docu-
ments can be imported and combined or split; images (any color space) can be convert-
ed to PDF/A. While PDF/A-1b preserves the visual appearance of PDF documents, PDFlib
users can even create the advanced variant PDF/A-1a which in addition preserves the se-
mantics of the documents.

PDFlib Personalization Server and Block Plugin. Multiple Textflow blocks can be linked
so that one block holds the overflow text of a previous block. This allows for more flexi-
ble layouts for variable data processing. The new pCOS interface can be used for flexible
retrieval of all kinds of block-related information from a PDF.

18 Chapter 1: Introduction

Interactive elements and 3D animations. Annotations (Web links) can be placed on a
specific layer so that they are visible only when the corresponding layer is visible. Lay-
ers can now be locked. Stamp and FreeText annotations can be rotated within the rect-
angle. Links can be created so that the edges of the rectangle don’t have to be aligned
with the page edges.

3D animations in the U3D format can be embedded in the PDF output, controlled by
a variety of options. Actions can be defined to interact with 3D animations.

AES encryption. PDFlib supports 128-bit encryption with the AES algorithm (Advanced
Encryption Standard) as supported by Acrobat 7. AES encryption is considered much
more secure than earlier crypto schemes.

Other PDF 1.6 (Acrobat 7) features. UserUnits allow better document scaling and a wid-
er range of possible page sizes. New document open modes are supported (e.g. attach-
ment pane visible) as well as setting a default print scaling for the document.

Spot colors. The set of supported PANTONE spot colors has been updated to the latest
2006 editions provided by Pantone, Inc., including the new PANTONE color bridge and
new colors in the metallic and pastel color libraries. PANTONE color names are now inte-
grated in the PDFlib Block plugin, and can directly be selected in the user interface for
block properties.

Image handling. The clipping path in TIFF and JPEG images will be honored, so that
placed images automatically retain the separation of foreground and background with-
out any additional clipping or transparency operations.

XMP metadata. PDFlib automatically creates XMP metadata from document info
fields. Users can supply prebuilt XMP metadata streams for the document or other ob-
jects, such as page, font, image, imported PDF page, template, or ICC profile. Custom
XMP schemas are supported to allow for client-specific metadata.

Tagged PDF. PDFlib’s existing support for creating Tagged PDF has been extended:
links and other interactive elements can now be included in the document structure
tree. This is important for creating fully accessible documents where not only the actual
page contents conform to accessibility requirements, but also interactive elements
such as links and form fields.

Language bindings. Various improvements in the language bindings, most notably
support for newer versions (e.g. Python 2.5) and Unicode support in the Python wrap-
per.

Error handling. Handling of exceptions and other errors has been streamlined for all
language bindings.

Documentation. The documentation has been restructured into two separate main
manuals (the PDFlib Tutorial and the PDFlib Reference), with an associated PDFlib cook-
book which presents code samples along with explanation. Improved coding samples
are available in each product package.

1.4 Features in PDFlib/PDFlib+PDI/PPS 7 19

1.4 Features in PDFlib/PDFlib+PDI/PPS 7
Table 1.1 lists the major PDFlib features for generating and importing PDF. New or im-
proved features in PDFlib 7 are marked.

Table 1.1 Feature list for PDFlib, PDFlib+PDI, and the PDFlib Personalization Server (PPS)

topic features
PDF output PDF documents of arbitrary length, directly in memory (for Web servers) or on disk file

Suspend/resume and insert page features to create pages out of order
PDF flavors PDF 1.3 – 1.7 (Acrobat 4 – 8), Tagged PDF, PDF/A, PDF/X

Linearized (web-optimized) PDF for byteserving over the Web
PDF input Import pages from existing PDF documents (only PDFlib+PDI and PPS)

pCOS interface for querying details about imported PDF documents1

Delete redundant objects (e.g. identical fonts) across multiple imported PDF documents1

Workarounds for malformed PDF input1

Blocks PDF personalization with PDFlib blocks for text, image, and PDF data (only PPS)
PDFlib Block plugin for creating PDFlib blocks interactively in Adobe Acrobat
Textflow blocks can be linked so that one block holds the overflow text of a previous block
List of PANTONE and HKS spot color names integrated in the Block plugin1

Graphics Common vector graphics primitives: lines, curves, arcs, rectangles, etc.
Smooth shadings (color blends), pattern fills and strokes
Transparency (opacity) and blend modes
Layers: optional page content which can selectively be displayed; annotations can be placed on layers1;
layers can be locked1

Fonts TrueType (TTF and TTC) and PostScript Type 1 fonts (PFB and PFA, plus LWFN on the Mac)
OpenType fonts (TTF, OTF) with PostScript or TrueType outlines
AFM and PFM PostScript font metrics files
Directly use fonts which are installed on the Windows or Mac host system
Font embedding for all font types; subsetting for Type 31, TrueType and OpenType fonts
User-defined (Type 3) fonts for bitmap fonts or custom logos

Text output Text output in different fonts; underlined, overlined, and strikeout text
Glyphs in a font can be addressed by numerical value, Unicode value, or glyph name1

Kerning for improved character spacing
Artificial bold and italic font styles1

Proportional widths for standard CJK fonts
Direct glyph selection for advanced typography1

Configurable replacement of missing glyphs1

Internatio-
nalization

Unicode strings for page content, interactive elements, and file names; UTF-8, UTF-16, and UTF-321 for-
mats, little- and big-endian
Support for a variety of 8-bit and legacy CJK encodings (e.g. SJIS; Big5)1

Fetch code pages from the system (Windows, IBM eServer iSeries and zSeries)
Standard CJK fonts and CMaps for Chinese, Japanese, and Korean text1

Custom CJK fonts in the TrueType and OpenType formats1

Embed Unicode information in PDF for correct text extraction in Acrobat
Images Embed BMP, GIF, PNG, TIFF, JPEG, JPEG2000, and CCITT raster images

Automatic detection of image file formats (file format sniffing)

20 Chapter 1: Introduction

Interpret clipping paths in TIFF and JPEG images1

Transparent (masked) images including soft masks
Image masks (transparent images with a color applied), colorize images with a spot color

Color Grayscale, RGB, CMYK, CIE L*a*b* color
Integrated support for PANTONE® colors (2006 edition1) and HKS® colors; user-defined spot colors

Color
management

ICC-based color with ICC color profiles: honor embedded profiles in images, or apply external profiles to
images
Rendering intent for text, graphics, and raster images
Default gray, RGB, and CMYK color spaces to remap device-dependent colors

Prepress Generate output conforming to PDF/X-1a, PDF/X-2, and PDF/X-3, including 2003 flavors
Embed output intent ICC profile or reference standard output intent
Copy output intent from imported PDF documents (only PDFlib+PDI and PPS)
Create OPI 1.3 and OPI 2.0 information for imported images
Separation information (PlateColor)
Settings for text knockout, overprinting etc.

Archiving Generate output conforming to PDF/A-1a:2005 and PDF/A-1b:20051

Formatting Textflow: format text into one or more rectangular or arbitrarily shaped areas with hyphenation, font
and color changes, justification methods, tabs, leaders1, control commands; wrap text around images1

Flexible image placement and formatting
Table formatter places rows and columns and automatically calculates their sizes according to a variety
of user preferences. Tables can be split across multiple pages. Table cells can hold single- or multi-line
text, images, or PDF pages, and can be formatted with ruling and shading options.1

Flexible stamping function1

Matchbox concept for referencing the coordinates of placed images or other objects1

Security Encrypt PDF output with RC4 or AES1 encryption algorithms
Specify permission settings (e.g. printing or copying not allowed)
Import encrypted documents (master password required; only PDFlib+PDI and PPS)

Interactive
elements

Create form fields with all field options and JavaScript

Create actions for bookmarks, annotations, page open/close and other events
Create bookmarks with a variety of options and controls
Page transition effects, such as shades and mosaic
Create all PDF annotation types, such as PDF links, launch links (other document types), Web links
Named destinations for links, bookmarks, and document open action
Create page labels (symbolic names for pages)

Multimedia Embed 3D animations in U3D format1

Tagged PDF Create Tagged PDF and structure information for accessibility, page reflow, and improved content repur-
posing; links and other annotations can be integrated in the document structure1

Easily format large amounts of text for Tagged PDF
Metadata Create XMP metadata from document info fields or from client-supplied XMP streams1

Document information: standard fields (Title, Subject, Author, Keywords) and user-defined fields
Programming Language bindings for Cobol, COM, C, C++, Java, .NET, Perl, PHP, Python, REALbasic, RPG, Ruby, Tcl

Virtual file system for supplying data in memory, e.g., images from a database

1. New or considerably improved in PDFlib/PDFlib+PDI/PPS 7

Table 1.1 Feature list for PDFlib, PDFlib+PDI, and the PDFlib Personalization Server (PPS)

topic features

1.5 Availability of Features in different Products 21

1.5 Availability of Features in different Products
Table 1.2 details the availability of features in the open source edition PDFlib Lite and
different commercial products.

Table 1.2 Availability of features in different products

feature API functions, parameters, and options PD
Fl

ib
 Li

te
(o

pe
n

so
ur

ce
)

PD
Fl

ib

PD
Fl

ib
+P

DI

PP
S

basic PDF generation (all except those listed below) X X X X

language bindings C, C++, Java, Perl, Tcl, PHP, Python, Ruby X X X X

language bindings Cobol, COM, .NET, REALbasic, RPG – X X X

works on EBCDIC systems all functions – X X X

password protection and permis-
sion settings

PDF_begin_document() with userpassword,
masterpassword, permissions options

– X X X

linearized PDF PDF_begin_document() with linearize option – X X X

minimize PDF file size PDF_begin_document() with optimize option – X X X

font subsetting PDF_load_font() with subsetting option – X X X

kerning PDF_load_font() with kerning option – X X X

access Mac and Windows host fonts PDF_load_font() – X X X

access system encodings on Win-
dows, iSeries, zSeries

PDF_load_font() – X X X

Unicode encoding and ToUnicode
CMaps

PDF_load_font() with encoding=unicode,
autocidfont, unicodemap parameters

– X X X

numeric, character entity and glyph
name references

charref option in PDF_fit_textline(),
charref parameter

– X X X

proportional glyph widths for stan-
dard CJK fonts

PDF_load_font() with standard CJK fonts and
CMaps

– X X X

glyph ID addressing PDF_load_font() with encoding=glyphid – X X X

CJK legacy encodings PDF_load_font() with standard CMaps or CJK code
pages

– X X X

glyph replacement PDF_load_font() with replacementchar option – X X X

extended encoding for PostScript-
based OpenType fonts

PDF_load_font() – X X X

font properties for Type 3 fonts PDF_begin_font() with options familyname,
stretch, weight

– X X X

query font details PDF_info_font() – X X X

Textflow PDF_add_textflow(),PDF_create_textflow(), PDF_
delete_textflow(), PDF_fit_textflow(), PDF_info_
textflow()

– X X X

Table formatting PDF_add_table_cell(), PDF_delete_table(), PDF_
fit_table(), PDF_info_table()

– X X X

22 Chapter 1: Introduction

spot color PDF_makespotcolor() – X X X

color separations PDF_begin_page_ext() with separationinfo op-
tion

– X X X

form fields PDF_create_field(), PDF_create_fieldgroup(), – X X X

JavaScript actions PDF_create_action() with type=JavaScript – X X X

layers PDF_define_layer(), PDF_begin_layer(), PDF_end_
layer(), PDF_set_layer_dependency(), PDF_create_
action() with type=SetOCGState

– X X X

Multimedia/3D PDF_load_3ddata() and PDF_create_3dview(),
PDF_create_action() with type=3D

– X X X

Tagged PDF PDF_begin_item(), PDF_end_item(), PDF_
activate_item(), PDF_begin_document() with
tagged and lang options

– X X X

JPEG2000 images PDF_load_image() with imagetype=jpeg2000 – X X X

clipping paths in TIFF and JPEG
images

PDF_load_image() with clippingpathname and
honorclippingpath options

– X X X

PDF/A PDF_begin_document() with pdfa option – X X X

PDF/X PDF_begin_document() with pdfx option – X X X

ICC profile support PDF_load_iccprofile(), PDF_setcolor() with icc-
basedgray/rgb/cmyk, PDF_load_image() with
honoriccprofile option, honoriccprofile pa-
rameter, PDF_begin/end_page_ext() with
defaultgray/rgb/cmyk option

– X X X

CIE L*a*b* color PDF_setcolor() with type=lab; Lab TIFF images – X X X

OPI support PDF_load_image() with OPI-1.3/OPI-2.0 options – X X X

XMP metadata support PDF_begin_document() with autoxmp option;
metadata option in several functions

– X X X

PDF import (PDI) PDF_open_pdi_document(), PDF_open_pdi_
callback(), PDF_open_pdi_page(), PDF_fit_pdi_
page(), PDF_process_pdi()

– – X X

Query information from existing
PDF with pCOS

PDF_pcos_get_number(), PDF_pcos_get_string(),
PDF_pcos_get_stream()

– – X X

variable data processing and per-
sonalization with blocks

PDF_fill_textblock(), PDF_fill_imageblock(),
PDF_fill_pdfblock()

– – – X

PDFlib Block plugin for Acrobat interactively create PDFlib blocks for use with PPS – – – X

Table 1.2 Availability of features in different products

feature API functions, parameters, and options PD
Fl

ib
 Li

te
(o

pe
n

so
ur

ce
)

PD
Fl

ib

PD
Fl

ib
+P

DI

PP
S

2.1 Cobol Binding 23

2 PDFlib Language Bindings
Note It is strongly recommended to take a look at the starter examples which are contained in all

PDFlib packages. They provide a convenient starting point for your own application develop-
ment, and cover many important aspects of PDFlib programming.

2.1 Cobol Binding
The PDFlib API functions for Cobol are not available under the standard C names, but
use abbreviated function names instead. The short function names are not documented
here, but can be found in a separate cross-reference listing (xref.txt). For example, in-
stead of using PDF_load_font() the short form PDLODFNT must be used.

PDFlib clients written in Cobol are statically linked to the PDFLBCOB object. It in turn
dynamically loads the PDLBDLCB Load Module (DLL), which in turn dynamically loads
the PDFlib Load Module (DLL) upon the first call to PDNEW (which corresponds to PDF_
new()). The instance handle of the newly allocated PDFlib internal structure is stored in
the P parameter which must be provided to each call that follows.

The PDLBDLCB load module provides the interfaces between the 8-character Cobol
functions and the core PDFlib routines. It also provides the mapping between PDFlib’s
asynchronous exception handling and the monolithic »check each function’s return
code« method that Cobol expects.

Note PDLBDLCB and PDFLIB must be made available to the COBOL program through the use of a
STEPLIB.

Data types. The data types used in the PDFlib Reference must be mapped to Cobol
data types as in the following samples:

05 PDFLIB-A4-WIDTH USAGE COMP-1 VALUE 5.95E+2. // float
05 WS-INT PIC S9(9) BINARY. // int
05 WS-FLOAT COMP-1. // float
05 WS-STRING PIC X(128). // const char *
05 P PIC S9(9) BINARY. // long *
05 RETURN-RC PIC S9(9) BINARY. // int *

All Cobol strings passed to the PDFlib API should be defined with one extra byte of stor-
age for the expected LOW-VALUES (NULL) terminator.

Return values. The return value of PDFlib API functions will be supplied in an addi-
tional ret parameter which is passed by reference. It will be filled with the result of the
respective function call. A zero return value means the function call executed just fine;
other values signal an error, and PDF generation cannot be continued.

Functions which do not return any result (C functions with a void return type) don’t
use this additional parameter.

Error handling. PDFlib exception handling is not available in the Cobol language bind-
ing. Instead, all API functions support an additional return code (rc) parameter which
signals errors. The rc parameter is passed by reference, and will be used to report prob-
lems. A non-zero value indicates that the function call failed.

24 Chapter 2: PDFlib Language Bindings

2.2 COM Binding
(This section is only included in the COM/.NET/REALbasic edition of the PDFlib tutorial.)

2.3 C Binding 25

2.3 C Binding
PDFlib itself is written in the ANSI C language. In order to use the PDFlib C binding, you
can use a static or shared library (DLL on Windows and MVS), and you need the central
PDFlib include file pdflib.h for inclusion in your PDFlib client source modules. Alterna-
tively, pdflibdl.h can be used for dynamically loading the PDFlib DLL at runtime (see next
section for details).

Using PDFlib as a DLL loaded at Runtime. While most clients will use PDFlib as a stati-
cally bound library or a dynamic library which is bound at link time, you can also load
the PDFlib DLL at runtime and dynamically fetch pointers to all API functions. This is es-
pecially useful to load the PDFlib DLL only on demand, and on MVS where the library is
customarily loaded as a DLL at runtime without explicitly linking against PDFlib. PDFlib
supports a special mechanism to facilitate this dynamic usage. It works according to the
following rules:

> Include pdflibdl.h instead of pdflib.h.
> Use PDF_new_dl() and PDF_delete_dl() instead of PDF_new() and PDF_delete().
> Use PDF_TRY_DL() and PDF_CATCH_DL() instead of PDF_TRY() and PDF_CATCH().
> Use function pointers for all other PDFlib calls.
> PDF_get_opaque() must not be used.
> Compile the auxiliary module pdflibdl.c and link your application against it.

Note Loading the PDFlib DLL at runtime is supported on selected platforms only.

Error Handling in C. PDFlib supports structured exception handling with try/catch
clauses. This allows C and C++ clients to catch exceptions which are thrown by PDFlib,
and react on the exception in an adequate way. In the catch clause the client will have
access to a string describing the exact nature of the problem, a unique exception num-
ber, and the name of the PDFlib API function which threw the exception. The general
structure of a PDFlib C client program with exception handling looks as follows:

PDF_TRY(p)
{

...some PDFlib instructions...
}
PDF_CATCH(p)
{
 printf("PDFlib exception occurred in hello sample:\n");
 printf("[%d] %s: %s\n",
 PDF_get_errnum(p), PDF_get_apiname(p), PDF_get_errmsg(p));
 PDF_delete(p);
 return(2);
}

PDF_delete(p);

PDF_TRY/PDF_CATCH are implemented as tricky preprocessor macros. Accidentally omit-
ting one of these will result in compiler error messages which may be difficult to com-
prehend. Make sure to use the macros exactly as shown above, with no additional code
between the TRY and CATCH clauses (except PDF_CATCH()).

An important task of the catch clause is to clean up PDFlib internals using PDF_
delete() and the pointer to the PDFlib object. PDF_delete() will also close the output file if

26 Chapter 2: PDFlib Language Bindings

necessary. After fatal exceptions the PDF document cannot be used, and will be left in
an incomplete and inconsistent state. Obviously, the appropriate action when an ex-
ception occurs is application-specific.

For C and C++ clients which do not catch exceptions, the default action upon excep-
tions is to issue an appropriate message on the standard error channel, and exit on fatal
errors. The PDF output file will be left in an incomplete state! Since this may not be ade-
quate for a library routine, for serious PDFlib projects it is strongly advised to leverage
PDFlib’s exception handling facilities. A user-defined catch clause may, for example,
present the error message in a GUI dialog box, and take other measures instead of abort-
ing.

Volatile variables. Special care must be taken regarding variables that are used in both
the PDF_TRY() and the PDF_CATCH() blocks. Since the compiler doesn’t know about the
control transfer from one block to the other, it might produce inappropriate code (e.g.,
register variable optimizations) in this situation. Fortunately, there is a simple rule to
avoid these problems:

Note Variables used in both the PDF_TRY() and PDF_CATCH() blocks should be declared volatile.

Using the volatile keyword signals to the compiler that it must not apply (potentially
dangerous) optimizations to the variable.

Nesting try/catch blocks and rethrowing exceptions. PDF_TRY() blocks may be nested
to an arbitrary depth. In the case of nested error handling, the inner catch block can acti-
vate the outer catch block by re-throwing the exception:

PDF_TRY(p) /* outer try block */
{

/* ... */

PDF_TRY(p) /* inner try block */
{
 /* ... */
}
PDF_CATCH(p) /* inner catch block */
{
 /* error cleanup */
 PDF_RETHROW(p);
}
/* ... */

}
PDF_CATCH(p) /* outer catch block */
{

/* more error cleanup */
PDF_delete(p);

}

The PDF_RETHROW() invocation in the inner error handler will transfer program execu-
tion to the first statement of the outer PDF_CATCH() block immediately.

Prematurely exiting a try block. If a PDF_TRY() block is left – e.g., by means of a return
statement –, thus bypassing the invocation of the corresponding PDF_CATCH() macro,
the PDF_EXIT_TRY() macro must be used to inform the exception machinery. No other li-
brary function must be called between this macro and the end of the try block:

2.3 C Binding 27

PDF_TRY(p)
{

/* ... */

if (error_condition)
{

PDF_EXIT_TRY(p);
return -1;

}
}
PDF_CATCH(p)
{

/* error cleanup */
PDF_RETHROW(p);

}

Memory Management in C. In order to allow for maximum flexibility, PDFlib’s inter-
nal memory management routines (which are based on standard C malloc/free) can be
replaced by external procedures provided by the client. These procedures will be called
for all PDFlib-internal memory allocation or deallocation. Memory management rou-
tines can be installed with a call to PDF_new2(), and will be used in lieu of PDFlib’s inter-
nal routines. Either all or none of the following routines must be supplied:

> an allocation routine
> a deallocation (free) routine
> a reallocation routine for enlarging memory blocks previously allocated with the al-

location routine.

The memory routines must adhere to the standard C malloc/free/realloc semantics, but
may choose an arbitrary implementation. All routines will be supplied with a pointer to
the calling PDFlib object. The only exception to this rule is that the very first call to the
allocation routine will supply a PDF pointer of NULL. Client-provided memory alloca-
tion routines must therefore be prepared to deal with a NULL PDF pointer.

Using the PDF_get_opaque() function, an opaque application specific pointer can be
retrieved from the PDFlib object. The opaque pointer itself is supplied by the client in
the PDF_new2() call. The opaque pointer is useful for multi-threaded applications which
may want to keep a pointer to thread- or class specific data inside the PDFlib object, for
use in memory management or error handling.

Unicode in the C Language Binding. Clients of the C language binding must take care
not to use the standard text output functions (PDF_show(), PDF_show_xy(), and PDF_
continue_text()) when the text may contain embedded null characters. In such cases the
alternate functions PDF_show2() etc. must be used, and the length of the string must be
supplied separately. This is not a concern for all other language bindings since the
PDFlib language wrappers internally call PDF_show2() etc. in the first place.

28 Chapter 2: PDFlib Language Bindings

2.4 C++ Binding
In addition to the pdflib.h C header file, an object-oriented wrapper for C++ is supplied
for PDFlib clients. It requires the pdflib.hpp header file, which in turn includes pdflib.h.
The corresponding pdflib.cpp module should be linked against the application which in
turn should be linked against the generic PDFlib C library.

Using the C++ object wrapper replaces the PDF_ prefix in all PDFlib function names
with a more object-oriented approach.

Error Handling in C++. PDFlib API functions will throw a C++ exception in case of an
error. These exceptions must be caught in the client code by using C++ try/catch clauses.
In order to provide extended error information the PDFlib class provides a public
PDFlib::Exception class which exposes methods for retrieving the detailed error message,
the exception number, and the name of the PDFlib API function which threw the excep-
tion.

Native C++ exceptions thrown by PDFlib routines will behave as expected. The fol-
lowing code fragment will catch exceptions thrown by PDFlib:

try {
...some PDFlib instructions...

catch (PDFlib::Exception &ex) {
 cerr << "PDFlib exception occurred in hello sample: " << endl;
 cerr << "[" << ex.get_errnum() << "] " << ex.get_apiname()
 << ": " << ex.get_errmsg() << endl;
 return 2;
}

Memory Management in C++. Client-supplied memory management for the C++
binding works the same as with the C language binding.

The PDFlib constructor accepts an optional error handler, optional memory manage-
ment procedures, and an optional opaque pointer argument. Default NULL arguments
are supplied in pdflib.hpp which will result in PDFlib’s internal error and memory man-
agement routines becoming active. All memory management functions must be »C«
functions, not C++ methods.

Unicode in the C++ Language Binding. C++ users must be aware of a pitfall related to
the compiler automatically converting literal strings to the C++ string type which is ex-
pected by the PDFlib API functions: this conversion supports embedded null characters
only if an explicit length parameter is supplied. For example, the following will not
work since the string will be truncated at the first null character:

p.show("\x00\x41\x96\x7B\x8C\xEA"); // Wrong!

To fix this problem apply the string constructor with an explicit length parameter:

p.show(string("\x00\x41\x96\x7B\x8C\xEA", 6)); // Correct

2.5 Java Binding 29

2.5 Java Binding
Java supports a portable mechanism for attaching native language code to Java pro-
grams, the Java Native Interface (JNI). The JNI provides programming conventions for
calling native C or C++ routines from within Java code, and vice versa. Each C routine
has to be wrapped with the appropriate code in order to be available to the Java VM, and
the resulting library has to be generated as a shared or dynamic object in order to be
loaded into the Java VM.

PDFlib supplies JNI wrapper code for using the library from Java. This technique al-
lows us to attach PDFlib to Java by loading the shared library from the Java VM. The ac-
tual loading of the library is accomplished via a static member function in the pdflib
Java class. Therefore, the Java client doesn’t have to bother with the specifics of shared
library handling.

Taking into account PDFlib’s stability and maturity, attaching the native PDFlib li-
brary to the Java VM doesn’t impose any stability or security restrictions on your Java
application, while at the same time offering the performance benefits of a native imple-
mentation. Regarding portability remember that PDFlib is available for all platforms
where there is a Java VM!

Installing the PDFlib Java Edition. For the PDFlib binding to work, the Java VM must
have access to the PDFlib Java wrapper and the PDFlib Java package. PDFlib is organized
as a Java package with the following package name:

com.pdflib.pdflib

This package is available in the pdflib.jar file and contains a single class called pdflib. Us-
ing the source files provided in the PDFlib Lite distribution you can generate an abbrevi-
ated HTML version of the PDFlib Reference using the javadoc utility since the PDFlib
class contains the necessary javadoc comments. Comments and restrictions for using
PDFlib with specific Java environments may be found in text files in the distribution
set.

In order to supply this package to your application, you must add pdflib.jar to your
CLASSPATH environment variable, add the option -classpath pdflib.jar in your calls to the
Java compiler and runtime, or perform equivalent steps in your Java IDE. In the JDK you
can configure the Java VM to search for native libraries in a given directory by setting
the java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. pdfclock

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

In addition, the following platform-dependent steps must be performed:
> Unix: the library libpdf_java.so (on Mac OS X: libpdf_java.jnilib) must be placed in one

of the default locations for shared libraries, or in an appropriately configured direc-
tory.

> Windows: the library pdf_java.dll must be placed in the Windows system directory, or
a directory which is listed in the PATH environment variable.

30 Chapter 2: PDFlib Language Bindings

PDFlib servlets and Java application servers. PDFlib is perfectly suited for server-side
Java applications, especially servlets. The PDFlib distribution contains examples of
PDFlib Java servlets which demonstrate the basic use. When using PDFlib with a specific
servlet engine the following configuration issues must be observed:

> The directory where the servlet engine looks for native libraries varies among ven-
dors. Common candidate locations are system directories, directories specific to the
underlying Java VM, and local directories of the servlet engine. Please check the doc-
umentation supplied by the vendor of your servlet engine.

> Servlets are often loaded by a special class loader which may be restricted, or use a
dedicated classpath. For some servlet engines it is required to define a special engine
classpath to make sure that the PDFlib package will be found.

More detailed notes on using PDFlib with specific servlet engines and Java application
servers can be found in additional documentation in the PDFlib distribution.

Note Since the EJB (Enterprise Java Beans) specification disallows the use of native libraries, PDFlib
cannot be used within EJBs.

Error Handling in Java. The Java binding installs a special error handler which trans-
lates PDFlib errors to native Java exceptions. In case of an exception PDFlib will throw a
native Java exception of the following class:

PDFlibException

The Java exceptions can be dealt with by the usual try/catch technique:

try {

...some PDFlib instructions...

} catch (PDFlibException e) {
 System.err.print("PDFlib exception occurred in hello sample:\n");
 System.err.print("[" + e.get_errnum() + "] " + e.get_apiname() +
 ": " + e.get_errmsg() + "\n");

} catch (Exception e) {
System.err.println(e.getMessage());

} finally {
if (p != null) {

p.delete(); /* delete the PDFlib object */
}

}

Since PDFlib declares appropriate throws clauses, client code must either catch all possi-
ble PDFlib exceptions, or declare those itself.

Unicode and legacy encoding conversion. For the convenience of PDFlib users we list
some useful string conversion methods here. Please refer to the Java documentation for
more details. The following constructor creates a Unicode string from a byte array, us-
ing the platform’s default encoding:

String(byte[] bytes)

2.5 Java Binding 31

The following constructor creates a Unicode string from a byte array, using the encod-
ing supplied in the enc parameter (e.g. SJIS, UTF8, UTF-16):

String(byte[] bytes, String enc)

The following method of the String class converts a Unicode string to a string according
to the encoding specified in the enc parameter:

byte[] getBytes(String enc)

32 Chapter 2: PDFlib Language Bindings

2.6 .NET Binding
(This section is only included in the COM/.NET/REALbasic edition of the PDFlib tutorial.)

2.7 Perl Binding 33

2.7 Perl Binding
Perl1 supports a mechanism for extending the language interpreter via native C librar-
ies. The PDFlib wrapper for Perl consists of a C wrapper file and a Perl package module.
The C module is used to build a shared library which the Perl interpreter loads at run-
time, with some help from the package file. Perl scripts refer to the shared library mod-
ule via a use statement.

Installing the PDFlib Perl Edition. The Perl extension mechanism loads shared libraries
at runtime through the DynaLoader module. The Perl executable must have been com-
piled with support for shared libraries (this is true for the majority of Perl configura-
tions).

For the PDFlib binding to work, the Perl interpreter must access the PDFlib Perl wrap-
per and the module file pdflib_pl.pm. In addition to the platform-specific methods de-
scribed below you can add a directory to Perl’s @INC module search path using the -I
command line option:

perl -I/path/to/pdflib hello.pl

Unix. Perl will search both pdflib_pl.so (on Mac OS X: pdflib_pl.dylib) and pdflib_pl.pm in
the current directory, or the directory printed by the following Perl command:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/pdflib_pl. Typical output of the above com-
mand looks like

/usr/lib/perl5/site_perl/5.8/i686-linux

Windows. PDFlib supports the ActiveState port of Perl 5 to Windows, also known as
ActivePerl.2 Both pdflib_pl.dll and pdflib_pl.pm will be searched in the current directory,
or the directory printed by the following Perl command:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.8\site\lib

Error Handling in Perl. The Perl binding installs a special error handler which trans-
lates PDFlib errors to native Perl exceptions. The Perl exceptions can be dealt with by ap-
plying the appropriate language constructs, i.e., by bracketing critical sections:

eval {
...some PDFlib instructions...

};
die "Exception caught" if $@;

1. See www.perl.com
2. See www.activestate.com

http://www.perl.com
http://www.activestate.com

34 Chapter 2: PDFlib Language Bindings

More than one way of String handling. Depending on the requirements of your appli-
cation you can work with UTF-8, UTF-16, or legacy encodings. The following code snip-
pets demonstrate all three variants. All examples create the same Japanese output, but
accept the string input in different formats.

The first example works with Unicode UTF-8 and uses the Unicode::String module
which is part of most modern Perl distributions, and available on CPAN). Since Perl
works with UTF-8 internally no explicit UTF-8 conversion is required:

use Unicode::String qw(utf8 utf16 uhex);
...
PDF_set_parameter($p, "textformat", "utf8");
$font = PDF_load_font($p, "Arial Unicode MS", "unicode", "");
PDF_setfont($p, $font, 24.0);
PDF_set_text_pos($p, 50, 700);
PDF_show($p, uhex("U+65E5 U+672C U+8A9E"));

The second example works with Unicode UTF-16 and little-endian byte order:

PDF_set_parameter($p, "textformat", "utf16le");
$font = PDF_load_font($p, "Arial Unicode MS", "unicode", "");
PDF_setfont($p, $font, 24.0);
PDF_set_text_pos($p, 50, 700);
PDF_show($p, "\xE5\x65\x2C\x67\x9E\x8A");

The third example works with Shift-JIS. Except on Windows systems it requires access to
the 90ms-RKSJ-H CMap for string conversion:

PDF_set_parameter($p, "SearchPath", "../../../resource/cmap");
$font = PDF_load_font($p, "Arial Unicode MS", "cp932", "");
PDF_setfont($p, $font, 24.0);
PDF_set_text_pos($p, 50, 700);
PDF_show($p, "\x93\xFA\x96\x7B\x8C\xEA");

Unicode and legacy encoding conversion. For the convenience of PDFlib users we list
some useful string conversion methods here. Please refer to the Perl documentation for
more details. The following constructor creates a Unicode string from a byte array:

$logos="\x{039b}\x{03bf}\x{03b3}\x{03bf}\x{03c3}\x{0020}" ;

The following constructor creates a Unicode string from the Unicode character name:

$delta = "\N{GREEK CAPITAL LETTER DELTA}";

The Encode module supports many encodings and has interfaces for converting be-
tween those encodings:

use Encode 'decode';
$data = decode("iso-8859-3", $data); # convert from legacy to UTF-8

2.8 PHP Binding 35

2.8 PHP Binding
Installing the PDFlib PHP Edition. Detailed information about the various flavors and
options for using PDFlib with PHP1, including the question of whether or not to use a
loadable PDFlib module for PHP, can be found in the PDFlib-in-PHP-HowTo.pdf document
which is contained in the distribution packages and also available on the PDFlib Web
site.

You must configure PHP so that it knows about the external PDFlib library. You have
two choices:

> Add one of the following lines in php.ini:

extension=libpdf_php.so ; for Unix

extension=libpdf_php.dll ; for Windows

PHP will search the library in the directory specified in the extension_dir variable in
php.ini on Unix, and additionally in the standard system directories on Windows.
You can test which version of the PHP PDFlib binding you have installed with the fol-
lowing one-line PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled pdf. If this section contains PDFlib GmbH Binary Version (and
the PDFlib version number) you are using the supported new PDFlib wrapper. The
unsupported old wrapper will display PDFlib GmbH Version instead.

> Load PDFlib at runtime with one of the following lines at the start of your script:

dl("libpdf_php.so"); # for Unix
dl("libpdf_php.dll"); # for Windows

PHP 5 features. PDFlib takes advantage of the following new features in PHP 5:
> New object model: the PDFlib functions are encapsulated within a PDFlib object.
> Exceptions: PDFlib exceptions will be propagated as PHP 5 exceptions, and can be

caught with the usual try/catch technique. New-style exception handling can be
used with both the new object-oriented approach and the old API functions.

See below for more details on these PHP 5 features.

Modified error return for PDFlib functions in PHP. Since PHP uses the convention of re-
turning the value 0 (FALSE) when an error occurs within a function, all PDFlib functions
have been adjusted to return 0 instead of -1 in case of an error. This difference is noted
in the function descriptions in the PDFlib Reference. However, take care when reading
the code fragment examples in Section 3, »PDFlib Programming«, page 45, since these
use the usual PDFlib convention of returning -1 in case of an error.

File name handling in PHP. Unqualified file names (without any path component) and
relative file names for PDF, image, font and other disk files are handled differently in
Unix and Windows versions of PHP:

> PHP on Unix systems will find files without any path component in the directory
where the script is located.

1. See www.php.net

http://www.php.net

36 Chapter 2: PDFlib Language Bindings

> PHP on Windows will find files without any path component only in the directory
where the PHP DLL is located.

In order to provide platform-independent file name handling the use of PDFlib’s
SearchPath facility is strongly recommended (see Section 3.1.3, »Resource Configuration
and File Searching«, page 48).

Error handling in PHP 4. When a PDFlib exception occurs, a PHP exception is thrown.
Since PHP 4 does not support structured exception handling there is no way to catch ex-
ceptions and act appropriately. Do not disable PHP warnings when using PDFlib, or you
will run into serious trouble.

PDFlib warnings (nonfatal errors) are mapped to PHP warnings, which can be dis-
abled in php.ini. Alternatively, warnings can be disabled at runtime with a PDFlib func-
tion call like in any other language binding:

PDF_set_parameter($p, "warning", "false");

Exception handling in PHP 5. Since PHP 5 supports structured exception handling,
PDFlib exceptions will be propagated as PHP exceptions. PDFlib will throw an exception
of the class PDFlibException, which is derived from PHP’s standard Exception class. You
can use the standard try/catch technique to deal with PDFlib exceptions:

try {

...some PDFlib instructions...

} catch (PDFlibException $e) {
print "PDFlib exception occurred:\n";
print "[" . $e->get_errnum() . "] " . $e->get_apiname() . ": "

$e->get_errmsg() . "\n";
}
catch (Exception $e) {

print $e;
}

Note that you can use PHP 5-style exception handling regardless of whether you work
with the old function-based PDFlib interface, or the new object-oriented one.

Unicode and legacy encoding conversion. The iconv module can be used for string con-
versions. Please refer to the PHP documentation for more details.

2.9 Python Binding 37

2.9 Python Binding
Installing the PDFlib Python Edition. The Python1 extension mechanism works by
loading shared libraries at runtime. For the PDFlib binding to work, the Python inter-
preter must have access to the PDFlib Python wrapper:

> Unix: the library pdflib_py.so (on Mac OS X: pdflib_py.dylib) will be searched in the di-
rectories listed in the PYTHONPATH environment variable.

> Windows: the library pdflib_py.dll will be searched in the directories listed in the
PYTHONPATH environment variable.

Error Handling in Python. The Python binding installs a special error handler which
translates PDFlib errors to native Python exceptions. The Python exceptions can be
dealt with by the usual try/catch technique:

try:
...some PDFlib instructions...

except PDFlibException:
print 'PDFlib Exception caught!'

1. See www.python.org

http://www.python.org

38 Chapter 2: PDFlib Language Bindings

2.10 REALbasic Binding1

(This section is only included in the COM/.NET/REALbasic edition of the PDFlib tutorial.)

1. See www.realbasic.com

http://www.realbasic.com

2.11 RPG Binding 39

2.11 RPG Binding
PDFlib provides a /copy module that defines all prototypes and some useful constants
needed to compile ILE-RPG programs with embedded PDFlib functions.

Function names. All PDFlib functions have been renamed for RPG binding. Instead of
the PDF_ prefix you must use RPDF_ as prefix for all function names. However, the origi-
nal function names as provided in PDFlib versions earlier than 7 are still available (with-
out Unicode treatment of string parameters).

Unicode string handling. Since all functions provided by PDFlib use Unicode strings
with variable length as parameters, you have to use the %UCS2 builtin function to con-
vert a single-byte string to a Unicode string. All strings returned by PDFlib functions are
Unicode strings with variable length. Use the %CHAR builtin function to convert these
Unicode strings to single-byte strings.

Note The %CHAR and %UCS2 functions use the current job’s CCSID to convert strings from and to
Unicode. The examples provided with PDFlib are based on CCSID 37 (US EBCDIC). Some special
characters in option lists (e.g. { [] }) may not be translated correctly if you run the examples
under other codepages.

Since all strings are passed as variable length strings you must not pass the length pa-
rameters in various functions which expect explicit string lengths (the length of a vari-
able length string is stored in the first two bytes of the string).

Compiling and Binding RPG Programs for PDFlib. Using PDFlib functions from RPG re-
quires the compiled PDFLIB and PDFLIB_RPG service programs. To include the PDFlib
definitions at compile time you have to specify the name of the /copy member in the D
specs of your ILE-RPG program:

d/copy QRPGLESRC,PDFLIB

If the PDFlib source file library is not on top of your library list you have to specify the li-
brary as well:

d/copy PDFsrclib/QRPGLESRC,PDFLIB

Before you start compiling your ILE-RPG program you have to create a binding directory
that includes the PDFLIB and PDFLIB_RPG service programs shipped with PDFlib. The
following example assumes that you want to create a binding directory called PDFLIB in
the library PDFLIB:

CRTBNDDIR BNDDIR(PDFLIB/PDFLIB) TEXT('PDFlib Binding Directory')

After creating the binding directory you need to add the PDFLIB and PDFLIB_RPG service
programs to your binding directory. The following example assumes that you want to
add the service program PDFLIB in the library PDFLIB to the binding directory created
earlier.

ADDBNDDIRE BNDDIR(PDFLIB/PDFLIB) OBJ((PDFLIB/PDFLIB *SRVPGM))
ADDBNDDIRE BNDDIR(PDFLIB/PDFLIB) OBJ((PDFLIB/PDFLIB_RPG *SRVPGM))

40 Chapter 2: PDFlib Language Bindings

Now you can compile your program using the CRTBNDRPG command (or option 14 in
PDM):

CRTBNDRPG PGM(PDFLIB/HELLO) SRCFILE(PDFLIB/QRPGLESRC) SRCMBR(*PGM) DFTACTGRP(*NO)
BNDDIR(PDFLIB/PDFLIB)

Error Handling in RPG. PDFlib clients written in ILE-RPG can install an error handler in
PDFlib which will be activated when an exception occurs. Since ILE-RPG translates all
procedure names to uppercase, the name of the error handler procedure should be spec-
ified in uppercase. The following skeleton demonstrates this technique:

 d/copy QRPGLESRC,PDFLIB

 d p S *
 d font s 10i 0
 *
 d error s 50
 *
 d errhdl s * procptr
 *
 * Prototype for exception handling procedure
 *
 d errhandler PR
 d p * value
 d type 10i 0 value
 d shortmsg 2048

 c clear error
 *
* Set the procedure pointer to the ERRHANDLER procedure.
*
 c eval errhdl=%paddr('ERRHANDLER')
 *
 c eval p=pdf_new2(errhdl:*null:*null:*null:*null)

...PDFlib instructions...

c callp PDF_delete(p)
 *
 c exsr exit

 c exit begsr
 c if error<>*blanks
 c error dsply
 c endif
 c seton lr
 c return
 c endsr

 * If any of the PDFlib functions will cause an exception, first the error handler
 * will be called and after that we will get a regular RPG exception.
 c *pssr begsr
 c exsr exit
 c endsr

 * Exception Handler Procedure
 * This procedure will be linked to PDFlib by passing the procedure pointer to

2.11 RPG Binding 41

 * PDF_new2. This procedure will be called when a PDFlib exception occurs.
 *

 p errhandler B
 d errhandler PI
 d p * value
 d type 10i 0 value
 d c_message 2048
 *
 d length s 10i 0
 *
 * Chop off the trailing x'00' (we are called by a C program)
 * and set the error (global) string
 c clear error
 c x'00' scan c_message length 50
 c sub 1 length
 c if *in50 and length>0
 c if length>%size(error)
 c eval error=c_message
 c else
 c eval error=%subst(c_message:1:length)
 c endif
 c endif
 *
 * Always call PDF_delete to clean up PDFlib
 c callp PDF_delete(p)
 *
 c return
 *
 p errhandler E

42 Chapter 2: PDFlib Language Bindings

2.12 Ruby Binding
Installing the PDFlib Ruby Edition. The Ruby1 extension mechanism works by loading
a shared library at runtime. For the PDFlib binding to work, the Ruby interpreter must
have access to the PDFlib extension library for Ruby. This library (on Windows/Linux/
Unix: PDFlib.so; on Mac OS X: PDFlib.bundle) will usually be installed in the site_ruby
branch of the local ruby installation directory, i.e. in a directory with a name similar to
the following:

/usr/local/lib/ruby/site_ruby/<rubyversion>/

However, Ruby will search other directories for extensions as well. In order to retrieve a
list of these directories you can use the following ruby call:

ruby -e "puts $:"

This list will usually include the current directory, so for testing purposes you can sim-
ply place the PDFlib extension library and the scripts in the same directory.

Error Handling in Ruby. The Ruby binding installs a special error handler which trans-
lates PDFlib exceptions to native Ruby exceptions. The Ruby exceptions can be dealt
with by the usual rescue technique:

begin
...some PDFlib instructions...

rescue PDFlibException => pe
print "PDFlib exception occurred in hello sample:\n"
print "[" + pe.get_errnum.to_s + "] " + pe.get_apiname + ": " + pe.get_errmsg + "\n"

Ruby on Rails. Ruby on Rails2 is an open-source framework which facilitates Web de-
velopment with Ruby. The PDFlib extension for Ruby can be used with Ruby on Rails;
examples are included in the package. Follow these steps to run the PDFlib examples for
Ruby on Rails:

> Install Ruby.
> Install Ruby on Rails.
> Unpack the PDFlib package for Ruby which contains samples for Ruby on Rails.
> Change to the bind/ruby/RubyOnRails directory and start the Ruby web server:

ruby script/server

> Point your browser to http://localhost:3000.

The code for the PDFlib samples can be found in app/controllers/pdflib_controller.rb.

Local PDFlib installation. If you want to use PDFlib only with Ruby on Rails, but cannot
install it globally for general use with Ruby, you can install PDFlib locally in the vendors
directory within the Rails tree. This is particularly useful if you do not have permission
to install Ruby extensions for general use, but want to work with PDFlib in Rails never-
theless.

1. See www.ruby-lang.org/en
2. See www.rubyonrails.org

http://www.ruby-lang.org/en
http://www.rubyonrails.org/

2.13 Tcl Binding 43

2.13 Tcl Binding
Installing the PDFlib Tcl Edition. The Tcl 1extension mechanism works by loading
shared libraries at runtime. For the PDFlib binding to work, the Tcl shell must have ac-
cess to the PDFlib Tcl wrapper shared library and the package index file pkgIndex.tcl. You
can use the following idiom in your script to make the library available from a certain
directory (this may be useful if you want to deploy PDFlib on a machine where you
don’t have root privilege for installing PDFlib):

lappend auto_path /path/to/pdflib

Unix: the library pdflib_tcl.so (on Mac OS X: pdflib_tcl.dylib) must be placed in one of the
default locations for shared libraries, or in an appropriately configured directory. Usual-
ly both pkgIndex.tcl and pdflib_tcl.so will be placed in the directory

/usr/lib/tcl8.4/pdflib

Windows: the files pkgIndex.tcl and pdflib_tcl.dll will be searched for in the directories

C:\Program Files\Tcl\lib\pdflib
C:\Program Files\Tcl\lib\tcl8.3\pdflib

Error Handling in Tcl. The Tcl binding installs a special error handler which translates
PDFlib errors to native Tcl exceptions. The Tcl exceptions can be dealt with by the usual
try/catch technique:

if [catch { ...some PDFlib instructions... } result] {
puts stderr "Exception caught!"
puts stderr $result

}

1. See www.tcl.tk

http://www.tcl.tk

3.1 General Programming 45

3 PDFlib Programming
3.1 General Programming

3.1.1 Exception Handling
Errors of a certain kind are called exceptions in many languages for good reasons – they
are mere exceptions, and are not expected to occur very often during the lifetime of a
program. The general strategy is to use conventional error reporting mechanisms (i.e.
special error return codes such as -1) for function calls which may often fail, and use a
special exception mechanism for those rare occasions which don’t warrant cluttering
the code with conditionals. This is exactly the path that PDFlib goes: Some operations
can be expected to go wrong rather frequently, for example:

> Trying to open an output file for which one doesn’t have permission
> Trying to open an input PDF with a wrong file name
> Trying to open a corrupt image file

PDFlib signals such errors by returning a special value (usually – 1, but 0 in the PHP
binding) as documented in the PDFlib Reference. This error code must be checked by the
application developer for all functions which are documented to return -1 on error.

Other events may be considered harmful, but will occur rather infrequently, e.g.
> running out of virtual memory
> scope violations (e.g., closing a document before opening it)
> supplying wrong parameters to PDFlib API functions (e.g., trying to draw a circle with

negative radius), or supplying wrong options.

When PDFlib detects such a situation, an exception will be thrown instead of passing a
special error return value to the caller. It is important to understand that the generated
PDF document cannot be finished when an exception occurred. The only methods
which can safely be called after an exception are PDF_delete(), PDF_get_apiname(), PDF_
get_errnum(), and PDF_get_errmsg(). Calling any other PDFlib method after an exception
may lead to unexpected results. The exception will contain the following information:

> A unique error number;
> The name of the PDFlib API function which caused the exception;
> A descriptive text containing details of the problem.

Querying the reason of a failed function call. As noted above, the generated PDF out-
put document must always be abandoned when an exception occurs. Some clients,
however, may prefer to continue the document by adjusting the program flow or sup-
plying different data. For example, when a particular font cannot be loaded most clients
will give up the document, while others may prefer to work with a different font. In this
case it may be desirable to retrieve an error message which describes the problem in
more detail. In this situation the functions PDF_get_errnum(), PDF_get_errmsg(), and
PDF_get_apiname() can be called immediately after a failed function call, i.e., a function
call which returned a -1 (in PHP: 0) error value.

Error policies. When PDFlib detects an error condition, it will react according to one of
several strategies which can be configured with the errorpolicy parameter. All functions

46 Chapter 3: PDFlib Programming

which can return error codes also support an errorpolicy option. The following error pol-
icies are supported:

> errorpolicy=legacy: this setting ensures behavior which is compatible to earlier ver-
sions of PDFlib, where exceptions and error return values are controlled by parame-
ters and options such as fontwarning, imagewarning, etc. This is only recommended
for applications which require source code compatibility with PDFlib 6. It should not
be used for new applications. The legacy setting is the default error policy.

> errorpolicy=return: when an error condition is detected, the respective function will
return with a -1 (in PHP: 0) error value regardless of any warning parameters or op-
tions. The application developer must check the return value to identify problems,
and must react on the problem in whatever way is appropriate for the application.
This is the recommended approach since it allows a unified approach to error han-
dling.

> errorpolicy=exception: an exception will be thrown when an error condition is detect-
ed. However, the output document will be unusable after an exception. This can be
used for lazy programming without any error conditionals at the expense of sacrific-
ing the output document even for problems which may be fixable by the applica-
tion.

The following code fragments demonstrate different strategies with respect to excep-
tion handling. The examples try to load a font which may or may not be available.

If errorpolicy=return the return value must be checked for an error. If it indicates fail-
ure, the reason of the failure can be queried in order to properly deal with the situation:

font = p.load_font("MyFontName", "unicode", "errorpolicy=return");
if (font == -1)
{

/* font handle is invalid; find out what happened. */
errmsg = p.get_errmsg());
/* Try a different font or give up */
...

}
/* font handle is valid; continue */

If errorpolicy=exception the document must be abandoned if an error occurs:

font = p.load_font("MyFontName", "unicode", "errorpolicy=exception");
/* Unless an exception was thrown the font handle is valid;
* if an exception occurred, the PDF output cannot be continued
*/

Warnings. Some problem conditions can be detected by PDFlib internally, but do not
justify interrupting the program flow by throwing an exception. While earlier versions
of PDFlib supported the concept of non-fatal exceptions which can be disabled, PDFlib 7
never throws an exception for non-fatal conditions. Instead, a description of the condi-
tion will be logged (if logging is enabled). Logging can be enabled as follows:

p.set_parameter("logging", "filename=private.log");

We recommend the following approach with respect to warnings:
> Enable warning logging in the development phase, and carefully study any warning

messages in the log file. They may point to potential problems in your code or data,
and you should try to understand or eliminate the reason for those warnings.

3.1 General Programming 47

> Disable warning logging in the production phase, and re-enable it only in case of
problems.

3.1.2 The PDFlib Virtual File System (PVF)
In addition to disk files a facility called PDFlib Virtual File System (PVF) allows clients to di-
rectly supply data in memory without any disk files involved. This offers performance
benefits and can be used for data fetched from a database which does not even exist on
an isolated disk file, as well as other situations where the client already has the required
data available in memory as a result of some processing.

PVF is based on the concept of named virtual read-only files which can be used just
like regular file names with any API function. They can even be used in UPR configura-
tion files. Virtual file names can be generated in an arbitrary way by the client. Obvious-
ly, virtual file names must be chosen such that name clashes with regular disk files are
avoided. For this reason a hierarchical naming convention for virtual file names is rec-
ommended as follows (filename refers to a name chosen by the client which is unique in
the respective category). It is also recommended to keep standard file name suffixes:

> Raster image files: /pvf/image/filename
> font outline and metrics files (it is recommended to use the actual font name as the

base portion of the file name): /pvf/font/filename
> ICC profiles: /pvf/iccprofile/filename
> Encodings and codepages: /pvf/codepage/filename
> PDF documents: /pvf/pdf/filename

When searching for a named file PDFlib will first check whether the supplied file name
refers to a known virtual file, and then try to open the named file on disk.

Lifetime of virtual files. Some functions will immediately consume the data supplied
in a virtual file, while others will read only parts of the file, with other fragments being
used at a later point in time. For this reason close attention must be paid to the lifetime
of virtual files. PDFlib will place an internal lock on every virtual file, and remove the
lock only when the contents are no longer needed. Unless the client requested PDFlib to
make an immediate copy of the data (using the copy option in PDF_create_pvf()), the vir-
tual file’s contents must only be modified, deleted, or freed by the client when it is no
longer locked by PDFlib. PDFlib will automatically delete all virtual files in PDF_delete().
However, the actual file contents (the data comprising a virtual file) must always be
freed by the client.

Different strategies. PVF supports different approaches with respect to managing the
memory required for virtual files. These are governed by the fact that PDFlib may need
access to a virtual file’s contents after the API call which accepted the virtual file name,
but never needs access to the contents after PDF_close(). Remember that calling PDF_
delete_pvf() does not free the actual file contents (unless the copy option has been sup-
plied), but only the corresponding data structures used for PVF file name administra-
tion. This gives rise to the following strategies:

> Minimize memory usage: it is recommended to call PDF_delete_pvf() immediately af-
ter the API call which accepted the virtual file name, and another time after PDF_
close(). The second call is required because PDFlib may still need access to the data so
that the first call refuses to unlock the virtual file. However, in some cases the first

48 Chapter 3: PDFlib Programming

call will already free the data, and the second call doesn’t do any harm. The client
may free the file contents only when PDF_delete_pvf() succeeded.

> Optimize performance by reusing virtual files: some clients may wish to reuse some
data (e.g., font definitions) within various output documents, and avoid multiple
create/delete cycles for the same file contents. In this case it is recommended not to
call PDF_delete_pvf() as long as more PDF output documents using the virtual file
will be generated.

> Lazy programming: if memory usage is not a concern the client may elect not to call
PDF_delete_pvf() at all. In this case PDFlib will internally delete all pending virtual
files in PDF_delete().

In all cases the client may free the corresponding data only when PDF_delete_pvf() re-
turned successfully, or after PDF_delete().

3.1.3 Resource Configuration and File Searching
In most advanced applications PDFlib needs access to resources such as font file, encod-
ing definition, ICC color profiles, etc. In order to make PDFlib’s resource handling plat-
form-independent and customizable, a configuration file can be supplied for describing
the available resources along with the names of their corresponding disk files. In addi-
tion to a static configuration file, dynamic configuration can be accomplished at run-
time by adding resources with PDF_set_parameter(). For the configuration file we dug
out a simple text format called Unix PostScript Resource (UPR) which came to life in the
era of Display PostScript, and is still in use on several systems. However, we extended
the original UPR format for our purposes. The UPR file format as used by PDFlib will be
described below. There is a utility called makepsres (often distributed as part of the X
Window System) which can be used to automatically generate UPR files from PostScript
font outline and metrics files.

Resource categories. The resource categories supported by PDFlib are listed in Table
3.1. Other resource categories will be ignored. The values are treated as name strings;
they can be encoded in ASCII or UTF-8 (with BOM). Unicode values may be useful for lo-
calized font names with the HostFont resource.

Table 3.1 Resource categories supported in PDFlib

category format explanation

SearchPath value Relative or absolute path name of directories containing data files

CMap key=value CMap file for CJK encoding

FontAFM key=value PostScript font metrics file in AFM format

FontPFM key=value PostScript font metrics file in PFM format

FontOutline key=value PostScript, TrueType or OpenType font outline file

Encoding key=value text file containing an 8-bit encoding or code page table

HostFont key=value Name of a font installed on the system

ICCProfile key=value name of an ICC color profile

StandardOutputIntent key=value name of a standard output condition for PDF/X (in addition to those which are al-
ready built into PDFlib, see PDFlib Reference for a complete list)

3.1 General Programming 49

Redundant resource entries should be avoided. For example, do not include multiple
entries for a certain font’s metrics data. Also, the font name as configured in the UPR file
should exactly match the actual font name in order to avoid confusion (although
PDFlib does not enforce this restriction).

The UPR file format. UPR files are text files with a very simple structure that can easily
be written in a text editor or generated automatically. To start with, let’s take a look at
some syntactical issues:

> Lines can have a maximum of 255 characters.
> A backslash ’\’ escapes newline characters. This may be used to extend lines. Use two

backslashes in order to create a single literal backslash.
> An isolated period character ’ . ’ serves as a section terminator.
> All entries are case-sensitive.
> Comment lines may be introduced with a percent ’%’ character, and terminated by

the end of the line. A preceding backslash can be used to create literal percent charac-
ters which do not start a comment.

> Whitespace is ignored everywhere except in resource names and file names.

UPR files consist of the following components:
> A magic line for identifying the file. It has the following form:

PS-Resources-1.0

> An optional section listing all resource categories described in the file. Each line de-
scribes one resource category. The list is terminated by a line with a single period
character. Available resource categories are described below.

> A section for each of the resource categories listed at the beginning of the file. Each
section starts with a line showing the resource category, followed by an arbitrary
number of lines describing available resources. The list is terminated by a line with a
single period character. Each resource data line contains the name of the resource
(equal signs have to be quoted). If the resource requires a file name, this name has to
be added after an equal sign. The SearchPath (see below) will be applied when PDFlib
searches for files listed in resource entries.

File searching and the SearchPath resource category. PDFlib reads a variety of data
items, such as raster images, font outline and metrics information, encoding defini-
tions, PDF documents, and ICC color profiles from disk files. In addition to relative or ab-
solute path names you can also use file names without any path specification. The
SearchPath resource category can be used to specify a list of path names for directories
containing the required data files. When PDFlib must open a file it will first use the file
name exactly as supplied and try to open the file. If this attempt fails, PDFlib will try to
open the file in the directories specified in the SearchPath resource category one after
another until it succeeds. SearchPath entries can be accumulated, and will be searched in
reverse order (paths set at a later point in time will searched before earlier ones). This
feature can be used to free PDFlib applications from platform-specific file system
schemes. You can set search path entries as follows:

p.set_parameter("SearchPath", "/path/to/dir1");
p.set_parameter("SearchPath", "/path/to/dir2");

In order to disable the search you can use a fully specified path name in the PDFlib func-
tions. Note the following platform-specific features of the SearchPath resource category:

50 Chapter 3: PDFlib Programming

> On Windows PDFlib will initialize the SearchPath with an entry from the registry. The
following registry entry may contain a list of path names separated by a semicolon
’;’ character:

HKLM\SOFTWARE\PDFlib\PDFlib\7.0.2\SearchPath

> On IBM iSeries the SearchPath resource category will be initialized with the following
values:

/pdflib/7.0.2/fonts

/pdflib/7.0.2/bind/data

> On IBM zSeries systems with MVS the SearchPath feature is not supported.
> On OpenVMS logical names can be supplied as SearchPath.

Sample UPR file. The following listing gives an example of a UPR configuration file:

PS-Resources-1.0
SearchPath
/usr/local/lib/fonts
C:/psfonts/pfm
C:/psfonts
/users/kurt/my_images
.
FontAFM
Code-128=Code_128.afm
.
FontPFM
Corporate-Bold=corpb___.pfm
Mistral=c:/psfonts/pfm/mist____.pfm
.
FontOutline
Code-128=Code_128.pfa
ArialMT=Arial.ttf
.
HostFont
Wingdings=Wingdings
.
Encoding
myencoding=myencoding.enc
.
ICCProfile
highspeedprinter=cmykhighspeed.icc
.

Searching for the UPR resource file. If only the built-in resources (e.g., PDF core font,
built-in encodings, sRGB ICC profile) or system resources (host fonts) are to be used, a
UPR configuration file is not required, since PDFlib will find all necessary resources
without any additional configuration.

If other resources are to be used you can specify such resources via calls to PDF_set_
parameter() (see below) or in a UPR resource file. PDFlib reads this file automatically
when the first resource is requested. The detailed process is as follows:

> If the environment variable PDFLIBRESOURCE is defined PDFlib takes its value as the
name of the UPR file to be read. If this file cannot be read an exception will be
thrown.

3.1 General Programming 51

> If the environment variable PDFLIBRESOURCE is not defined PDFlib tries to open a file
with the following name:

upr (on MVS; a dataset is expected)
pdflib/<version>/fonts/pdflib.upr (on IBM eServer iSeries)
pdflib.upr (Windows, Unix, and all other systems)

If this file cannot be read no exception will be thrown.
> On Windows PDFlib will additionally try to read the registry entry

HKLM\SOFTWARE\PDFlib\PDFlib\7.0.2\resourcefile

The value of this entry (which will be created by the PDFlib installer, but can also be
created by other means) will be taken as the name of the resource file to be used. If
this file cannot be read an exception will be thrown.

> The client can force PDFlib to read a resource file at runtime by explicitly setting the
resourcefile parameter:

p.set_parameter("resourcefile", "/path/to/pdflib.upr");

This call can be repeated arbitrarily often; the resource entries will be accumulated.

Configuring resources at runtime. In addition to using a UPR file for the configuration,
it is also possible to directly configure individual resources within the source code via
the PDF_set_parameter() function. This function takes a category name and a corre-
sponding resource entry as it would appear in the respective section of this category in
a UPR resource file, for example:

p.set_parameter("FontAFM", "Foobar-Bold=foobb___.afm");
p.set_parameter("FontOutline", "Foobar-Bold=foobb___.pfa");

Note Font configuration is discussed in more detail in Section 5.3.1, »Searching for Fonts«, page 101.

Querying resource values. In addition to setting resource entries you can query values
using PDF_get_parameter(). Specify the category name as key and the index in the list as
modifier. For example, the following call:

s = p.get_parameter("SearchPath", n);

will retrieve the n-th entry in the SearchPath list If n is larger than the number of avail-
able entries for the requested category an empty string will be returned. The returned
string is valid until the next call to any API function.

3.1.4 Generating PDF Documents in Memory
In addition to generating PDF documents on a file, PDFlib can also be instructed to gen-
erate the PDF directly in memory (in-core). This technique offers performance benefits
since no disk-based I/O is involved, and the PDF document can, for example, directly be
streamed via HTTP. Webmasters will be especially happy to hear that their server will
not be cluttered with temporary PDF files.

You may, at your option, periodically collect partial data (e.g., every time a page has
been finished), or fetch the complete PDF document in one big chunk at the end (after
PDF_end_document()). Interleaving production and consumption of the PDF data has
several advantages. Firstly, since not all data must be kept in memory, the memory re-

52 Chapter 3: PDFlib Programming

quirements are reduced. Secondly, such a scheme can boost performance since the first
chunk of data can be transmitted over a slow link while the next chunk is still being
generated. However, the total length of the generated data will only be known when the
complete document is finished.

The active in-core PDF generation interface. In order to generate PDF data in memory,
simply supply an empty filename to PDF_begin_document(), and retrieve the data with
PDF_get_buffer():

p.begin_document("", "");
...create document...
p.end_document("");

buf = p.get_buffer();
... use the PDF data contained in the buffer ...
p.delete();

Note The PDF data in the buffer must be treated as binary data.

This is considered »active« mode since the client decides when he wishes to fetch the
buffer contents. Active mode is available for all supported language bindings.

Note C and C++ clients must not free the returned buffer.

The passive in-core PDF generation interface. In »passive« mode, which is only avail-
able in the C and C++ language bindings, the user installs (via PDF_open_document_
callback()) a callback function which will be called at unpredictable times by PDFlib
whenever PDF data is waiting to be consumed. Timing and buffer size constraints relat-
ed to flushing (transferring the PDF data from the library to the client) can be config-
ured by the client in order to provide for maximum flexibility. Depending on the envi-
ronment, it may be advantageous to fetch the complete PDF document at once, in
multiple chunks, or in many small segments in order to prevent PDFlib from increasing
the internal document buffer. The flushing strategy can be set using the flush option of
PDF_open_document_callback()).

3.1.5 Using PDFlib on EBCDIC-based Platforms
The operators and structure elements in the PDF file format are based on ASCII, making
it difficult to mix text output and PDF operators on EBCDIC-based platforms such as
IBM eServer iSeries 400 and zSeries S/390. However, a special mainframe version of
PDFlib has been carefully crafted in order to allow mixing of ASCII-based PDF operators
and EBCDIC (or other) text output. The EBCDIC-safe version of PDFlib is available for
various operating systems and machine architectures.

In order to leverage PDFlib’s features on EBCDIC-based platforms the following items
are expected to be supplied in EBCDIC text format (more specifically, in code page 037
on iSeries, and code page 1047 on zSeries):

> PFA font files, UPR configuration files, AFM font metrics files
> encoding and code page files
> string parameters to PDFlib functions
> input and output file names
> environment variables (if supported by the runtime environment)
> PDFlib error messages will also be generated in EBCDIC format (except in Java).

3.1 General Programming 53

If you prefer to use input text files (PFA, UPR, AFM, encodings) in ASCII format you can
set the asciifile parameter to true (default is false). PDFlib will then expect these files in
ASCII encoding. String parameters will still be expected in EBCDIC encoding, however.

In contrast, the following items must always be treated in binary mode (i.e., any con-
version must be avoided):

> PDF input and output files
> PFB font outline and PFM font metrics files
> TrueType and OpenType font files
> image files and ICC profiles

3.1.6 Large File Support
In this section the term »large file« is used for files with a size of more than 2 GB. Al-
though there doesn’t seem to be any need for such large files for the average user, there
are actually enterprise applications which create or process single large files containing
large numbers of, say, invoices or statements. In such a scenario the file size may exceed
2 GB.

PDFlib supports large output files, i.e. it can create PDF output with more than 2 GB.
PDI supports processing of large input files as well. However, large file support is only
available on platforms where the underlying operating system supports large files na-
tively. Obviously, the file system in use must also support large files. Note that Acrobat
6 and older versions are unable to process large files. However, Acrobat 7 properly deals
with large files.

Note Imported files other than PDF, such as fonts and images, can not exceed the 2 GB limit. PDF
output fragments fetched with the PDF_get_buffer() interface are also subject to this limit.
Finally, PDF output files are generally limited to 1010 bytes, which is roughly 9.3 GB.

54 Chapter 3: PDFlib Programming

3.2 Page Descriptions
3.2.1 Coordinate Systems

PDF’s default coordinate system is used within PDFlib. The default coordinate system
(or default user space) has the origin in the lower left corner of the page, and uses the
DTP point as unit:

1 pt = 1/72 inch = 25.4/72 mm = 0.3528 mm

The first coordinate increases to the right, the second coordinate increases upwards.
PDFlib client programs may change the default user space by rotating, scaling, translat-
ing, or skewing, resulting in new user coordinates. The respective functions for these
transformations are PDF_rotate(), PDF_scale(), PDF_translate(), and PDF_skew(). If the co-
ordinate system has been transformed, all coordinates in graphics and text functions
must be supplied according to the new coordinate system. The coordinate system is re-
set to the default coordinate system at the start of each page.

Using metric coordinates. Metric coordinates can easily be used by scaling the coor-
dinate system. The scaling factor is derived from the definition of the DTP point given
above:

p.scale(28.3465, 28.3465);

After this call PDFlib will interpret all coordinates (except for interactive features, see
below) in centimeters since 72/2.54 = 28.3465.

As an alternative, the userunit option in PDF_begin/end_page_ext() (PDF 1.6) can be
specified to supply a scaling factor for the whole page.

Coordinates for interactive elements. PDF always expects coordinates for interactive
functions, such as the rectangle coordinates for creating text annotations, links, and file
annotations in the default coordinate system, and not in the (possibly transformed)
user coordinate system. Since this is very cumbersome PDFlib offers automatic conver-
sion of user coordinates to the format expected by PDF. This automatic conversion is ac-
tivated by setting the usercoordinates parameter to true:

p.set_parameter("usercoordinates", "true");

Since PDF supports only link and field rectangles with edges parallel to the page edges,
the supplied rectangles must be modified when the coordinate system has been trans-
formed by scaling, rotating, translating, or skewing it. In this case PDFlib will calculate
the smallest enclosing rectangle with edges parallel to the page edges, transform it to
default coordinates, and use the resulting values instead of the supplied coordinates.

The overall effect is that you can use the same coordinate systems for both page con-
tent and interactive elements when the usercoordinates parameter has been set to true.

Visualizing coordinates. In order to assist PDFlib users in working with PDF’s coordi-
nate system, the PDFlib distribution contains the PDF file grid.pdf which visualizes the
coordinates for several common page sizes. Printing the appropriately sized page on
transparent material may provide a useful tool for preparing PDFlib development.

3.2 Page Descriptions 55

Acrobat 6/7 (full version only, not the free Reader) also has a helpful facility. Simply
choose View, Navigation tabs, Info to display a measurement palette. Note that the coor-
dinates displayed refer to an origin in the top left corner of the page, and not PDF’s de-
fault origin in the lower left corner. To change the display units go to Edit, Preferences,
[General...], Units & Guides [or Page Units] and choose one of Points, Inches, Millimeters,
Picas, Centimeters. You can also go to View, Navigation Tabs, Info and select a unit from
the Options menu.

Don’t be mislead by PDF printouts which seem to experience wrong page dimen-
sions. These may be wrong because of some common reasons:

> The Page Scaling: option in Acrobat’s print dialog has a setting different from None,
resulting in scaled print output.

> Non-PostScript printer drivers are not always able to retain the exact size of printed
objects.

Rotating objects. It is important to understand that objects cannot be modified once
they have been drawn on the page. Although there are PDFlib functions for rotating,
translating, scaling, and skewing the coordinate system, these do not affect existing ob-
jects on the page but only subsequently drawn objects.

Rotating text, images, and imported PDF pages can easily be achieved with the rotate
option of PDF_fit_textline(), PDF_fit_textflow(), PDF_fit_image(), and PDF_fit_pdi_page().
Rotating such objects by multiples of 90 degrees inside the respective fitbox can be ac-
complished with the orientate option of these functions. The following example gener-
ates some text at an angle of 45˚ degrees:

p.fit_textline("Rotated text", 50.0, 700.0, "rotate=45");

Rotation for vector graphics can be achieved by applying the general coordinate trans-
formation functions PDF_translate() and PDF_rotate(). The following example creates a
rotated rectangle with lower left corner at (200, 100). It translates the coordinate origin
to the desired corner of the rectangle, rotates the coordinate system, and places the rect-
angle at (0, 0). The save/restore nesting makes it easy to continue placing objects in the
original coordinate system after the rotated rectangle is done:

p.save();
p.translate(200, 100); /* move origin to corner of rectangle*/
p.rotate(45.0); /* rotate coordinates */
p.rect(0.0, 0.0, 75.0, 25.0); /* draw rotated rectangle */
p.stroke();

p.restore();

Using top-down coordinates. Unlike PDF’s bottom-up coordinate system some graph-
ics environments use top-down coordinates which may be preferred by some develop-
ers. Such a coordinate system can easily be established using PDFlib’s transformation
functions. However, since the transformations will also affect text output (text easily
appears bottom-up), additional calls are required in order to avoid text being displayed
in a mirrored sense.

In order to facilitate the use of top-down coordinates PDFlib supports a special mode
in which all relevant coordinates will be interpreted differently. The topdown feature
has been designed to make it quite natural for PDFlib users to work in a top-down coor-
dinate system. Instead of working with the default PDF coordinate system with the ori-
gin (0, 0) at the lower left corner of the page and y coordinates increasing upwards, a

56 Chapter 3: PDFlib Programming

modified coordinate system will be used which has its origin at the upper left corner of
the page with y coordinates increasing downwards. This top-down coordinate system
for a page can be activated with the topdown option of PDF_begin_page_ext() :

p.begin_page_ext(595.0, 842.0, "topdown");

Alternatively, the topdown parameter can be used, but it must not be set within a page
description (but only between pages). For the sake of completeness we’ll list the detailed
consequences of establishing a top-down coordinate system below.

»Absolute« coordinates will be interpreted in the user coordinate system without
any modification:

> All function parameters which are designated as »coordinates« in the function de-
scriptions. Some examples: x, y in PDF_moveto(); x, y in PDF_circle(), x, y (but not width
and height!) in PDF_rect(); llx, lly, urx, ury in PDF_create_annotation()).

»Relative« coordinate values will be modified internally to match the top-down system:
> Text (with positive font size) will be oriented towards the top of the page;
> When the manual talks about »lower left« corner of a rectangle, box etc. this will be

interpreted as you see it on the page;
> When a rotation angle is specified the center of the rotation is still the origin (0, 0) of

the user coordinate system. The visual result of a clockwise rotation will still be
clockwise.

3.2.2 Page Size

Standard page formats. Absolute values and symbolic page size names may be used
for the width and height options in PDF_begin/end_page_ext(). The latter are called
<format>.width and <format>.height, where <format> is one of the standard page formats
(in lowercase, e.g. a4.width).

Page size limits. Although PDF and PDFlib don’t impose any restrictions on the usable
page size, Acrobat implementations suffer from architectural limits regarding the page
size. Note that other PDF interpreters may well be able to deal with larger or smaller doc-
ument formats. The page size limits for Acrobat are shown in Table 3.2. In PDF 1.6 and
above the userunit option in PDF_begin/end_page_ext() can be used to specify a global
scaling factor for the page.

Different page size boxes. While many PDFlib developers only specify the width and
height of a page, some advanced applications (especially for prepress work) may want
to specify one or more of PDF’s additional box entries. PDFlib supports all of PDF’s box
entries. The following entries, which may be useful in certain environments, can be
specified by PDFlib clients (definitions taken from the PDF reference):

Table 3.2 Minimum and maximum page size of Acrobat

PDF viewer minimum page size maximum page size

Acrobat 4 and above 1/24" = 3 pt = 0.106 cm 200" = 14400 pt = 508 cm

Acrobat 7 and above with
the userunit option

3 user units 14 400 user units
The maximum value 75 000 for userunit allows page sizes
up to 14 400 * 75 000 = 1 080 000 000 points = 381 km

3.2 Page Descriptions 57

> MediaBox: this is used to specify the width and height of a page, and describes what
we usually consider the page size.

> CropBox: the region to which the page contents are to be clipped; Acrobat uses this
size for screen display and printing.

> TrimBox: the intended dimensions of the finished (possibly cropped) page;
> ArtBox: extent of the page’s meaningful content. It is rarely used by application soft-

ware;
> BleedBox: the region to which the page contents are to be clipped when output in a

production environment. It may encompass additional bleed areas to account for in-
accuracies in the production process.

PDFlib will not use any of these values apart from recording it in the output file. By de-
fault PDFlib generates a MediaBox according to the specified width and height of the
page, but does not generate any of the other entries. The following code fragment will
start a new page and set the four values of the CropBox:

/* start a new page with custom CropBox */
p.begin_page_ext(595, 842, "cropbox={10 10 500 800}");

Number of pages in a document. There is no limit in PDFlib regarding the number of
generated pages in a document. PDFlib generates PDF structures which allow Acrobat to
efficiently navigate documents with hundreds of thousands of pages.

3.2.3 Paths
A path is a shape made of an arbitrary number of straight lines, rectangles, or curves. A
path may consist of several disconnected sections, called subpaths. There are several
operations which can be applied to a path:

> Stroking draws a line along the path, using client-supplied parameters (e.g., color,
line width) for drawing.

> Filling paints the entire region enclosed by the path, using client-supplied parame-
ters for filling.

> Clipping reduces the imageable area for subsequent drawing operations by replacing
the current clipping area (which is the page size by default) with the intersection of
the current clipping area and the area enclosed by the path.

> Merely terminating the path results in an invisible path, which will nevertheless be
present in the PDF file. This will only rarely be required.

It is an error to construct a path without applying any of the above operations to it.
PDFlib’s scoping system ensures that clients obey to this restriction. If you want to set
any appearance properties (e.g. color, line width) of a path you must do so before start-
ing any drawing operations. These rules can be summarized as »don’t change the ap-
pearance within a path description«.

Merely constructing a path doesn’t result in anything showing up on the page; you
must either fill or stroke the path in order to get visible results:

p.moveto(100, 100);
p.lineto(200, 100);
p.stroke();

Most graphics functions make use of the concept of a current point, which can be
thought of as the location of the pen used for drawing.

58 Chapter 3: PDFlib Programming

3.2.4 Templates

Templates in PDF. PDFlib supports a PDF feature with the technical name form
XObjects. However, since this term conflicts with interactive forms we refer to this fea-
ture as templates. A PDFlib template can be thought of as an off-page buffer into which
text, vector, and image operations are redirected (instead of acting on a regular page).
After the template is finished it can be used much like a raster image, and placed an ar-
bitrary number of times on arbitrary pages. Like images, templates can be subjected to
geometrical transformations such as scaling or skewing. When a template is used on
multiple pages (or multiply on the same page), the actual PDF operators for construct-
ing the template are only included once in the PDF file, thereby saving PDF output file
size. Templates suggest themselves for elements which appear repeatedly on several
pages, such as a constant background, a company logo, or graphical elements emitted
by CAD and geographical mapping software. Other typical examples for template usage
include crop and registration marks or custom Asian glyphs.

Using templates with PDFlib. Templates can only be defined outside of a page descrip-
tion, and can be used within a page description. However, templates may also contain
other templates. Obviously, using a template within its own definition is not possible.
Referring to an already defined template on a page is achieved with the PDF_fit_image()
function just like images are placed on the page (see Section 7.3, »Placing Images and
Imported PDF Pages«, page 158). The general template idiom in PDFlib looks as follows:

/* define the template */
template = p.begin_template_ext(template_width, template_height, "");
...place marks on the template using text, vector, and image functions...
p.end_template();
...
p.begin_page(page_width, page_height);
/* use the template */
p.fit_image(template, 0.0, 0.0, "");
...more page marking operations...
p.end_page();
...
p.close_image(template);

All text, graphics, and color functions can be used on a template. However, the follow-
ing functions must not be used while constructing a template:

> PDF_load_image(): this is not a big restriction since images can be opened outside of
a template definition, and freely be used within a template (but not opened).

> All interactive functions, since these must always be defined on the page where they
should appear in the document, and cannot be generated as part of a template.

Template support in third-party software. Templates (form XObjects) are an integral
part of the PDF specification, and can be perfectly viewed and printed with Acrobat.
However, not all PDF consumers are prepared to deal with this construct. For example,
the Acrobat plugin Enfocus PitStop 5.0 can only move templates, but cannot access indi-
vidual elements within a template.

3.3 Working with Color 59

3.3 Working with Color
Note The PDFlib Reference contains a detailed list of supported color spaces with descriptions.

3.3.1 Patterns and Smooth Shadings
As an alternative to solid colors, patterns and shadings are special kinds of colors which
can be used to fill or stroke arbitrary objects.

Patterns. A pattern is defined by an arbitrary number of painting operations which
are grouped into a single entity. This group of objects can be used to fill or stroke arbi-
trary other objects by replicating (or tiling) the group over the entire area to be filled or
the path to be stroked. Working with patterns involves the following steps:

> First, the pattern must be defined between PDF_begin_pattern() and PDF_end_
pattern(). Most graphics operators can be used to define a pattern.

> The pattern handle returned by PDF_begin_pattern() can be used to set the pattern as
the current color using PDF_setcolor().

Depending on the painttype parameter of PDF_begin_pattern() the pattern definition
may or may not include its own color specification. If painttype is 1, the pattern defini-
tion must contain its own color specification and will always look the same; if painttype
is 2, the pattern definition must not include any color specification. Instead, the current
fill or stroke color will be applied when the pattern is used for filling or stroking.

Note Patterns can also be defined based on a smooth shading (see below).

Smooth shadings. Smooth shadings, also called color blends or gradients, provide a
continuous transition from one color to another. Both colors must be specified in the
same color space. PDFlib supports two different kinds of geometry for smooth shadings:

> axial shadings are defined along a line;
> radial shadings are defined between two circles.

Shadings are defined as a transition between two colors. The first color is always taken
to be the current fill color; the second color is provided in the c1, c2, c3, and c4 parameters
of PDF_shading(). These numerical values will be interpreted in the first color’s color
space according to the description of PDF_setcolor().

Calling PDF_shading() will return a handle to a shading object which can be used in
two ways:

> Fill an area with PDF_shfill(). This method can be used when the geometry of the ob-
ject to be filled is the same as the geometry of the shading. Contrary to its name this
function will not only fill the interior of the object, but also affects the exterior. This
behavior can be modified with PDF_clip().

> Define a shading pattern to be used for filling more complex objects. This involves
calling PDF_shading_pattern() to create a pattern based on the shading, and using this
pattern to fill or stroke arbitrary objects.

3.3.2 Spot Colors
PDFlib supports spot colors (technically known as Separation color space in PDF, al-
though the term separation is generally used with process colors, too) which can be
used to print custom colors outside the range of colors mixed from process colors. Spot

60 Chapter 3: PDFlib Programming

colors are specified by name, and in PDF are always accompanied by an alternate color
which closely, but not exactly, resembles the spot color. Acrobat will use the alternate
color for screen display and printing to devices which do not support spot colors (such
as office printers). On the printing press the requested spot color will be applied in addi-
tion to any process colors which may be used in the document. This requires the PDF
files to be post-processed by a process called color separation.

PDFlib supports various built-in spot color libraries as well as custom (user-defined)
spot colors. When a spot color name is requested with PDF_makespotcolor() PDFlib will
first check whether the requested spot color can be found in one of its built-in libraries.
If so, PDFlib will use built-in values for the alternate color. Otherwise the spot color is as-
sumed to be a user-defined color, and the client must supply appropriate alternate col-
or values (via the current color). Spot colors can be tinted, i.e., they can be used with a
percentage between 0 and 1.

By default, built-in spot colors can not be redefined with custom alternate values.
However, this behavior can be changed with the spotcolorlookup parameter. This can be
useful to achieve compatibility with older applications which may use different color
definitions, and for workflows which cannot deal with PDFlib’s Lab alternate values for
PANTONE colors.

PDFlib will automatically generate suitable alternate colors for built-in spot colors
when a PDF/X or PDF/A conformance level has been selected (see Section 9.4, »PDF/X for
Print Production«, page 204). For custom spot colors it is the user’s responsibility to pro-
vide alternate colors which are compatible with the selected PDF/X or PDF/A conform-
ance level.

Note Built-in spot color data and the corresponding trademarks have been licensed by PDFlib GmbH
from the respective trademark owners for use in PDFlib software.

PANTONE® colors. PANTONE colors are well-known and
widely used on a world-wide basis. PDFlib fully supports the
Pantone Matching System• , totalling ca. 24 000 swatches.
All color swatch names from the digital color libraries listed
in Table 3.3 can be used. Commercial PDFlib customers can
request a text file with the full list of PANTONE spot color
names from our support.

Spot color names are case-sensitive; use uppercase as
shown in the examples. Old color name prefixes CV, CVV,
CVU, CVC, and CVP will also be accepted, and changed to the corresponding new color
names unless the preserveoldpantonenames parameter is true. The PANTONE prefix must
always be provided in the swatch name as shown in the examples. Generally, PANTONE
color names must be constructed according to the following scheme:

PANTONE <id> <paperstock>

where <id> is the identifier of the color (e.g., 185) and <paperstock> the abbreviation of the
paper stock in use (e.g., C for coated). A single space character must be provided between
all components constituting the swatch name. If a spot color is requested where the
name starts with the PANTONE prefix, but the name does not represent a valid PANTONE
color, the function call will fail. The following code snippet demonstrates the use of a
PANTONE color with a tint value of 70 percent:

3.3 Working with Color 61

spot = p.makespotcolor("PANTONE 281 U");
p.setcolor("fill", "spot", spot, 0.7, 0, 0);

Note PANTONE® colors displayed here may not match PANTONE-identified standards. Consult current
PANTONE Color Publications for accurate color. PANTONE® and other Pantone, Inc. trademarks
are the property of Pantone, Inc. © Pantone, Inc., 2003.

Note PANTONE® colors are not supported in PDF/X-1a mode.

HKS® colors. The HKS color system is widely used in Germa-
ny and other European countries. PDFlib fully supports HKS
colors. All color swatch names from the following digital col-
or libraries (Farbfächer) can be used (sample swatch names are
provided in parentheses):

> HKS K (Kunstdruckpapier) for gloss art paper, 88 colors
(HKS 43 K)

> HKS N (Naturpapier) for natural paper, 86 colors (HKS 43 N)
> HKS E (Endlospapier) for continuous stationary/coated, 88 colors (HKS 43 E)
> HKS Z (Zeitungspapier) for newsprint, 50 colors (HKS 43 Z)

Commercial PDFlib customers can request a text file with the full list of HKS spot color
names from our support.

Table 3.3 PANTONE spot color libraries built into PDFlib

color library name sample color name remarks

PANTONE solid coated PANTONE 185 C

PANTONE solid uncoated PANTONE 185 U

PANTONE solid matte PANTONE 185 M

PANTONE process coated PANTONE DS 35-1 C

PANTONE process uncoated PANTONE DS 35-1 U

PANTONE process coated EURO PANTONE DE 35-1 C

PANTONE process uncoated EURO PANTONE DE 35-1 U introduced in May 2006

PANTONE pastel coated PANTONE 9461 C includes new colors introduced in 2006

PANTONE pastel uncoated PANTONE 9461 U includes new colors introduced in 2006

PANTONE metallic coated PANTONE 871 C includes new colors introduced in 2006

PANTONE color bridge CMYK PC PANTONE 185 PC replaces PANTONE solid to process coated

PANTONE color bridge CMYK EURO PANTONE 185 EC replaces PANTONE solid to process coated EURO

PANTONE color bridge uncoated PANTONE 185 UP introduced in July 2006

PANTONE hexachrome coated PANTONE H 305-1 C not recommended; will be discontinued

PANTONE hexachrome uncoated PANTONE H 305-1 U not recommended; will be discontinued

PANTONE solid in hexachrome coated PANTONE 185 HC

PANTONE solid to process coated PANTONE 185 PC replaced by PANTONE color bridge CMYK PC

PANTONE solid to process coated EURO PANTONE 185 EC replaced by PANTONE color bridge CMYK EURO

62 Chapter 3: PDFlib Programming

Spot color names are case-sensitive; use uppercase as shown in the examples. The
HKS prefix must always be provided in the swatch name as shown in the examples.
Generally, HKS color names must be constructed according to one of the following
schemes:

HKS <id> <paperstock>

where <id> is the identifier of the color (e.g., 43) and <paperstock> the abbreviation of the
paper stock in use (e.g., N for natural paper). A single space character must be provided
between the HKS, <id>, and <paperstock> components constituting the swatch name. If a
spot color is requested where the name starts with the HKS prefix, but the name does
not represent a valid HKS color, the function call will fail. The following code snippet
demonstrates the use of an HKS color with a tint value of 70 percent:

spot = p.makespotcolor("HKS 38 E");
p.setcolor("fill", "spot", spot, 0.7, 0, 0);

User-defined spot colors. In addition to built-in spot colors as detailed above, PDFlib
supports custom spot colors. These can be assigned an arbitrary name (which must not
conflict with the name of any built-in color, however) and an alternate color which will
be used for screen preview or low-quality printing, but not for high-quality color sepa-
rations. The client is responsible for providing suitable alternate colors for custom spot
colors.

There is no separate PDFlib function for setting the alternate color for a new spot col-
or; instead, the current fill color will be used. Except for an additional call to set the al-
ternate color, defining and using custom spot colors works similarly to using built-in
spot colors:

p.setcolor("fill", "cmyk", 0.2, 1.0, 0.2, 0); /* define alternate CMYK values */
spot = p.makespotcolor("CompanyLogo"); /* derive a spot color from it */
p.setcolor("fill", "spot", spot, 1, 0, 0); /* set the spot color */

3.3.3 Color Management and ICC Profiles
PDFlib supports several color management concepts including device-independent col-
or, rendering intents, and ICC profiles.

Device-Independent CIE L*a*b* Color. Device-independent color values can be speci-
fied in the CIE 1976 L*a*b* color space by supplying the color space name lab to PDF_
setcolor(). Colors in the L*a*b* color space are specified by a luminance value in the
range 0-100, and two color values in the range -127 to 128. The illuminant used for the
lab color space will be D50 (daylight 5000K, 2˚ observer)

Rendering Intents. Although PDFlib clients can specify device-independent color val-
ues, a particular output device is not necessarily capable of accurately reproducing the
required colors. In this situation some compromises have to be made regarding the
trade-offs in a process called gamut compression, i.e., reducing the range of colors to a
smaller range which can be reproduced by a particular device. The rendering intent can
be used to control this process. Rendering intents can be specified for individual images
by supplying the renderingintent parameter or option to PDF_load_image(). In addition,
rendering intents can be specified for text and vector graphics by supplying the render-
ingintent option to PDF_create_gstate().

3.3 Working with Color 63

ICC profiles. The International Color Consortium (ICC)1 defined a file format for speci-
fying color characteristics of input and output devices. These ICC color profiles are con-
sidered an industry standard, and are supported by all major color management system
and application vendors. PDFlib supports color management with ICC profiles in the
following areas:

> Define ICC-based color spaces for text and vector graphics on the page.
> Process ICC profiles embedded in imported image files.
> Apply an ICC profile to an imported image (possibly overriding an ICC profile em-

bedded in the image).
> Define default color spaces for mapping grayscale, RGB, or CMYK data to ICC-based

color spaces.
> Define a PDF/X or PDF/A output intent by means of an external ICC profile.

Color management does not change the number of components in a color specification
(e.g., from RGB to CMYK).

Note ICC color profiles for common printing conditions are available for download from
www.pdflib.com, as well as links to other freely available ICC profiles.

Searching for ICC profiles. PDFlib will search for ICC profiles according to the following
steps, using the profilename parameter supplied to PDF_load_iccprofile():

> If profilename=sRGB, PDFlib will use its internal sRGB profile (see below), and termi-
nate the search.

> Check whether there is a resource named profilename in the ICCProfile resource cate-
gory. If so, use its value as file name in the following steps. If there is no such re-
source, use profilename as a file name directly.

> Use the file name determined in the previous step to locate a disk file by trying the
following combinations one after another:

<filename>
<filename>.icc
<filename>.icm
<colordir>/<filename>
<colordir>/<filename>.icc
<colordir>/<filename>.icm

On Windows 2000/XP colordir designates the directory where device-specific ICC pro-
files are stored by the operating system (typically C:\WINNT\system32\spool\drivers\
color). On Mac OS X the following paths will be tried for colordir:

/System/Library/ColorSync/Profiles
/Library/ColorSync/Profiles
/Network/Library/ColorSync/Profiles
~/Library/ColorSync/Profiles

On other systems the steps involving colordir will be omitted.

Acceptable ICC profiles. The type of acceptable ICC profiles depends on the usage pa-
rameter supplied to PDF_load_iccprofile():

> If usage=outputintent, only output device (printer) profiles will be accepted in PDF/X
mode, and any profile in PDF/A mode.

1. See www.color.org

http://www.color.org

64 Chapter 3: PDFlib Programming

> If usage=iccbased, input, display and output device (scanner, monitor, and printer)
profiles plus color space conversion profiles will be accepted. They may be specified
in the gray, RGB, CMYK, or Lab color spaces.

The sRGB color space and sRGB ICC profile. PDFlib supports the industry-standard
RGB color space called sRGB (formally IEC 61966-2-1). sRGB is supported by a variety of
software and hardware vendors and is widely used for simplified color management for
consumer RGB devices such as digital still cameras, office equipment such as color
printers, and monitors. PDFlib supports the sRGB color space and includes the required
ICC profile data internally. Therefore an sRGB profile must not be configured explicitly
by the client, but it is always available without any additional configuration. It can be
requested by calling PDF_load_iccprofile() with profilename=sRGB.

Using embedded profiles in images (ICC-tagged images). Some images may contain
embedded ICC profiles describing the nature of the image’s color values. For example,
an embedded ICC profile can describe the color characteristics of the scanner used to
produce the image data. PDFlib can handle embedded ICC profiles in the PNG, JPEG, and
TIFF image file formats. If the honoriccprofile option or parameter is set to true (which is
the default) the ICC profile embedded in an image will be extracted from the image, and
embedded in the PDF output such that Acrobat will apply it to the image. This process is
sometimes referred to as tagging an image with an ICC profile. PDFlib will not alter the
image’s pixel values.

The image:iccprofile parameter can be used to obtain an ICC profile handle for the
profile embedded in an image. This may be useful when the same profile shall be ap-
plied to multiple images.

In order to check the number of color components in an unknown ICC profile use the
icccomponents parameter.

Applying external ICC profiles to images (tagging). As an alternative to using ICC pro-
files embedded in an image, an external profile may be applied to an individual image
by supplying a profile handle along with the iccprofile option to PDF_load_image().

ICC-based color spaces for page descriptions. The color values for text and vector
graphics can directly be specified in the ICC-based color space specified by a profile. The
color space must first be set by supplying the ICC profile handle as value to one of the
setcolor:iccprofilegray, setcolor:iccprofilergb, setcolor:iccprofilecmyk parameters. Subse-
quently ICC-based color values can be supplied to PDF_setcolor() along with one of the
color space keywords iccbasedgray, iccbasedrgb, or iccbasedcmyk:

p.set_parameter("errorpolicy", "return");
icchandle = p.load_iccprofile(...);
if (icchandle == -1)
{

return;
}
p.set_value("setcolor:iccprofilecmyk", icchandle);
p.setcolor("fill", "iccbasedcmyk", 0, 1, 0, 0);

Mapping device colors to ICC-based default color spaces. PDF provides a feature for
mapping device-dependent gray, RGB, or CMYK colors in a page description to device-
independent colors. This can be used to attach a precise colorimetric specification to

3.3 Working with Color 65

color values which otherwise would be device-dependent. Mapping color values this
way is accomplished by supplying a DefaultGray, DefaultRGB, or DefaultCMYK color
space definition. In PDFlib it can be achieved by setting the defaultgray, defaultrgb, or
defaultcmyk parameters and supplying an ICC profile handle as the corresponding val-
ue. The following examples will set the sRGB color space as the default RGB color space
for text, images, and vector graphics:

/* sRGB is guaranteed to be always available */
icchandle = p.load_iccprofile("sRGB", 0, "usage=iccbased");
p.set_value("defaultrgb", icchandle);

Defining output intents for PDF/X and PDF/A. An output device (printer) profile can be
used to specify an output condition for PDF/X. This is done by supplying usage=output-
intent in the call to PDF_load_iccprofile(). For PDF/A any kind of profile can be specified as
output intent. For details see Section 9.4, »PDF/X for Print Production«, page 204, and
Section 9.5, »PDF/A for Archiving«, page 209.

66 Chapter 3: PDFlib Programming

3.4 Interactive Elements
3.4.1 Examples for Creating Interactive Elements

This section explains how to create interactive elements such as bookmarks, form
fields, and annotations. Figure 3.1 shows the resulting document with all interactive ele-
ments that we will create in this section. The document contains the following interac-
tive elements:

> At the top right there is an invisible Web link to www.kraxi.com at the text
www.kraxi.com. Clicking this area will bring up the corresponding Web page.

> A gray form field of type text is located below the Web link. Using JavaScript code it
will automatically be filled with the current date.

> The red pushpin contains an annotation with an attachment. Clicking it will open
the attached file.

> At the bottom left there is a form field of type button with a printer symbol. Clicking
this button will execute Acrobat’s menu item File, Print.

> The navigation page contains the bookmark »Our Paper Planes Catalog«. Clicking
this bookmark will bring up a page of another PDF document.

In the next paragraphs we will show in detail how to create these interactive elements
with PDFlib.

Web link. Let’s start with a link to the Web site www.kraxi.com. This is accomplished in
three steps. First, we fit the text on which the Web link should work. Using the matchbox
option with name=kraxi we specify the rectangle of the text’s fitbox for further refer-
ence.

Second, we create an action of type URI (in Acrobat: Open a web link). This will provide
us with an action handle which subsequently can be assigned to one or more interactive
elements.

Third, we create the actual link. A link in PDF is an annotation of type Link. The action
option for the link contains the event name activate which will trigger the action, plus
the act handle created above for the action itself. By default the link will be displayed
with a thin black border. Initially this is convenient for precise positioning, but we dis-
abled the border with linewidth=0.

Fig. 3.1
Document with interactive
elements

3.4 Interactive Elements 67

normalfont = p.load_font("Helvetica", "unicode", "");
p.begin_page_ext(pagewidth, pageheight, "topdown");

/* place the text line "Kraxi Systems, Inc." using a matchbox */
String optlist =

"font=" + normalfont + " fontsize=8 position={left top} " +
"matchbox={name=kraxi} fillcolor={rgb 0 0 1} underline";

p.fit_textline("Kraxi Systems, Inc.", 2, 20, optlist);

/* create URI action */
optlist = "url={http://www.kraxi.com}";
int act = p.create_action("URI", optlist);

/* create Link annotation on matchbox "kraxi" */
optlist = "action={activate " + act + "} linewidth=0 usematchbox={kraxi}";
/* 0 rectangle coordinates will be replaced with matchbox coordinates */
p.create_annotation(0, 0, 0, 0, "Link", optlist);

p.end_page_ext("");

For an example of creating a Web link on an image or on parts of a textflow, see Section
7.5, »Matchboxes«, page 177.

Bookmark for jumping to another file. Now let’s create the bookmark »Our Paper
Planes Catalog« which jumps to another PDF file called paper_planes_catalog.pdf. First
we create an action of Type GoToR. In the option list for this action we define the name
of the target document with the filename option; the destination option specifies a cer-
tain part of the page which will be enlarged. More precisely, the document will be dis-
played on the second page (page 2) with a fixed view (type fixed), where the middle of the
page is visible (left 50 top 200) and the zoom factor is 200% (zoom 2):

String optlist =
"filename=paper_planes_catalog.pdf " +
"destination={page 2 type fixed left 50 top 200 zoom 2}";

goto_action = p.create_action("GoToR", optlist);

In the next step we create the actual bookmark. The action option for the bookmark con-
tains the activate event which will trigger the action, plus the goto_action handle created
above for the desired action. The option fontstyle bold specifies bold text, and textcolor
{rgb 0 0 1} makes the bookmark blue. The bookmark text »Our Paper Planes Catalog« is
provided as a function parameter:

String optlist =
"action={activate " + goto_action + "} fontstyle=bold textcolor={rgb 0 0 1}";

catalog_bookmark = p.create_bookmark("Our Paper Planes Catalog", optlist);

Clicking the bookmark will display the specified part of the page in the target docu-
ment.

Annotation with file attachment. In the next example we create a file attachment. We
start by creating an annotation of type FileAttachment. The filename option specifies the
name of the attachment, the option mimetype image/gif specifies its type (MIME is a

68 Chapter 3: PDFlib Programming

common convention for classifying file contents). The annotation will be displayed as a
pushpin (iconname pushpin) in red (annotcolor {rgb 1 0 0}) and has a tooltip (contents {Get
the Kraxi Paper Plane!}). It will not be printed (display noprint):

String optlist =
"filename=kraxi_logo.gif mimetype=image/gif iconname=pushpin " +
"annotcolor={rgb 1 0 0} contents={Get the Kraxi Paper Plane!} display=noprint";

p.create_annotation(left_x, left_y, right_x, right_y, "FileAttachment", optlist);

Note that the size of the symbol defined with iconname does not vary; the icon will be
displayed in its standard size in the top left corner of the specified rectangle.

Button form field for printing. The next example creates a button form field which
can be used for printing the document. In the first version we add a caption to the but-
ton; later we will use a printer symbol instead of the caption. We start by creating an ac-
tion of type Named (in Acrobat: Execute a menu item). Also, we must specify the font for
the caption:

print_action = p.create_action("Named", "menuname=Print");
button_font = p.load_font("Helvetica-Bold", "unicode", "");

The action option for the button form field contains the up event (in Acrobat: Mouse Up)
as a trigger for executing the action, plus the print_action handle created above for the
action itself. The backgroundcolor {rgb 1 1 0} option specifies yellow background, while
bordercolor {rgb 0 0 0} specifies black border. The option caption Print adds the text Print
to the button, and tooltip {Print the document} creates an additional explanation for the
user. The font option specifies the font using the button_font handle created above. By
default, the size of the caption will be adjusted so that it completely fits into the but-
ton’s area. Finally, the actual button form field is created with proper coordinates, the
name print_button, the type pushbutton and the appropriate options:

String optlist =
"action {up " + print_action + "} backgroundcolor={rgb 1 1 0} " +
"bordercolor={rgb 0 0 0} caption=Print tooltip={Print the document} font=" +
button_font;

p.create_field(left_x, left_y, right_x, right_y, "print_button", "pushbutton", optlist);

Now we extend the first version of the button by replacing the text Print with a little
printer icon. To achieve this we load the corresponding image file print_icon.jpg as a
template before creating the page. Using the icon option we assign the template handle
print_icon to the button field, and create the form field similarly to the code above:

print_icon = p.load_image("auto", "print_icon.jpg", "template");
if (print_icon == -1)
{

/* Error handling */
return;

}
p.begin_page_ext(pagewidth, pageheight, "");
...
String optlist = "action={up " + print_action + "} icon=" + print_icon +

" tooltip={Print the document} font=" + button_font;

3.4 Interactive Elements 69

p.create_field(left_x, left_y, right_x, right_y, "print_button", "pushbutton", optlist);

Simple text field. Now we create a text field near the upper right corner of the page.
The user will be able to enter the current date in this field. We acquire a font handle and
create a form field of type textfield which is called date, and has a gray background:

textfield_font = p.load_font("Helvetica-Bold", "unicode", "");
String optlist = "backgroundcolor={gray 0.8} font=" + textfield_font;
p.create_field(left_x, left_y, right_x, right_y, "date", "textfield", optlist);

By default the font size is auto, which means that initally the field height is used as the
font size. When the input reaches the end of the field the font size is decreased so that
the text always fits into the field.

Text field with JavaScript. In order to improve the text form field created above we au-
tomatically fill it with the current date when the page is opened. First we create an ac-
tion of type JavaScript (in Acrobat: Run a JavaScript). The script option in the action’s op-
tion list defines a JavaScript snippet which displays the current date in the date text
field in the format month-day-year:

String optlist =
"script={var d = util.printd('mmm dd yyyy', new Date()); "
"var date = this.getField('date'); date.value = d;}"

show_date = p.create_action("JavaScript", optlist);

In the second step we create the page. In the option list we supply the action option
which attaches the show_date action created above to the trigger event open (in Acrobat:
Page Open):

String optlist = "action={open " + show_date + "}";
p.begin_page_ext(pagewidth, pageheight, optlist);

Finally we create the text field as we did above. It will automatically be filled with the
current date whenever the page is opened:

textfield_font = p.load_font("Helvetica-Bold", "unicode", "");
String optlist = "backgroundcolor={gray 0.8} font=" + textfield_font;
p.create_field(left_x, left_y, right_x, right_y, "date", "textfield", optlist);

3.4.2 Formatting Options for Text Fields
In Acrobat it is possible to specify various options for formatting the contents of a text
field, such as monetary amounts, dates, or percentages. This is implemented via custom
JavaScript code used by Acrobat. PDFlib does not directly support these formatting fea-
tures since they are not specified in the PDF reference. However, for the benefit of
PDFlib users we present some information below which will allow you to realize format-
ting options for text fields by supplying simple JavaScript code fragements with the
action option of PDF_create_field().

In order to apply formatting to a text field JavaScript snippets are attached to a text
field as keystroke and format actions. The JavaScript code calls some internal Acrobat
function where the parameters control details of the formatting.

70 Chapter 3: PDFlib Programming

The following sample creates two keystroke and format actions, and attaches them to
a form field so that the field contents will be formatted with two decimal places and the
EUR currency identifier:

keystroke_action = p.create_action("JavaScript",
"script={AFNumber_Keystroke(2, 0, 3, 0, \"EUR \", true); }");

format_action = p.create_action("JavaScript",
"script=AFNumber_Format(2, 0, 0, 0, \"EUR \", true); }");

String optlist = "font=" + font + " action={keystroke " + keystroke_action +
" format=" + format_action + "}";

p.create_field(50, 500, 250, 600, "price", "textfield", optlist);

In order to specify the various formats which are supported in Acrobat you must use ap-
propriate functions in the JavaScript code. Table 3.4 lists the JavaScript function names
for the keystroke and format actions for all supported formats; the function parameters
are described in Table 3.5. These functions must be used similarly to the example above.

Table 3.4 JavaScript formatting functions for text fields

format JavaScript functions to be used for keystroke and format actions

number AFNumber_Keystroke(nDec, sepStyle, negStyle, currStyle, strCurrency, bCurrencyPrepend)
AFNumber_Format(nDec, sepStyle, negStyle, currStyle, strCurrency, bCurrencyPrepend)

percentage AFPercent_Keystroke(ndec, sepStyle), AFPercent_Format(ndec, sepStyle)

date AFDate_KeystrokeEx(cFormat), AFDate_FormatEx(cFormat)

time AFTime_Keystroke(tFormat), AFTime_FormatEx(cFormat)

special AFSpecial_Keystroke(psf), AFSpecial_Format(psf)

Table 3.5 Parameters for the JavaScript formatting functions

parameters explanation and possible values

nDec Number of decimal places

sepStyle The decimal separator style:
0 1,234.56
1 1234.56
2 1.234,56
3 1234,56

negStyle Emphasis used for negative numbers:
0 Normal
1 Use red text
2 Show parenthesis
3 both

strCurrency Currency string to use, e.g. "\u20AC" for the Euro sign

bCurrency-
Prepend

false do not prepend currency symbol
true prepend currency symbol

3.4 Interactive Elements 71

Form fields activate the document’s dirty flag. When a PDF document containing
form fields is closed in Acrobat, it will ask whether you want to save the file, even if you
didn’t touch any fields. In technical terms, opening a PDFlib-generated PDF with form
fields will cause the document’s dirty flag to be set, i.e. Acrobat considers it as changed.
While usually this doesn’t really matter since the user will want to fill the form fields
anyway, some users may consider this behavior inelegant and annoying. You can work
around it with a small JavaScript which resets the document’s dirty flag after loading
the file. Use the following idiom to achieve this:

/* ...create some form fields... */
p.create_field("100, 500, 300, 600, "field1", "textfield", "..."

/* Create a JavaScript action which will be hooked up in the document */
action = p.create_action("JavaScript", "script={this.dirty=false;}");
...
String optlist = "action={open=" + action + "}";
p.end_document(optlist);

cFormat A date format string. It may contain the following format placeholders, or any of the time formats listed
below for tFormat:
d day of month
dd day of month with leading zero
ddd abbreviated day of the week
m month as number
mm month as number with leading zero
mmm abbreviated month name
mmmm full month name
yyyy year with four digits
yy last two digits of year

tFormat A time format string. It may contain the following format placeholders:
h hour (0-12)
hh hour with leading zero (0-12)
H hour (0-24)
HH hour with leading zero (0-24)
M minutes
MM minutes with leading zero
s seconds
ss seconds with leading zero
t 'a' or 'p'
tt 'am' or 'pm'

psf Describes a few additional formats:
0 Zip Code
1 Zip Code + 4
2 Phone Number
3 Social Security Number

Table 3.5 Parameters for the JavaScript formatting functions

parameters explanation and possible values

4.1 Overview 73

4 Unicode and Legacy Encodings
4.1 Overview

Unicode support in PDFlib. PDFlib’s text handling is based on the Unicode standard1,
almost identical to ISO 10646. Since most modern development environments support
the Unicode standard our goal is to make it as easy as possible to use Unicode strings for
creating PDF output. However, developers who don’t work with Unicode are not re-
quired to switch their application to Unicode since legacy encodings can be used as well.
In particular, PDFlib supports traditional 8-bit encodings (e.g. Windows ANSI, Latin-1)
and multi-byte CJK encodings (e.g. Shift-JIS, Big 5).

Although the majority of text will be created on PDF pages, PDFlib’s concepts for
string handling apply to other areas as well, e.g. text for interactive features such as
bookmarks.

Many print and online publications cover the Unicode standard; some important
concepts are summarized in Section 4.2, »Important Unicode Concepts«, page 74.

8-bit encodings. 8-bit encodings (also called single-byte encodings) map each byte in a
text string to a single character, and are thus limited to 256 different characters at a
time (the value 0 is generally not used). A common example of an 8-bit encoding is the
Windows ANSI encoding, which is a superset of ISO 8859-1, also called Latin-1. 8-bit en-
codings are discussed in more detail in Section 4.4, »8-Bit Encodings«, page 81.

Multi-byte CJK encodings. Because of the large number of required characters 8-bit
encodings are not suitable for Chinese, Japanese, and Korean text. A variety of encoding
schemes has been developed for use with these scripts, e.g. Shift-JIS and EUC for Japa-
nese, GB and Big5 for Chinese, and KSC for Korean. In PDF several dozens of CJK legacy
encodings are supported via predefined CMaps.

CJK CMaps are discussed in more detail in Section 4.5, »Encodings for Chinese, Japa-
nese, and Korean Text«, page 85.

1. See www.unicode.org

http://www.unicode.org

74 Chapter 4: Unicode and Legacy Encodings

4.2 Important Unicode Concepts
Characters and glyphs. When dealing with text it is important to clearly distinguish
the following concepts:

> Characters are the smallest units which convey information in a language. Common
examples are the letters in the Latin alphabet, Chinese ideographs, and Japanese syl-
lables. Characters have a meaning: they are semantic entities.

> Glyphs are different graphical variants which represent one or more particular char-
acters. Glyphs have an appearance: they are representational entities.

There is no one-to-one relationship between characters and glyphs. For example, a liga-
ture is a single glyph which is represented by two or more separate characters. On the
other hand, a specific glyph may be used to represent different characters depending on
the context (some characters look identical, see Figure 4.1).

Unicode encoding forms (UTF formats). The Unicode standard assigns a number (code
point) to each character. In order to use these numbers in computing, they must be rep-
resented in some way. In the Unicode standard this is called an encoding form (former-
ly: transformation format); this term should not be confused with font encodings. Uni-
code defines the following encoding forms:

> UTF-8: This is a variable-width format where code points are represented by 1-4
bytes. ASCII characters in the range U+0000...U+007F are represented by a single
byte in the range 00...7F. Latin-1 characters in the range U+00A0...U+00FF are repre-
sented by two bytes, where the first byte is always 0xC2 or 0xC3 (these values repre-
sent Â and Ã in Latin-1).

> UTF-16: Code points in the Basic Multilingual Plane (BMP), i.e. characters in the range
U+0000...U+FFFF are represented by a single 16-bit value. Code points in the supple-
mentary planes, i.e. in the range U+10000...U+10FFFF, are represented by a pair of 16-
bit values. Such pairs are called surrogate pairs. A surrogate pair consists of a high-
surrogate value in the range D800...DBFF and a low-surrogate value in the range
DC00...DFFF. High- and low-surrogate values can only appear as parts of surrogate
pairs, but not in any other context.

> UTF-32: Each code point is represented by a single 32-bit value.

U+0067 LATIN SMALL LETTER G

Characters Glyphs

U+0066 LATIN SMALL LETTER F +
U+0069 LATIN SMALL LETTER I

U+2126 OHM SIGN or
U+03A9 GREEK CAPITAL LETTER OMEGA

U+2167 ROMAN NUMERAL EIGHT or
U+0056 V U+0049 I U+0049 I U+0049 I

Fig. 4.1.
Relationship of glyphs

and characters

4.2 Important Unicode Concepts 75

Unicode encoding schemes and the Byte Order Mark (BOM). Computer architectures
differ in the ordering of bytes, i.e. whether the bytes constituting a larger value (16- or
32-bit) are stored with the most significant byte first (big-endian) or the least significant
byte first (little-endian). A common example for big-endian architectures is PowerPC,
while the x86 architecture is little-endian. Since UTF-8 and UTF-16 are based on values
which are larger than a single byte, the byte-ordering issue comes into play here. An en-
coding scheme (note the difference to encoding form above) specifies the encoding
form plus the byte ordering. For example, UTF-16BE stands for UTF-16 with big-endian
byte ordering. If the byte ordering is not known in advance it can be specified by means
of the code point U+FEFF, which is called Byte Order Mark (BOM). Although a BOM is not
required in UTF-8, it may be present as well, and can be used to identify a stream of
bytes as UTF-8. Table 4.1 lists the representation of the BOM for various encoding forms.

Table 4.1 Byte order marks for various Unicode encoding forms

Encoding form Byte order mark (hex) graphical representation

UTF-8 EF BB BF ï»¿

UTF-16 big-endian FE FF þÿ

UTF-16 little-endian FF FE ÿþ

UTF-32 big-endian 00 00 FE FF ? ? þÿ1

1. There is no standard graphical representation of null bytes.

UTF-32 little-endian FF FE 00 00 ÿþ ? ?1

76 Chapter 4: Unicode and Legacy Encodings

4.3 Strings in PDFlib
4.3.1 String Types in PDFlib

PDF and operating system requirements impose different string handling in PDFlib de-
pending on the purpose of a string. The PDFlib API defines and uses the following string
types:

> Content strings: these will be used to create genuine page content (page descrip-
tions) according to the encoding chosen by the user for a particular font. All text pa-
rameters of the page content functions fall in this class.

> Hypertext strings: these are mostly used for interactive features such as bookmarks
and annotations, and are explicitly labeled Hypertext string in the function descrip-
tions. Many parameters and options of the functions for interactive features fall in
this class, as well as some others.

> Name strings: these are used for external file names, font names, block names, etc.,
and are marked as name string in the function descriptions. They slightly differ from
Hypertext strings, but only in language bindings which are not Unicode-aware.

Content strings, hypertext strings, and name strings can be used with Unicode and 8-bit
encodings. Non-Unicode CJK CMaps can only be used in non-Unicode-compatible lan-
guage bindings. The details of string handling depend on the language binding, and are
discussed in Section 4.3.2, »Strings in Unicode-aware Language Bindings«, page 76 and
Section 4.3.3, »Strings in non-Unicode-aware Language Bindings«, page 77.

4.3.2 Strings in Unicode-aware Language Bindings
If a development environment supports the string data type, uses Unicode internally,
and the corresponding PDFlib language wrapper supports the language’s Unicode
strings we call the binding Unicode-aware. The following PDFlib language bindings are
Unicode-aware:

> COM
> .NET
> Java
> Python
> REALbasic
> RPG
> Tcl

String handling in these environments is straightforward: all strings will automatically
be provided to the PDFlib kernel as Unicode strings in native UTF-16 format. The lan-
guage wrappers will correctly deal with Unicode strings provided by the client, and au-
tomatically set certain PDFlib parameters. This has the following consequences:

> The PDFlib language wrapper applies all required conversions so that client-supplied
hypertext strings will always arrive in PDFlib in utf16 format and unicode encoding.

> Since the language environment always passes strings in UTF-16 to PDFlib, UTF-8 can
not be used with Unicode-aware languages. It must be converted to UTF-16 before.

> Using unicode encoding for the contents of a page is the easiest way to deal with en-
codings in Unicode-aware languages, but 8-bit encodings and single-byte text for
symbol fonts can also be used if so desired.

4.3 Strings in PDFlib 77

> Non-Unicode CMaps for Chinese, Japanese, and Korean text (see Section 4.5, »Encod-
ings for Chinese, Japanese, and Korean Text«, page 85) must be avoided since the
wrapper will always supply Unicode to the PDFlib core; only Unicode CMaps can be
used.

The overall effect is that clients can provide plain Unicode strings to PDFlib functions
without any additional configuration or parameter settings. The distinction between
hypertext strings and name strings in the function descriptions is not relevant for Uni-
code-aware language bindings.

Unicode conversion functions. If you must deal with strings in other encodings than
Unicode, you must convert them to Unicode before passing them to PDFlib. The lan-
guage-specific sections in Chapter 2, »PDFlib Language Bindings«, page 23, provide more
details regarding useful Unicode string conversion methods provided by common lan-
guage environments.

4.3.3 Strings in non-Unicode-aware Language Bindings
The following PDFlib language bindings are not Unicode-aware:

> C (no native string data type available)
> C++
> Cobol (no native string data type available)
> Perl
> PHP
> old-style Python binding for compatibility with PDFlib 6
> Ruby

In language bindings which do not support a native string data type (i.e. C, Cobol) the
length of UTF-16 strings must be supplied in a separate length parameter. Although Uni-
code text can be used in these languages, handling of the various string types is a bit
more complicated:

Content strings. Content strings are strings used to create page content. Interpreta-
tion of these strings is controlled by the textformat parameter (detailed below) and the
encoding parameter of PDF_load_font(). If textformat=auto (which is the default) utf16
format will be used for the unicode and glyphid encodings as well as UCS-2 and UTF-16
CMaps. For all other encodings the format will be bytes. In languages without a native
string data type (see list above) the length of UTF-16 strings must be supplied in a sepa-
rate length parameter.

Hypertext strings. String interpretation is controlled by the hypertextformat and
hypertextencoding parameters (detailed below). If hypertextformat=auto (which is the de-
fault) utf16 format will be used if hypertextencoding=unicode, and bytes otherwise. In lan-
guages without a native string data type (see list above) the length of UTF-16 strings
must be supplied in a separate length parameter.

Name strings. Name strings are interpreted slightly differently from page description
strings. By default, name strings are interpreted in host encoding. However, if it starts
with an UTF-8 BOM it will be interpreted as UTF-8 (or as EBCDIC UTF-8 if it starts with an
EBCDIC UTF-8 BOM). If the usehypertextencoding parameter is true, the encoding speci-

78 Chapter 4: Unicode and Legacy Encodings

fied in hypertextencoding will be applied to name strings as well. This can be used, for ex-
ample, to specify font or file names in Shift-JIS.

In C the length parameter must be 0 for UTF-8 strings. If it is different from 0 the
string will be interpreted as UTF-16. In all other non-Unicode-aware language bindings
there is no length parameter available in the API functions, and name strings must al-
ways be supplied in UTF-8 format. In order to create Unicode name strings in this case
you can use the PDF_utf16_to_utf8() utility function to create UTF-8 (see below).

Unicode conversion functions. In non-Unicode-aware language bindings PDFlib offers
the PDF_utf16_to_utf8(), PDF_utf8_to_utf16(), and PDF_utf32_to_utf16() conversion func-
tions which can be used to create UTF-8 or UTF-16 strings for passing them to PDFlib.

The language-specific sections in Chapter 2, »PDFlib Language Bindings«, page 23,
provide more details regarding useful Unicode string conversion methods provided by
common language environments.

Text format for content and hypertext strings. Unicode strings in PDFlib can be sup-
plied in the UTF-8, UTF-16, or UTF-32 formats with any byte ordering. The choice of for-
mat can be controlled with the textformat parameter for all text on page descriptions,
and the hypertextformat parameter for interactive elements. Table 4.2 lists the values
which are supported for both of these parameters. The default for the [hyper]textformat
parameter is auto. Use the usehypertextencoding parameter to enforce the same behavior
for name strings. The default for the hypertextencoding parameter is auto.

Table 4.2 Values for the textformat and hypertextformat parameters

[hyper]textformat explanation

bytes One byte in the string corresponds to one character. This is mainly useful for 8-bit encodings and
symbolic fonts. A UTF-8 BOM at the start of the string will be evaluated and then removed.

utf8 Strings are expected in UTF-8 format. Invalid UTF-8 sequences will trigger an exception if
glyphcheck=error, or will be deleted otherwise.

ebcdicutf8 Strings are expected in EBCDIC-coded UTF-8 format (only on iSeries and zSeries).

utf16 Strings are expected in UTF-16 format. A Unicode Byte Order Mark (BOM) at the start of the string
will be evaluated and then removed. If no BOM is present the string is expected in the machine’s
native byte ordering (on Intel x86 architectures the native byte order is little-endian, while on
Sparc and PowerPC systems it is big-endian).

utf16be Strings are expected in UTF-16 format in big-endian byte ordering. There is no special treatment
for Byte Order Marks.

utf16le Strings are expected in UTF-16 format in little-endian byte ordering. There is no special treatment
for Byte Order Marks.

auto Content strings: equivalent to bytes for 8-bit encodings and non-Unicode CMaps, and utf16 for
wide-character addressing (unicode, glyphid, or a UCS2 or UTF16 CMap).
Hypertext strings: UTF-8 and UTF-16 strings with BOM will be detected (in C UTF-16 strings must
be terminated with a double-null). If the string does not start with a BOM, it will be interpreted as
an 8-bit encoded string according to the hypertextencoding parameter.
This setting will provide proper text interpretation in most environments which do not use Uni-
code natively.

4.3 Strings in PDFlib 79

Although the textformat setting is in effect for all encodings, it will be most useful for
unicode encoding. Table 4.3 details the interpretation of text strings for various combi-
nations of encodings and textformat settings.

Strings in option lists. Strings within option lists require special attention since in
non-Unicode-aware language bindings they cannot be expressed as Unicode strings in
UTF-16 format, but only as byte strings. For this reason UTF-8 is used for Unicode op-
tions. By looking for a BOM at the beginning of an option, PDFlib decides how to inter-
pret it. The BOM will be used to determine the format of the string, and the string type
(content string, hypertext string, or name string as defined above) will be used to deter-
mine the appropriate encoding. More precisely, interpreting a string option works as
follows:

> If the option starts with a UTF-8 BOM (0xEF 0xBB 0xBF) it will be interpreted as UTF-8.
On EBCDIC-based systems: if the option starts with an EBCDIC UTF-8 BOM (0x57 0x8B
0xAB) it will be interpreted as EBCDIC UTF-8. If no BOM is found, string interpreta-
tion depends on the type of string:

> Content strings will be interpreted according to the applicable encoding option or the
encoding of the corresponding font (whichever is present).

> Hypertext strings will be interpreted according to the hypertextencoding parameter
or option.

> Name strings will be interpreted according to the hypertext settings if usehypertext-
encoding=true, and host encoding otherwise.

Note that the characters { and } require special handling within strings in option lists,
and must be preceded by a \ character if they are used within a string option. This re-
quirement remains for legacy encodings such as Shift-JIS: all occurrences of the byte

Table 4.3 Relationship of encodings and text format

[hypertext]encoding textformat=bytes textformat=utf8, utf16, utf16be, or utf16le

All string types:

auto see section »Automatic encoding«, page 81

U+XXXX 8-bit codes will be added to the off-
set XXXX to address Unicode values

convert Unicode values to 8-bit codes according to the cho-
sen Unicode offset

unicode and UCS2-
or UTF16 CMaps

8-bit codes are Unicode values from
U+0000 to U+00FF

any Unicode value, encoded according to the chosen text
format1

any other CMap
(not Unicode-based)

any single- or multibyte codes ac-
cording to the chosen CMap

PDFlib will throw an exception

Only content strings:

8-bit and builtin 8-bit codes Convert Unicode values to 8-bit codes according to the cho-
sen encoding1. PDFlib will throw an exception if it is not a
content string and no 8-bit encoding is found in the font
(8-bit encodings are available in Type 1 and Type 3 fonts).

1. If the Unicode character is not available in the font, PDFlib will throw an exception or replace it subject to the glyphcheck option.

glyphid 8-bit codes are glyph ids from 0 to
255

Unicode values will be interpreted as glyph ids2

2. If the glyph id is not available in the font, PDFlib will issue a warning and replace it with glyph id 0.

80 Chapter 4: Unicode and Legacy Encodings

values 0x7B and 0x7D must be preceded with 0x5C. For this reason the use of UTF-8 for
options is recommended (instead of Shift-JIS and other legacy encodings).

4.4 8-Bit Encodings 81

4.4 8-Bit Encodings
8-bit encodings (also called single-byte encodings) map each byte in a text string to a
single character, and are thus limited to 256 different characters at a time.

Table 4.4 lists the predefined encodings in PDFlib, and details their use with several
important classes of fonts. It is important to realize that certain scripts or languages
have requirements which cannot be met by common fonts. For example, Acrobat’s core
fonts do not contain all characters required for ISO 8859-2 (e.g. Polish), while PostScript
3, OpenType Pro, and TrueType »big fonts« do.

Note The »chartab« example contained in the PDFlib distribution can be used to easily print charac-
ter tables for arbitrary font/encoding combinations.

Notes on the macroman encoding. This encoding reflects the Mac OS character set, al-
beit with the old currency symbol at position 219 = 0xDB, and not the Euro glyph as re-
defined by Apple (this incompatibility is dictated by the PDF specification). The mac-
roman_apple encoding is identical to macroman except for the following differences:

> Position 219 = 0xDB in macroman_apple holds the Euro glyph instead of the currency
symbol.

> The macroman_apple encoding includes the greek/mathematical symbols as defined
in the Mac OS character set. Although these are available in the macroman_apple en-
coding, the required glyphs are contained only in few fonts.

Host encoding. The special encoding host does not have any fixed meaning, but will be
mapped to another 8-bit encoding depending on the current platform as follows:

> on Mac OS Classic it will be mapped to macroman;
> on IBM eServer zSeries with MVS or USS it will be mapped to ebcdic;
> on IBM eServer iSeries it will be mapped to ebcdic_37;
> on Windows it will be mapped to winansi;
> on all other systems (including Mac OS X) it will be mapped to iso8859-1;

Host encoding is primarily useful for writing platform-independent test programs (like
those contained in the PDFlib distribution) and other simple applications. Host encod-
ing is not recommended for production use, but should be replaced by whatever encod-
ing is appropriate.

Encoding host is used as the default encoding for Name strings in non-Unicode-
aware language bindings, since this is the most appropriate encoding for file names etc.

Automatic encoding. PDFlib supports a mechanism which can be used to specify the
most natural encoding for certain environments without further ado. Supplying the
keyword auto as an encoding name specifies a platform- and environment-specific 8-bit
encoding for text fonts as follows:

> On Windows: the current system code page (see below for details)
> On Unix and Mac OS X: iso8859-1 (except LWFN PostScript fonts on the Mac for which

auto will be mapped to macroman)
> On Mac OS Classic: macroman
> On IBM eServer iSeries: the current job’s encoding (IBMCCSID000000000000)
> On IBM eServer zSeries: ebcdic (=code page 1047).

82 Chapter 4: Unicode and Legacy Encodings

Table 4.4 Availability of glyphs for predefined encodings in several classes of fonts: some languages cannot be
represented with Acrobat’s core fonts.

code page supported languages

PS
 Le

ve
l 1

/2
,

Ac
ro

ba
t 4

/5
1

Ac
ro

ba
t 6

/7
/8

 2

co
re

 fo
nt

s

Po
st

Sc
rip

t 3
fo

nt
s3

O
pe

nT
yp

e
Pr

o
Fo

nt
s4

Tr
ue

Ty
pe

»B
ig

 Fo
nt

s«
5

winansi identical to cp1252 (superset of iso8859-1) yes yes yes yes yes
macroman Mac Roman encoding, the original Macintosh character set yes yes yes yes yes
macroman_
apple

similar to macroman, but replaces currency with Euro and includes
additional mathematical/greek symbols

– – – yes yes

ebcdic EBCDIC code page 1047 yes yes yes yes yes
ebcdic_37 EBCDIC code page 037 yes yes yes yes yes
pdfdoc PDFDocEncoding yes yes yes yes yes
iso8859-1 (Latin-1) Western European languages yes yes yes yes yes
iso8859-2 (Latin-2) Slavic languages of Central Europe – yes2 yes yes yes
iso8859-3 (Latin-3) Esperanto, Maltese – – – yes yes
iso8859-4 (Latin-4) Estonian, the Baltic languages, Greenlandic – yes2 – yes yes
iso8859-5 Bulgarian, Russian, Serbian – – – yes yes
iso8859-6 Arabic – – – – yes
iso8859-7 Modern Greek – – – 1 miss. yes
iso8859-8 Hebrew and Yiddish – – – – yes
iso8859-9 (Latin-5) Western European, Turkish 5 miss. yes2 yes yes yes
iso8859-10 (Latin-6) Nordic languages – yes2 – 1 miss. yes
iso8859-13 (Latin-7) Baltic languages – yes2 yes yes yes
iso8859-14 (Latin-8) Celtic – – – – –
iso8859-15 (Latin-9) Adds Euro as well as French and Finnish characters to

Latin-1
Euro
miss.

yes yes yes yes

iso8859-16 (Latin-10) Hungarian, Polish, Romanian, Slovenian – yes2 yes yes yes
cp1250 Central European – – yes yes yes
cp1251 Cyrillic – – – yes yes
cp1252 Western European (same as winansi) yes yes yes yes yes
cp1253 Greek – – – 1 miss. yes
cp1254 Turkish 5 miss. – yes yes yes
cp1255 Hebrew – – – – yes
cp1256 Arabic – – – – 5 miss.
cp1257 Baltic – – yes yes yes
cp1258 Viet Nam – – – – yes

1. Core fonts shipped with Acrobat 4/5 (original Adobe Latin character set; generally Type 1 Fonts since 1982)
2. The information in the table relates to the Times and Helvetica font families. The Courier font family which is used in Acrobat contains
fewer glyphs, and does not cover iso8859-2, iso8859-4, iso8859-9, iso8859-10, iso8859-13, and iso8859-16.
3. Extended Adobe Latin character set (CE-Fonts), generally Type 1 Fonts shipped with PostScript 3 devices
4. Adobe OpenType Pro fonts contain more glyphs than regular OpenType fonts.
5. Windows TrueType fonts containing large glyph complements, e.g. Tahoma

4.4 8-Bit Encodings 83

For symbol fonts the keyword auto will be mapped to builtin encoding. While automatic
encoding is convenient in many circumstances, using this method will make your
PDFlib client programs inherently non-portable.

Tapping system code pages. PDFlib can be instructed to fetch code page definitions
from the system and transform it appropriately for internal use. This is very convenient
since it frees you from implementing the code page definition yourself. Instead of sup-
plying the name of a built-in or user-defined encoding for PDF_load_font(), simply use
an encoding name which is known to the system. This feature is only available on se-
lected platforms, and the syntax for the encoding string is platform-specific:

> On Windows the encoding name is cp<number>, where <number> is the number of
any single-byte code page installed on the system (see Section 5.6.2, »Custom CJK
Fonts«, page 117, for information on multi-byte Windows code pages):

font = p.load_font("Helvetica", "cp1250", "");

Single-byte code pages will be transformed into an internal 8-bit encoding, while
multi-byte code pages will be mapped to Unicode at runtime. The text must be sup-
plied in a format which is compatible with the chosen code page (e.g. SJIS for cp932).

> On IBM eServer iSeries any Coded Character Set Identifier (CCSID) can be used. The
CCSID must be supplied as a string, and PDFlib will apply the prefix IBMCCSID to the
supplied code page number. PDFlib will also add leading 0 characters if the code page
number uses fewer than 5 characters. Supplying 0 (zero) as the code page number
will result in the current job’s encoding to be used:

font = p.load_font("Helvetica", "273", "");

> On IBM eServer zSeries with USS or MVS any Coded Character Set Identifier (CCSID) can
be used. The CCSID must be supplied as a string, and PDFlib will pass the supplied
code page name to the system literally without applying any change:

font = p.load_font("Helvetica", "IBM-273", "");

User-defined 8-bit encodings. In addition to predefined encodings PDFlib supports
user-defined 8-bit encodings. These are the way to go if you want to deal with some
character set which is not internally available in PDFlib, such as EBCDIC character sets
different from the one supported internally in PDFlib. PDFlib supports encoding tables
defined by PostScript glyph names, as well as tables defined by Unicode values.

The following tasks must be done before a user-defined encoding can be used in a
PDFlib program (alternatively the encoding can also be constructed at runtime using
PDF_encoding_set_char()):

> Generate a description of the encoding in a simple text format.
> Configure the encoding in the PDFlib resource file (see Section 3.1.3, »Resource Con-

figuration and File Searching«, page 48) or via PDF_set_parameter().
> Provide a font (metrics and possibly outline file) that supports all characters used in

the encoding.

The encoding file simply lists glyph names and numbers line by line. The following ex-
cerpt shows the start of an encoding definition:

% Encoding definition for PDFlib, based on glyph names
% name code Unicode (optional)
space 32 0x0020

84 Chapter 4: Unicode and Legacy Encodings

exclam 33 0x0021
...

If no Unicode value has been specified PDFlib will search for a suitable Unicode value in
its internal tables. The next example shows a snippet from a Unicode code page:

% Code page definition for PDFlib, based on Unicode values
% Unicode code
0x0020 32
0x0021 33
...

More formally, the contents of an encoding or code page file are governed by the follow-
ing rules:

> Comments are introduced by a percent ’%’ character, and terminated by the end of
the line.

> The first entry in each line is either a PostScript glyph name or a hexadecimal Uni-
code value composed of a 0x prefix and four hex digits (upper or lower case). This is
followed by whitespace and a hexadecimal (0xoo–0xFF) or decimal (0–255) character
code. Optionally, name-based encoding files may contain a third column with the
corresponding Unicode value.

> Character codes which are not mentioned in the encoding file are assumed to be un-
defined. Alternatively, a Unicode value of 0x0000 or the character name .notdef can
be provided for unused slots.

As a naming convention we refer to name-based tables as encoding files (*.enc), and Uni-
code-based tables as code page files (*.cpg), although PDFlib treats both kinds in the
same way, and doesn’t care about file names. In fact, PDFlib will automatically convert
between name-based encoding files and Unicode-based code page files whenever it is
necessary. This conversion is based on Adobe’s standard list of PostScript glyph names
(the Adobe Glyph List, or AGL1), but non-AGL names can also be used. PDFlib will assign
free Unicode values to these non-AGL names, and adjusts the values when reading an
OpenType font file which includes a mapping from glyph names to Unicode values.

PDFlib’s internal glyph list contains more than 6500 glyph names. Encoding files are
required for PostScript fonts with non-standard glyph names, while code pages are
more convenient when dealing with Unicode-based TrueType or OpenType fonts.

1. The AGL can be found at partners.adobe.com/public/developer/en/opentype/glyphlist.txt

http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt

4.5 Encodings for Chinese, Japanese, and Korean Text 85

4.5 Encodings for Chinese, Japanese, and Korean Text
Historically, a wide variety of CJK encoding schemes have been developed by diverse
standards bodies and companies. Fortunately, all prevalent encodings are supported by
Acrobat and PDF by default. Since the concept of an encoding is much more complicat-
ed for CJK text than for Latin text, simple 8-bit encodings no longer suffice. Instead,
PostScript and PDF use the concept of character collections and character maps (CMaps)
for organizing the characters in a font.

Predefined CMaps for common CJK encodings. The predefined CJK CMaps are listed in
Table 4.5. As can be seen from the table, they support most CJK encodings used on Mac,
Windows, and Unix systems, as well as several vendor-specific encodings, e.g. Shift-JIS,
EUC, and ISO 2022 for Japanese, GB and Big5 for Chinese, and KSC for Korean. Unicode is
supported for all locales as well. Tables with all supported characters are available from
Adobe1.

Note Unicode-aware language bindings support only use Unicode-compatible CMaps (UCS2 or
UTF16). Other CMaps can not be used (see Section 4.3.2, »Strings in Unicode-aware Language
Bindings«, page 76).

CJK text encoding for standard CMaps. The client is responsible for supplying text en-
coded such that it matches the requested CMap. PDFlib checks whether the supplied
text conforms to the requested CMap, and will raise an exception for bad text input
which doesn’t conform to the selected CMap.

For Unicode CMaps the high-order byte of a character must appear first. Alternative-
ly, the byte ordering and text format can be selected with the textformat parameter pro-
vided a Unicode CMap (UCS-2 or UTF-16) is used.

Since several of the supported encodings may contain null characters in the text
strings, C developers must take care not to use the PDF_show() etc. functions, but in-
stead PDF_show2() etc. which allow for arbitrary binary strings along with a length pa-
rameter. For all other language bindings, the text functions support binary strings, and
PDF_show2() etc. are not required.

CMap configuration. In order to create Chinese, Japanese, or Korean (CJK) text output
with one of the predefined CMaps PDFlib requires the corresponding CMap files for pro-
cessing the incoming text and mapping CJK encodings to Unicode. The CMap files are
available in a separate package. They should be installed as follows:

> On Windows the CMap files will be found automatically if you place them in the
resource/cmap directory within the PDFlib installation directory.

> On other systems you can place the CMap files at any convenient directory, and
must manually configure the CMap files by setting the SearchPath at runtime:

p.set_parameter("SearchPath", "/path/to/resource/cmap");

As an alternative method for configuring access to the CJK CMap files you can set the
PDFLIBRESOURCEFILE environment variable to point to a UPR configuration file which
contains a suitable SearchPath definition.

1. See partners.adobe.com/asn/tech/type/cidfonts.jsp for a wealth of resources related to CID fonts, including tables with
all supported glyphs (search for »character collection«).

http://partners.adobe.com/asn/tech/type/cidfonts.jsp

86 Chapter 4: Unicode and Legacy Encodings

Table 4.5 Predefined CMaps for Japanese, Chinese, and Korean text (from the PDF Reference)

locale CMap name character set and text format
Simplified
Chinese

UniGB-UCS2-H
UniGB-UCS2-V

Unicode (UCS-2) encoding for the Adobe-GB1 character collection

UniGB-UTF16-H
UniGB-UTF16-V

Unicode (UTF-16BE) encoding for the Adobe-GB1 character collection. Contains
mappings for all characters in the GB18030-2000 character set.

GB-EUC-H
GB-EUC-V

Microsoft Code Page 936 (charset 134), GB 2312-80 character set, EUC-CN encoding

GBpc-EUC-H
GBpc-EUC-V

Macintosh, GB 2312-80 character set, EUC-CN encoding, Script Manager code 2

GBK-EUC-H, -V Microsoft Code Page 936 (charset 134), GBK character set, GBK encoding
GBKp-EUC-H
GBKp-EUC-V

Same as GBK-EUC-H, but replaces half-width Latin characters with proportional
forms and maps code 0x24 to dollar ($) instead of yuan (¥).

GBK2K-H, -V GB 18030-2000 character set, mixed 1-, 2-, and 4-byte encoding
Traditional
Chinese

UniCNS-UCS2-H
UniCNS-UCS2-V

Unicode (UCS-2) encoding for the Adobe-CNS1 character collection

UniCNS-UTF16-H
UniCNS-UTF16-V

Unicode (UTF-16BE) encoding for the Adobe-CNS1 character collection. Contains
mappings for all of HKSCS-2001 (2- and 4-byte character codes)

B5pc-H, -V Macintosh, Big Five character set, Big Five encoding, Script Manager code 2
HKscs-B5-H
HKscs-B5-V

Hong Kong SCS (Supplementary Character Set), an extension to the Big Five
character set and encoding

ETen-B5-H, -V Microsoft Code Page 950 (charset 136), Big Five with ETen extensions
ETenms-B5-H
ETenms-B5-V

Same as ETen-B5-H, but replaces half-width Latin characters with proportional
forms

CNS-EUC-H, -V CNS 11643-1992 character set, EUC-TW encoding
Japanese UniJIS-UCS2-H, -V Unicode (UCS-2) encoding for the Adobe-Japan1 character collection

UniJIS-UCS2-HW-H
UniJIS-UCS2-HW-V

Same as UniJIS-UCS2-H, but replaces proportional Latin characters with half-
width forms

UniJIS-UTF16-H
UniJIS-UTF16-V

Unicode (UTF-16BE) encoding for the Adobe-Japan1 character collection. Contains
mappings for all characters in the JIS X 0213:1000 character set.

83pv-RKSJ-H Mac, JIS X 0208 with KanjiTalk6 extensions, Shift-JIS, Script Manager code 1
90ms-RKSJ-H
90ms-RKSJ-V

Microsoft Code Page 932 (charset 128), JIS X 0208 character set with NEC and IBM
extensions

90msp-RKSJ-H
90msp-RKSJ-V

Same as 90ms-RKSJ-H, but replaces half-width Latin characters with proportional
forms

90pv-RKSJ-H Mac, JIS X 0208 with KanjiTalk7 extensions, Shift-JIS, Script Manager code 1
Add-RKSJ-H, -V JIS X 0208 character set with Fujitsu FMR extensions, Shift-JIS encoding
EUC-H, -V JIS X 0208 character set, EUC-JP encoding
Ext-RKSJ-H, -V JIS C 6226 (JIS78) character set with NEC extensions, Shift-JIS encoding
H, V JIS X 0208 character set, ISO-2022-JP encoding

Korean UniKS-UCS2-H, -V Unicode (UCS-2) encoding for the Adobe-Korea1 character collection
UniKS-UTF16-H, -V Unicode (UTF-16BE) encoding for the Adobe-Korea1 character collection
KSC-EUC-H, -V KS X 1001:1992 character set, EUC-KR encoding
KSCms-UHC-H
KSCms-UHC-V

Microsoft Code Page 949 (charset 129), KS X 1001:1992 character set plus 8822
additional hangul, Unified Hangul Code (UHC) encoding

KSCms-UHC-HW-H
KSCms-UHC-HW-V

Same as KSCms-UHC-H, but replaces proportional Latin characters with half-
width forms

KSCpc-EUC-H Mac, KS X 1001:1992 with Mac OS KH extensions, Script Manager Code 3

4.5 Encodings for Chinese, Japanese, and Korean Text 87

Note On MVS the CMap files must be installed from an alternate package which contains CMaps
with shortened file names.

Code pages for custom CJK fonts. On Windows PDFlib supports any CJK code page in-
stalled on the system. On other platforms the code pages listed in Table 4.6 can be used.
These code pages will be mapped internally to the corresponding CMap (e.g. cp932 will
be mapped to 90ms-RKSJ-H/V). Because of this mapping the appropriate CMaps must be
configured (see above). The textformat parameter must be set to auto, and the text must
be supplied in a format which is compatible with the chosen code page.

Table 4.6 CJK code pages (must be used with textformat=auto or textformat=bytes)

locale code page format character set

Simplified Chinese cp936 GBK GBK

Traditional Chinese cp950 Big Five Big Five with Microsoft extensions

Japanese cp932 Shift-JIS JIS X 0208:1997 with Microsoft extensions

Korean cp949 UHC KS X 1001:1992, remaining 8822 hangul as
extension

cp1361 Johab Johab

88 Chapter 4: Unicode and Legacy Encodings

4.6 Addressing Characters and Glyphs
Some environments require the programmer to write source code in 8-bit encodings
(such as winansi, macroman, or ebcdic). This makes it cumbersome to include isolated
Unicode characters in 8-bit encoded text without changing all characters in the text to
multi-byte encoding. In order to aid developers in this situation, PDFlib supports sever-
al auxiliary methods for expressing text.

4.6.1 Escape Sequences
PDFlib supports a method for easily incorporating arbitrary values within text strings
via escape sequences (similar sequences are supported in many programming languag-
es). For example, the \t sequence in the default text of a text block can be used to include
tab characters which may not be possible by direct keyboard input. Similarly, escape se-
quences are useful for expressing codes in symbol fonts.

Escape sequences are a shortcut for creating certain byte values. The values created
from escape sequences will always be interpreted in the selected encoding (unlike char-
acter references, which will always be interpreted in Unicode). The byte values resulting
from resolving escape sequences are listed in Table 4.7; some differ between ASCII and
EBCDIC platforms. Only byte values in the range 0-255 can be expressed with escape se-
quences.

Escape sequences will not be converted by default; you must explicitly set the
escapesequence parameter or option to true if you want to use escape sequences in con-
tent strings:

p.set_parameter("escapesequence", "true");

Escape sequences will be evaluated in all content strings, hypertext strings, and name
strings after BOM detection, but before converting to the target format. If textformat=
utf16le or utf16be escape sequences must be expressed as two byte values according to
the selected format. If textformat=utf8 the resulting code will not be converted to UTF-8.

If an escape sequence cannot be resolved (e.g. \x followed by invalid hex digits) an
exception will be thrown. For content strings the behavior is controlled by the glyph-
check and errorpolicy settings.

Table 4.7 Escape sequences for byte values

Sequence
Mac, Windows,
Linux, Unix

EBCDIC platforms
(zSeries/iSeries) common interpretation

\f 0C 0C form feed

\n 0A 15/25 line feed

\r 0D 0D carriage return

\t 09 05 horizontal tabulation

\v 0B 0B line tabulation

\\ 5C E0 backslash

\xNN two hexadecimal digits specifying a byte value

\NNN three octal digits (up to \377) specifying a byte value

4.6 Addressing Characters and Glyphs 89

4.6.2 Character References and Glyph Name References

HTML-style character references. PDFlib supports all numeric character references and
character entity references defined in HTML 4.01. Numeric character references can be
supplied in decimal or hexadecimal notation; they will always be interpreted as Uni-
code values.

Character references will not be converted by default; you must explicitly set the
charref parameter or option to true if you want to use character references in content
strings:

p.set_parameter("charref", "true");

Note Code points 128-159 (decimal) or 0x80-0x9F (hexadecimal) do not reference winansi code
points. In Unicode they do not refer to printable characters, but only control characters.

The following are examples for valid character references along with a description of
the resulting character:

­ soft hyphen
­ soft hyphen
­ soft hyphen
å letter a with small circle above (decimal)
å letter a with small circle above (hexadecimal, lowercase x)
å letter a with small circle above (hexadecimal, uppercase X)
€ Euro glyph (hexadecimal)
€ Euro glyph (decimal)
€ Euro glyph (entity name)
< less than sign
> greater than sign
& ampersand sign
Α Greek Alpha

Note Although you can reference any Unicode character with character references (e.g. Greek char-
acters and mathematical symbols), the font will not automatically be switched. In order to ac-
tually use such characters you must explicitly select an appropriate font if the current font does
not contain the specified characters.

In addition to the HTML-style references mentioned above PDFlib supports custom
character entity references which can be used to specify control characters for Text-
flows. Table 4.8 lists these additional character references.

If a character reference cannot be resolved (e.g. &# followed by invalid decimal dig-
its, or & followed by an unknown character name) an exception will be thrown. For con-
tent strings the behavior is controlled by the glyphcheck and errorpolicy settings.

Glyph name references. A font may contain glyphs which are not directly accessible
because the corresponding Unicode values are not known in advance (e.g. PUA assign-
ments) or because they do not even have Unicode values in the font. Although all
glyphs in a font can be addressed via the glyphid encoding, this is very cumbersome and
does not fit Unicode workflows. As a useful facility glyph name references can be used.
These are similar to character references, but use a slightly different syntax and refer to
the glyph by name (note that the first period character is part of the syntax, while the
second is part of the glyph name in the examples):

1. See www.w3.org/TR/REC-html40/charset.html#h-5.3

http://www.w3.org/TR/REC-html40/charset.html#h-5.3

&.T.swash;
&.orn.15;

Glyph name references will not be converted by default; you must explicitly set the
charref parameter or option to true if you want to use glyph name references in content
strings:

p.set_parameter("charref", "true");

Glyph name references are useful for alternate forms (e.g. swash characters, tabular fig-
ures) and glyphs without any specific Unicode semantics (symbols, icons, and orna-
ments). The general syntax is &.<name>; where name is a glyph name which will be sub-
stituted as follows:

> Font-specific glyph names from OpenType fonts (but not OpenType CID fonts) can
be used for content strings (since these are always related to a particular font);

> Glyph names used in encodings can be used for content strings;
> Names from the Adobe Glyph List (including the uniXXXX and u1XXXX forms) plus

certain common »misnamed« glyph names will always be accepted for content
strings and hypertext strings.

If no glyph can be found for the name specified in a glyph name reference, an exception
will be thrown. For content strings the behavior is controlled by the glyphcheck and
errorpolicy settings. Glyph name references cannot be used with glyphid or builtin encod-
ing.

Using character and glyph name references. Character and glyph name references can
be used in all content strings, hypertext strings, and name strings, e.g. in text which will
be placed on the page using the show or Textflow functions, as well as in text supplied to
the hypertext functions. Character references will not be processed in text with builtin

Table 4.8 Control characters and their meaning in Textflows

Unicode character entity name equiv. Text-
flow option

meaning within Textflows in Unicode-compatible fonts

U+0020 SP, space space align words and break lines

U+00A0 NBSP, nbsp (none) (no-break space) space character which will not break lines

U+0009 HT, hortab (none) horizontal tab: will be processed according to the ruler,
tabalignchar, and tabalignment options

U+002D HY, hyphen (none) separator character for hyphenated words

U+00AD SHY, shy (none) (soft hyphen) hyphenation opportunity, only visible at line breaks

U+000B
U+2028

VT, verttab
LS, linesep

nextline (next line) forces a new line

U+000A
U+000D
U+000D and
U+000A
U+0085
U+2029

LF, linefeed
CR, return
CRLF

NEL, newline
PS, parasep

next-
paragraph

(next paragraph) Same effect as nextline; in addition, the
parindent option will affect the next line.

U+000C FF, formfeed return PDF_fit_textflow() will stop, and return the string _nextpage.

4.6 Addressing Characters and Glyphs 91

encoding. However, you can use glyph name references for symbolic fonts by using uni-
code encoding. In this case all glyphs must be addressed by name; you cannot mix nu-
merical codes and glyph names.

For symbolic Type 3 fonts glyph name references require Unicode assignments for
the glyphs in the font, and unicode encoding. The Unicode assignments can be achieved
by defining an 8-bit encoding which assigns Unicode values to the glyphs, although this
encoding won’t be used for the Type 3 font. In non-Unicode-aware language bindings
this also requires textformat=bytes.

Character and glyph name references can also be enabled for Textflow processing by
supplying the charref option to PDF_add/create_textflow() (either directly or as an inline
option), PDF_fit_textline(), or PDF_fill_textblock().

If character and glyph name references are enabled, you can supply numeric refer-
ences, entity references, and glyph name references in 8-bit-encoded text:

p.set_parameter("charref", "true");
font = p.load_font("Helvetica", "winansi", "");
if (font == -1) { ... }
p.setfont(font, 24);
p.show_xy("Price: 500€", 50, 500);

Character references will not be substituted in option lists, but they will be recognized
in options with the Unichar data type (without the ’&’ and ’;’ decoration). This recogni-
tion will always be enabled; it is not subject to the charref parameter or option.

When an & character is found in the text which does not introduce a numerical ref-
erence, character reference, or glyph name reference, an exception will be thrown if
glyphcheck=error. In other words, by setting glyphcheck=none you can use both character
or glyph name references and isolated & characters in the same text.

4.6.3 Glyph Checking and Substitution
Content strings will be visualized on the page with a particular font. However, no single
font contains all characters contained in the latest Unicode standard. While obtaining
suitable fonts is obviously a task of the PDFlib user, PDFlib tries to work around some
common problems by substituting certain characters with visually similar glyphs if the
original glyph is not available in the font. This process can be controlled in detail by the
glyphcheck and errorpolicy parameters and options, as well as the replacementchar option
of PDF_load_font().

The glyphcheck parameter and option provides control for situations where the se-
lected font does not contain any glyph for a code contained in a content string for text
output:

> glyphcheck=none: fast, but unsafe; text output may contain the missing glyph sym-
bol (often a hollow or crossed rectangle);

> glyphcheck=replace: silent approach which creates the most appropriate text output
(see below);

> glyphcheck=error: safest approach; an exception will be thrown to alert the user of the
problem. However, the output document will no longer be usable because of the ex-
ception.

The detailed behavior of glyphcheck depends on the type of encoding, and is described in
Table 4.9.

92 Chapter 4: Unicode and Legacy Encodings

Glyph replacement. If glyphcheck=replace, unavailable glyphs will recursively be re-
placed as follows:

> Select a similar glyph according to the Unicode value from PDFlib’s internal replace-
ment table. The following (incomplete) list contains some of these glyph mappings.
If the first character in the list is unavailable in a font, it will automatically be re-
placed with the second:

U+00A0 (NO-BREAK SPACE) U+0020 (SPACE)
U+00AD (SOFT HYPHEN) U+002D (HYPHEN-MINUS)
U+2010 (HYPHEN) U+002D (HYPHEN-MINUS)
U+03BC (GREEK SMALL LETTER MU) U+00C5 (MICRO SIGN)
U+212B (ANGSTROM SIGN) U+00B5 (LATIN CAPITAL LETTER A WITH RING ABOVE Å)
U+220F (N-ARY PRODUCT) U+03A0 (GREEK CAPITAL LETTER PI)
U+2126 (OHM SIGN) U+03A9 (GREEK CAPITAL LETTER OMEGA)

In addition to the internal table, the fullwidth characters U+FF01 to U+FF5E will be re-
placed with the corresponding ISO 8859-1 characters (i.e. U+0021 to U+007E) if the
fullwidth variants are not available in the font.

> Decompose Unicode ligatures into their constituent glyphs (e.g. replace U+FB00
with U+0066 U+0066)

> Select glyphs with the same Unicode semantics according to their glyph name (e.g.
replace A.swash with A, replace f_f_i with the sequence f, f, i

If no replacement was found, the character specified in the replacementchar option will
be used. If the corresponding glyph itself is not available in the font, U+00A0 (NO-
BREAK SPACE) and U+0020 (SPACE) will be tried; If these are still unavailable, U+0000
(missing glyph symbol) will be used.

4.6.4 Checking Glyph Availability
Using PDF_info_font() you can check whether a particular font contains the glyphs you
need for your application. As an example, the following code checks whether the Euro
glyph is contained in a font, assuming the font has been successfully loaded with PDF_
load_font() earlier. Note that the unicode option expects a Unichar, and glyph name ref-
erences can be used for Unichars without the & and ; decoration. This is safer than
checking the glyph name which may be euro, Euro, or something different:

if (p.info_font(font, "code", "unicode=euro") == -1)
{

Table 4.9 Glyph checking details for various encodings

glyphcheck
8-bit
encodings builtin glyphid unicode

Unicode
CMaps

other
CMaps

none unknown code or
Unicode value will
be replaced with 0

invalid glyph
id is replaced
with 0

invalid Uni-
code value is
replaced
with 0

unknown
Unicode val-
ue is repla-
ced with 0

invalid code
sequence
triggers an
exception

replace see below invalid code is re-
placed with 0 or
replacementchar

same as none see below same as none same as none

error The API functions will throw an exception if an error occurs. A detailed error message can be queried with
PDF_get_errmsg() even if the function does not return -1.

4.6 Addressing Characters and Glyphs 93

/* no glyph for Euro sign available in the font */
}

Alternatively, you can call PDF_info_textline() to check the number of unmapped glyphs
for a given text string, i.e. the number of characters in the string for which no appropri-
ate glyph is available in the font. The following code fragment queries results for a
string containing a single Euro character (which is expressed with a glyph name refer-
ence). If one unmapped glyph is found this means that the font does not contain a
glyph for the Euro sign:

String optlist = "font=" + font + " charref";

if (p.info_textline(font, "€", "unmappedglyphs", optlist) == 1)
{

/* no glyph for Euro sign available in the font */
}

5.1 Overview of Fonts and Encodings 95

5 Font Handling
5.1 Overview of Fonts and Encodings

Font handling is one of the most complex aspects of document formats. In this section
we will summarize PDFlib’s main characteristics with regard to font handling.

5.1.1 Supported Font Formats
PDFlib supports a variety of font types. This section summarizes the supported font
types and notes some of the most important aspects of these formats.

PostScript Type 1 fonts. PostScript fonts can be packaged in various file formats, and
are usually accompanied by a separate file containing metrics and other font-related in-
formation. PDFlib supports Mac and Windows PostScript fonts, and all common file for-
mats for PostScript font outline and metrics data.

TrueType fonts. PDFlib supports vector-based TrueType fonts, but not those based on
bitmaps. The TrueType font file must be supplied in Windows TTF or TTC format, or
must be installed in the Mac or Windows operating system.

OpenType fonts. OpenType is a modern font format which combines PostScript and
TrueType technology, and uses a platform-independent file format. There are two fla-
vors of OpenType fonts, both of which are supported by PDFlib:

> OpenType fonts with TrueType outlines (*.ttf) look and feel like usual TrueType
fonts.

> OpenType fonts with PostScript outlines (*.otf) contain PostScript data in a True-
Type-like file format. This flavor is also called CFF (Compact Font Format).

Contrary to PostScript Type 1 fonts, TrueType and OpenType fonts do not require any
additional metrics file since the metrics information is included in the font file itself.

Chinese, Japanese, and Korean (CJK) fonts. In addition to Acrobat’s standard CJK fonts
(see Section 5.6, »Chinese, Japanese, and Korean Fonts«, page 116), PDFlib supports cus-
tom CJK fonts in the TrueType and OpenType formats. Generally these fonts are treated
similarly to Western fonts.

Type 3 fonts. In addition to PostScript, TrueType, and OpenType fonts, PDFlib also
supports the concept of user-defined (Type 3) PDF fonts. Unlike the common font for-
mats, user-defined fonts are not fetched from an external source (font file or operating
system services), but must be completely defined by the client by means of PDFlib’s na-
tive text, graphics, and image functions. Type 3 fonts are useful for the following pur-
poses:

> bitmap fonts,
> custom graphics, such as logos can easily be printed using simple text operators,
> Japanese gaiji (user-defined characters) which are not available in any predefined

font or encoding.

96 Chapter 5: Font Handling

5.1.2 Font Encodings
All fonts for text on a page must be used with a suitable encoding. The encoding defines
how the actual bytes in a string will be interpreted by PDFlib and Acrobat, and how they
translate into text on a page. PDFlib supports a variety of encoding methods.

All supported encodings can be arbitrarily mixed in one document. You may even
use different encodings for a single font, although the need to do so will only rarely
arise.

Note Not all encodings can be used with a given font. The user is responsible for making sure that
the font contains all characters required by a particular encoding. This can even be problematic
with Acrobat’s core fonts (see Table 4.4).

Identifying the glyphs in a font. There are three fundamentally different methods for
identifying individual glyphs (representations of a character) in a font:

> PostScript Type 1 fonts are based on the concept of glyph names: each glyph is la-
belled with a unique name which can be used to identify the character, and con-
struct code mappings which are suitable for a certain environment. While glyph
names have served their purpose for quite some time they impose severe restric-
tions on modern computing because of their space requirements and because they
do not really meet the requirements of international use (in particular CJK fonts).

> TrueType and OpenType fonts identify individual glyphs based on their Unicode
values. This makes it easy to add clear semantics to all glyphs in a text font. However,
there are no standard Unicode assignments for pi or symbol fonts. This implies some
difficulties when using symbol fonts in a Unicode environment.

> Chinese, Japanese, and Korean OpenType fonts are based on the concept of Character
IDs (CIDs). These are basically numbers which refer to a standard repository (called
character complement) for the respective language.

There is considerable overlap among these concepts. For example, TrueType fonts may
contain an auxiliary table of PostScript glyph names for compatibility reasons. On the
other hand, Unicode semantics for many standard PostScript glyph names are available
in the Adobe Glyph List (AGL). PDFlib supports all three methods (name-based, Unicode,
CID).

8-Bit encodings. 8-bit encodings are discussed in detail in Section 4.4, »8-Bit Encod-
ings«, page 81. They can be pulled from various sources:

> A large number of predefined encodings according to Table 4.4. These cover the most
important encodings currently in use on a variety of systems, and in a variety of lo-
cales.

> User-defined encodings which can be supplied in an external file or constructed dy-
namically at runtime with PDF_encoding_set_char(). These encodings can be based on
glyph names or Unicode values.

> Encodings pulled from the operating system, also known as system encoding. This
feature is only available on Windows, IBM eServer iSeries, and zSeries.

> Abbreviated Unicode-based encodings which can be used to conveniently address
any Unicode range of 256 consecutive characters with 8-bit values.

> Encodings specific to a particular font. These are also called font-specific or builtin en-
codings.

5.1 Overview of Fonts and Encodings 97

Wide-character addressing. In addition to 8-bit encodings, various other addressing
schemes are supported which are much more powerful, and not subject to the 256 char-
acter limit.

> Purely Unicode-based addressing via the unicode encoding keyword. In this case the
client directly supplies Unicode strings to PDFlib. The Unicode strings may be for-
matted according to one of several standard methods (such as UTF-16, UTF-8) and
byte orderings (little-endian or big-endian).

> CMap-based addressing for a variety of Chinese, Japanese, and Korean standards.
PDFlib supports all CMaps supported by Acrobat (see Section 5.6, »Chinese, Japanese,
and Korean Fonts«, page 116).

> Glyph id addressing for TrueType and OpenType fonts via the glyphid encoding key-
word. This is useful for advanced text processing applications which need access to
individual glyphs in a font without reference to any particular encoding scheme, or
must address glyphs which do not have any Unicode mapping. The number of valid
glyph ids in a font can be queried with the maxcode keyword in PDF_info_font().

> Direct CID addressing: this is mainly useful for creating CJK character collection ta-
bles.

98 Chapter 5: Font Handling

5.2 Font Format Details
5.2.1 PostScript Type 1 Fonts

PostScript font file formats. PostScript Type 1 fonts are always split in two parts: the
actual outline data and the metrics information. PDFlib supports the following file for-
mats for PostScript Type 1 outline and metrics data on all platforms:

> The platform-independent AFM (Adobe Font Metrics) and the Windows-specific PFM
(Printer Font Metrics) format for metrics information. While AFM-based font metrics
can be rearranged to any encoding supported by the font, common PFM metrics files
for Western fonts (code page 1252) can only be used with the following encodings:
auto, winansi, iso8859-1, unicode, ebcdic. PFM files for symbol fonts can be used with
builtin encoding. PFM files for other code pages can be used with an encoding which
matches the code page in the PFM (or any subset thereof), or with encoding builtin to
choose the PFM’s internal code page, or with unicode. For example, a PFM for a cyrillic
font can be used with the encodings cp1250, builtin, and unicode. Encoding auto will
select an appropriate encoding automatically.

> The platform-independent PFA (Printer Font ASCII) and the Windows-specific PFB
(Printer Font Binary) format for font outline information in the PostScript Type 1 for-
mat, (sometimes also called »ATM fonts«).

> On the Mac, resource-based PostScript Type 1 fonts, i.e. LWFN (LaserWriter Font) out-
line fonts, are also supported. These are accompanied by a font suitcase (FOND re-
source, or FFIL) which contains metrics data (plus screen fonts, which will be ignored
by PDFlib). PostScript host fonts can be used with the followings encodings: auto,
macroman, macroman_apple, unicode, and builtin. However, macroman and macroman_
apple may not be accepted for some fonts subject to the glyph complement of the
font.
When working with PostScript host fonts the LWFN file must be placed in the same
directory as the font suitcase, and must be named according to the 5+3+3 rule. Note
that PostScript host fonts are not supported in Carbon-less (Classic) builds of PDFlib.

> OpenType fonts with PostScript outlines (*.otf).

PostScript font names. If you are working with font files you can use arbitrary alias
names (see Section , »Sources of Font Data«, page 101). If you want to know the font’s in-
ternal name there are several possibilities to determine it:

> Open the font outline file (*.pfa or *.pfb), and look for the string after the entry
/FontName. Omit the leading / character from this entry, and use the remainder as
the font name.

> If you are working with Windows 2000/XP or Mac OS X 10.4 or above you can double-
click the font file and will see a font sample along with the PostScript name of the
font.

> Open the AFM metrics file and look for the string after the entry FontName.

Note The PostScript font name may differ substantially from the Windows font menu name, e.g.
»AvantGarde-Demi« (PostScript name) vs. »AvantGarde, Bold« (Windows font menu name).
Also, the font name as given in any Windows .inf file is not relevant for use with PDF.

5.2 Font Format Details 99

PostScript glyph names. In order to write a custom encoding file or find fonts which
can be used with one of the supplied encodings you will have to find information about
the exact definition of the character set to be defined by the encoding, as well as the
glyph names used in the font files. You must also ensure that a chosen font provides all
necessary characters for the encoding. If you happen to have the FontLab1 font editor
(by the way, a great tool for dealing with all kinds of font and encoding issues), you may
use it to find out about the encodings supported by a given font (look for »code pages«
in the FontLab documentation).2

For the convenience of PDFlib users, the PostScript program print_glyphs.ps in the dis-
tribution fileset can be used to find the names of all characters contained in a PostScript
font. In order to use it, enter the name of the font at the end of the PostScript file and
send it (along with the font) to a PostScript printer or convert it to PDF with Acrobat Dis-
tiller. The program will print all glyphs in the font, sorted alphabetically by glyph name.

In order to address glyphs in a font by their name you can use PDFlib’s syntax for
glyph names (see Section 4.6.2, »Character References and Glyph Name References«,
page 89).

5.2.2 TrueType and OpenType Fonts

TrueType and OpenType file formats. TT and OT font files are self-contained: they con-
tain all required information in a single file. PDFlib supports the following file formats
for TrueType and OpenType fonts:

> Windows TrueType fonts (*.ttf), including CJK fonts
> Platform-independent OpenType fonts with TrueType (*.ttf) or PostScript outlines

(*.otf), including CJK fonts.
> TrueType collections (*.ttc) with multiple fonts in a single file (mostly used for CJK

fonts)
> End-user defined character (EUDC) fonts (*.tte) created with Microsoft’s eudcedit.exe

tool.
> On the Mac any TrueType font installed on the system (including .dfont) can also be

used in PDFlib.

TrueType and OpenType font names. If you are working with font files you can use ar-
bitrary alias names (see Section , »Sources of Font Data«, page 101). In the generated PDF
the name of a TrueType font may differ from the name used in PDFlib (or Windows).
This is normal, and results from the fact that PDF uses the PostScript name of a True-
Type font, which differs from its genuine TrueType name (e.g., TimesNewRomanPSMT vs.
Times New Roman).

5.2.3 User-Defined (Type 3) Fonts
Type 3 fonts in PDF (as opposed to PostScript Type 3 fonts) are not actually a file format.
Instead, the glyphs in a Type 3 font must be defined at runtime with standard PDFlib
graphics functions. Since all PDFlib features for vector graphics, raster images, and even
text output can be used in Type 3 font definitions, there are no restrictions regarding

1. See www.fontlab.com
2. Information about the glyph names used in PostScript fonts can be found at partners.adobe.com/asn/tech/type/
unicodegn.jsp (although font vendors are not required to follow these glyph naming recommendations).

http://www.fontlab.com
http://partners.adobe.com/asn/tech/type/unicodegn.jsp
http://partners.adobe.com/asn/tech/type/unicodegn.jsp

100 Chapter 5: Font Handling

the contents of the characters in a Type 3 font. Combined with the PDF import library
PDI you can even import complex drawings as a PDF page, and use those for defining a
character in a Type 3 font.

Note PostScript Type 3 fonts are not supported.

Type 3 fonts must completely be defined outside of any page (more precisely, the font
definition must take place in document scope). The following example demonstrates the
definition of a simple Type 3 font:

p.begin_font("Fuzzyfont", 0.001, 0.0, 0.0, 0.001, 0.0, 0.0, "");

p.begin_glyph("circle", 1000, 0, 0, 1000, 1000);
p.arc(500, 500, 500, 0, 360);
p.fill();
p.end_glyph();

p.begin_glyph("ring", 400, 0, 0, 400, 400);
p.arc(200, 200, 200, 0, 360);
p.stroke();
p.end_glyph();

p.end_font();

The font will be registered in PDFlib, and its name can be supplied to PDF_load_font()
along with an encoding which contains the names of the glyphs in the Type 3 font.
Please note the following when working with Type 3 fonts:

> Similar to patterns and templates, images cannot be opened within a glyph descrip-
tion. However, they can be opened before starting a glyph description, and placed
within the glyph description. Alternatively, inline images may be used for small bit-
maps to overcome this restriction.

> Due to restrictions in PDF consumers all characters used in text output must actual-
ly be defined in the font: if character code x is to be displayed with PDF_show() or a
similar function, and the encoding contains glyphname at position x, then glyphname
must have been defined via PDF_begin_glyph(). This restriction affects only Type 3
fonts; missing glyphs in PostScript Type 1, TrueType, or OpenType fonts will simply
be ignored.

> Some PDF consumers require a glyph named .notdef if codes will be used for which
the corresponding glyph names are not defined in the font. Acrobat 8 may even
crash if a .notdef glyph is not present. The .notdef glyph must be present, but it may
simply contain an empty glyph description.

> When normal bitmap data is used to define characters, unused pixels in the bitmap
will print as white, regardless of the background. In order to avoid this and have the
original background color shine through, use the mask parameter for constructing
the bitmap image.

> The interpolate option for images may be useful for enhancing the screen and print
appearance of Type 3 bitmap fonts.

> Type 3 fonts do not contain any typographic properties such as ascender, descender,
etc. However, these can be set by using the corresponding options in PDF_load_font().

5.3 Locating, Embedding and Subsetting Fonts 101

5.3 Locating, Embedding and Subsetting Fonts
5.3.1 Searching for Fonts

Sources of Font Data. PDFlib loads fonts with the function PDF_load_font() or appro-
priate font options in PDF_fit_textline() and PDF_add/create_textflow(). You can use a
font’s native name, or work with arbitrary custom font names which will be used to lo-
cate the font data. Custom font names should be unique within a document. In PDF_
info_font() this font name can be queried with the apiname key.

Subsequent calls to PDF_load_font() will return the same font handle if all options
are identical to those provided in the first call to this function; otherwise a new font
handle will be created for the same font name. PDFlib supports the following sources of
font data:

> Disk-based font files
> Fonts pulled from the Windows or Mac operating system (host fonts)
> PDF standard fonts: these are from a small set of Latin and CJK fonts with well-

known names
> Type 3 fonts which have been defined with PDF_begin_font() and related functions
> Font data passed by the client directly in memory by means of a PDFlib virtual file

(PVF). This is useful for advanced applications which have the font data already load-
ed into memory and want to avoid unnecessary disk access by PDFlib (see Section
3.1.2, »The PDFlib Virtual File System (PVF)«, page 47 for details on virtual files).

The font name supplied to PDFlib is a name string. The choice of font name depends on
the method for locating the font data. PDFlib searches for fonts according to the steps
described below (in the specified order).

Standard CJK fonts. Acrobat supports various standard fonts for CJK text; see Section
5.6.1, »Standard CJK Fonts«, page 116, for more details and a list of standard CJK fonts. If
the requested font name matches one of the standard CJK fonts the font will be selected,
for example:

font = p.load_font("KozGoPro-Medium", "90msp-RKSJ-H", "");

Type 3 fonts. Type 3 fonts must be defined at runtime by defining its glyphs with stan-
dard PDFlib graphics functions (see Section 5.2.3, »User-Defined (Type 3) Fonts«, page
99). If the font name supplied to PDF_begin_font() matches the font name requested
with PDF_load_font() the font will be selected, for example:

font = p.load_font("PDFlibLogoFont", "logoencoding", "");

Font outline files. The font name is related to the name of a disk-based or virtual font
outline file via the FontOutline resource, for example:

p.set_parameter("FontOutline", "f1=/usr/fonts/DFHSMincho-W3.ttf");
font = p.load_font("f1", "unicode", "");

As an alternative to runtime configuration via PDF_set_parameter(), the FontOutline re-
source can be configured in a UPR file (see Section 3.1.3, »Resource Configuration and
File Searching«, page 48). In order to avoid absolute file names you can use the Search-

102 Chapter 5: Font Handling

Path resource category (again, the SearchPath resource category can alternatively be con-
figured in a UPR file), for example:

p.set_parameter("SearchPath", "/usr/fonts");
p.set_parameter("FontOutline", "f1=DFHSMincho-W3.ttf");
font = p.load_font("f1", "unicode", "");

For PostScript fonts the corresponding resource configuration must relate the font met-
rics and outline data (the latter only if embedding is requested, see Section 5.3.3, »Font
Embedding«, page 105) to the corresponding disk file(s):

p.set_parameter("FontOutline", "f1=LuciduxSans.pfa");
p.set_parameter("FontPFM", "f1=LuciduxSans.pfm");
font = p.load_font("f1", "unicode", "embedding");

In order to select a font which is contained in a TrueType Collection (TTC, see Section
5.6.2, »Custom CJK Fonts«, page 117) file you directly specify its name:

p.set_parameter("FontOutline", "f1=msgothic.ttc");
font = p.load_font("MS Gothic", "unicode", "");

The font name can be encoded in ASCII or Unicode, and will be matched against all
names of all fonts in the TTC file. Alternatively, to select the n-th font in a TTC file you
can specify the number n with a colon after the font name:

p.set_parameter("FontOutline", "f1=msgothic.ttc");
font = p.load_font("f1:0", "unicode", "");

PostScript font metric files. The font name is related to the name of a disk-based or
virtual PostScript font metric file via the FontAFM or FontPFM resource. This is sufficient
if font embedding is not required, for example:

p.set_parameter("FontOutline", "f2=carta.afm");
font = p.load_font("f2", "builtin", "");

Host font aliases. The font name is related to the name of a host font via the HostFont
resource. For example, to replace one of the Latin core fonts (see below) with a host font
installed on the system you must configure the font in the HostFont resource category.
The following line makes sure that instead of using the built-in core font data, the Sym-
bol font metrics and outline data will be taken from the host system:

p.set_parameter("HostFont", "Symbol=Symbol");
font = p.load_font("Symbol", "builtin", "embedding");

Latin core fonts. PDF viewers support a core set of 14 fonts which are assumed to be al-
ways available. Full metrics information for the core fonts is already built into PDFlib so
that no additional data are required (unless the font is to be embedded). The core fonts
have the following names:

Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,
Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,
Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic,
Symbol, ZapfDingbats

The following code fragment requests one of the core fonts without any configuration:

5.3 Locating, Embedding and Subsetting Fonts 103

font = p.load_font("Times-Roman", "unicode", "");

Host fonts. If the font name matches the name of a system font (also known as a host
font) on Windows or Mac it will be selected. See Section 5.3.2, »Host Fonts on Windows
and Mac«, page 103, for more details on host fonts. Example:

font = p.load_font("Verdana", "unicode", "");

On Windows an optional font style can be added to the font name after a comma:

font = p.load_font("Verdana,Bold", "unicode", "");

Host font names can be encoded in ASCII. On Windows Unicode can also be used.

Extension-based search for font files. If PDFlib couldn’t find any font with the speci-
fied name it will loop over all entries in the SearchPath resource category, and add all
known file name suffixes to the supplied font name in an attempt to locate the font
metrics or outline data. The details of the extension-based search algorithm are as fol-
lows:

> The following suffixes will be added to the font name, and the resulting file names
tried one after the other to locate the font metrics (and outline in the case of True-
Type and OpenType fonts):

.ttf .otf .afm .pfm .ttc .tte

.TTF .OTF .AFM .PFM .TTC .TTE

> If embedding is requested for a PostScript font, the following suffixes will be added
to the font name and tried one after the other to find the font outline file:

.pfa .pfb

.PFA .PFB

> All trial file names above will be searched for »as is«, and then by prepending all di-
rectory names configured in the SearchPath resource category.

This means that PDFlib will find a font without any manual configuration provided the
corresponding font file consists of the font name plus the standard file name suffix ac-
cording to the font type, and is located in one of the SearchPath directories.

The following groups of statements will achieve the same effect with respect to lo-
cating the font outline file:

p.set_parameter("FontOutline", "Arial=/usr/fonts/Arial.ttf");
font = p.load_font("Arial", "unicode", "");

and

p.set_parameter("SearchPath", "/usr/fonts");
font = p.load_font("Arial", "unicode", "");

5.3.2 Host Fonts on Windows and Mac
On Mac and Windows systems PDFlib can access TrueType, OpenType, and PostScript
fonts which have been installed in the operating system. We refer to such fonts as host
fonts. Instead of manually configuring font files simply install the font in the system
(usually by dropping it into the appropriate directory), and PDFlib will happily use it.

104 Chapter 5: Font Handling

When working with host fonts it is important to use the exact (case-sensitive) font
name. Since font names are crucial we mention some platform-specific methods for de-
termining font names below. More information on font names can be found in Section
5.2.1, »PostScript Type 1 Fonts«, page 98, and Section 5.2.2, »TrueType and OpenType
Fonts«, page 99.

Finding host font names on Windows. You can easily find the name of an installed
font by double-clicking the font file, and taking note of the full font name which will be
displayed in the first line of the resulting window. Some fonts may have parts of their
name localized according to the respective Windows version in use. For example, the
common font name portion Bold may appear as the translated word Fett on a German
system. In order to retrieve the host font data from the Windows system you must use
the translated form of the font name in PDFlib (e.g. Arial Fett), or use font style names
(see below). However, in order to retrieve the font data directly from file you must use
the generic (non-localized) form of the font name (e.g. Arial Bold).

If you want to examine TrueType fonts in more detail take a look at Microsoft’s free
»font properties extension«1 which will display many entries of the font’s TrueType ta-
bles in human-readable form.

Windows font style names. When loading host fonts from the Windows operating sys-
tem PDFlib users have access to a feature provided by the Windows font selection ma-
chinery: style names can be provided for the weight and slant, for example

font = p.load_font("Verdana,Bold", "unicode", "");

This will instruct Windows to search for a particular bold, italic, or other variation of the
base font. Depending on the available fonts Windows will select a font which most
closely resembles the requested style (it will not create a new font variation). The font
found by Windows may be different from the requested font, and the font name in the
generated PDF may be different from the requested name; PDFlib does not have any
control over Windows’ font selection. Font style names only work with host fonts, but
not for fonts configured via a font file.

The following keywords (separated from the font name with a comma) can be at-
tached to the base font name to specify the font weight:

none, thin, extralight, ultralight, light, normal, regular, medium,
semibold, demibold, bold, extrabold, ultrabold, heavy, black

The keywords are case-insensitive. The italic keyword can be specified alternatively or in
addition to the above. If two style names are used both must be separated with a com-
ma, for example:

font = p.load_font("Verdana,Bold,Italic", "unicode", "");

Note Windows style names for fonts may be useful if you have to deal with localized font names
since they provide a universal method to access font variations regardless of their localized
names.

Note Do not confuse the Windows style name convention with the fontstyle option which looks
similar, but works on a completely different basis.

1. See www.microsoft.com/typography/TrueTypeProperty21.mspx

http://www.microsoft.com/typography/TrueTypeProperty21.mspx

5.3 Locating, Embedding and Subsetting Fonts 105

Potential problem with host font access on Windows. We’d like to alert users to a po-
tential problem with font installation on Windows. If you install fonts via the File, Install
new font... menu item (as opposed to dragging fonts to the Fonts directory) there’s a
check box Copy fonts to Fonts folder. If this box is unchecked, Windows will only place a
shortcut (link) to the original font file in the fonts folder. In this case the original font
file must live in a directory which is accessible to the application using PDFlib. In partic-
ular, font files outside of the Windows Fonts directory may not be accessible to IIS with
default security settings. Solution: either copy font files to the Fonts directory, or place
the original font file in a directory where IIS has read permission.

Similar problems may arise with Adobe Type Manager (ATM) if the Add without copy-
ing fonts option is checked while installing fonts.

Finding host font names on the Mac. Using the Font Book utility, which is part of
Mac OS X, you can find the names of installed host fonts. However, in some cases Font
Book does not display the proper QuickDraw name of a font which is required by PDFlib.

For this reason we recommend Apple’s freely available Font Tools1. This suite of com-
mand-line utilities contains a program called ftxinstalledfonts which is useful for deter-
mining the exact QuickDraw name of all installed fonts. In order to determine the font
name expected by PDFlib, install Font Tools and issue the following statement in a ter-
minal window:

ftxinstalledfonts -q

Potential problem with host font access on the Mac. In our testing we found that new-
ly installed fonts are sometimes not accessible for UI-less applications such as PDFlib
until the user logs out from the console, and logs in again.

5.3.3 Font Embedding
PDFlib is capable of embedding font outlines into the generated PDF output. Font em-
bedding is controlled via the embedding option of PDF_load_font() (although in some
cases PDFlib will enforce font embedding):

font = p.load_font("WarnockPro", "winansi", "embedding");

Alternatively, a font descriptor containing only the character metrics and some general
information about the font (without the actual glyph outlines) can be embedded. If a
font is not embedded in a PDF document, Acrobat will take it from the target system if
available, or construct a substitute font according to the font descriptor. Table 5.1 lists
different situations with respect to font usage, each of which poses different require-
ments on the font and metrics files required by PDFlib. In addition to the requirements
listed in Table 5.1 the corresponding CMap files (plus in some cases the Unicode map-
ping CMap for the respective character collection, e.g. Adobe-Japan1-UCS2) must be avail-
able in order to use a (standard or custom) CJK font with any of the standard CMaps.

When a font with font-specific encoding (a symbol font) or one containing glyphs
outside Adobe’s Standard Latin character set is used, but not embedded in the PDF out-
put, the resulting PDF will be unusable unless the font is already natively installed on
the target system (since Acrobat can only simulate Latin text fonts). Such PDF files are

1. See developer.apple.com/textfonts/download

http://developer.apple.com/textfonts/download/

106 Chapter 5: Font Handling

inherently nonportable, although they may be of use in controlled environments, such
as intra-corporate document exchange.

Legal aspects of font embedding. It’s important to note that mere possession of a font
file may not justify embedding the font in PDF, even for holders of a legal font license.
Many font vendors restrict embedding of their fonts. Some type foundries completely
forbid PDF font embedding, others offer special online or embedding licenses for their
fonts, while still others allow font embedding provided subsetting is applied to the font.
Please check the legal implications of font embedding before attempting to embed
fonts with PDFlib. PDFlib will honor embedding restrictions which may be specified in a
TrueType or OpenType font. If the embedding flag in a TrueType font is set to no
embedding1, PDFlib will honor the font vendor’s request, and reject any attempt at em-
bedding the font.

5.3.4 Font Subsetting
In order to decrease the size of the PDF output, PDFlib can embed only those characters
from a font which are actually used in the document. This process is called font subset-
ting. It creates a new font which contains fewer glyphs than the original font, and omits
font information which is not required for PDF viewing. Note, however, that Acrobat’s
TouchUp tool will refuse to work with text in subset fonts. Font subsetting is particular-
ly important for CJK fonts. PDFlib supports subsetting for the following types of fonts:

> TrueType fonts
> OpenType fonts with PostScript or TrueType outlines
> Type 3 fonts (special handling required, see below)

When a font for which subsetting has been requested is used in a document, PDFlib will
keep track of the characters actually used for text output. There are several controls for
the subsetting behavior:

> The default subsetting behavior is controlled by the autosubsetting parameter. If it is
true, subsetting will be enabled for all fonts where subsetting is possible (except
Type 3 fonts which require special handling, see below). The default value is true.

> If autosubsetting=true: The subsetlimit parameter contains a percentage value. If a
document uses more than this percentage of glyphs in a font, subsetting will be dis-

Table 5.1 Different font usage situations and required files

font usage
font metrics file must be
available?

 font outline file must be
available?

one of the 14 core fonts no only if embedding is desired

TrueType, OpenType, or PostScript Type 1 host font installed
on the Mac or Windows system

no no

non-core PostScript fonts yes only if embedding is desired

TrueType fonts n/a yes

OpenType fonts, incl. CJK TrueType and OpenType fonts n/a yes

standard CJK fonts1

1. See Section 5.6, »Chinese, Japanese, and Korean Fonts«, page 116, for more information on CJK fonts.

no no

1. More specifically: if the fsType flag in the OS/2 table of the font has a value of 2.

5.3 Locating, Embedding and Subsetting Fonts 107

abled for this particular font, and the complete font will be embedded instead. This
saves some processing time at the expense of larger output files:

p.set_value("subsetlimit", 75); /* set subset limit to 75% */

The default value of subsetlimit is 100 percent. In other words, the subsetting option
requested at PDF_load_font() will be honored unless the client explicitly requests a
lower limit than 100 percent.

> If autosubsetting=true: The subsetminsize parameter can be used to completely disable
subsetting for small fonts. If the original font file is smaller than the value of
subsetminsize in KB, font subsetting will be disabled for this font.

> If autosubsetting=false, but subsetting is desired for a particular font nevertheless,
the subsetting option must be supplied to PDF_load_font():

font = p.load_font("WarnockPro", "winansi", "subsetting");

Embedding and subsetting TrueType fonts. If a TrueType font is used with an encod-
ing different from winansi and macroman it will be converted to a CID font for PDF out-
put by default. For encodings which contain only characters from the Adobe Glyph List
(AGL) this can be prevented by setting the autocidfont parameter to false.

Type 3 font subsetting. Type 3 fonts must be defined and therefore embedded before
they can be used in a document; on the other hand, subsetting only works when the
font is embedded after creating all pages (since the required set of glyphs must be
known). In order to avoid this potential deadlock, PDFlib supports the concept of
widths-only Type 3 fonts. If you need subsetting for a Type 3 font you must define the
font in two passes: the first pass (with the widthsonly option of PDF_begin_font()) must
be done before using the font, and defines only the widths of the glyphs. The second
pass must be done after creating all text in this font, and defines the actual glyph out-
lines or bitmaps. At the second pass PDFlib will already know which glyphs are required
in the document, and will only embed those glyph descriptions which are actually part
of the font subset. The following code fragment demonstrates Type 3 font definition,
use, and subsetting:

/* pass 1: create a widths-only font */
p.begin_font("T3font", 0.001, 0, 0, 0.001, 0, 0, "widthsonly");

p.begin_glyph("a", 1000, 0, 0, 1000, 1000);
p.end_glyph();

p.begin_glyph("b", 400, 0, 0, 400, 400);
p.end_glyph();

/* ...define all glyph widths...*/

p.end_font();

/* use the font in the document */
p.begin_page_ext(595.0, 842.0, "");
font = p.load_font("T3font", "winansi", "subsetting");
p.setfont(font, 24);
p.set_text_pos(50, 700);
p.show("a");
p.end_page_ext("");

108 Chapter 5: Font Handling

/* pass 2: supply glyph descriptions for the font */
p.begin_font("T3font", 0, 0.001, 0, 0, 0.001, 0, 0, "");

p.begin_glyph("a", 1000, 0, 0, 1000, 1000);
p.arc(500, 500, 500, 0, 360);
p.fill();
p.end_glyph();

p.begin_glyph("b", 400, 0, 0, 400, 400);
p.arc(200, 200, 200, 0, 360);
p.stroke();
p.end_glyph();

/* ...define all glyph descriptions... */

p.end_font();

p.end_document("");

Please note the following when working with Type 3 font subsets:
> The exact same set of glyphs must be provided in pass 1 and pass 2.
> In the first pass (widthsonly=true) all font and glyph metrics (i.e. the font matrix in

PDF_begin_font() and wx and the glyph bounding box in PDF_begin_glyph()) must be
supplied and must accurately describe the actual glyphs; in the second pass
(widthsonly=false) the font and glyph metrics will be ignored.

> A Type 3 font with subsetting can only be loaded once with PDF_load_font().

5.4 Miscellaneous Topics 109

5.4 Miscellaneous Topics
5.4.1 Symbol Fonts and Font-specific Encodings

Since Symbol or logo fonts (also called Pi fonts) do not usually contain standard charac-
ters they must use a different encoding scheme compared to text fonts.

The builtin encoding for PostScript fonts. The encoding name builtin doesn’t describe a
particular character ordering but rather means »take this font as it is, and don’t mess
with the character set«. This concept is sometimes called a »font-specific« encoding and
is very important when it comes to non-text fonts (such as logo and symbol fonts). It is
also widely used (somewhat inappropriately) for non-Latin text fonts (such as Greek
and Cyrillic). Such fonts cannot be reencoded using one of the standard encodings since
their character names don’t match those in these encodings. Therefore builtin must be
used for all symbolic or non-text PostScript fonts. Non-text fonts can be recognized by
the following entry in their AFM file:

EncodingScheme FontSpecific

Text fonts can be reencoded (adjusted to a certain code page or character set), while
symbolic fonts can’t, and must use builtin encoding instead.

Note Unfortunately, many typographers and font vendors didn’t fully grasp the concept of font spe-
cific encodings (this may be due to less-than-perfect production tools). For this reason, there
are many Latin text fonts labeled as FontSpecific encoding, and many symbol fonts incorrectly
labeled as text fonts.

Nevertheless, all symbolic fonts can be used with encoding unicode in PDFlib. In this sit-
uation PDFlib will assign Unicode values from the Private Use Area (PUA). Although
these PUA values are not available for clients, unicode encoding for symbol fonts allows
the use of character references (see Section 4.6.2, »Character References and Glyph
Name References«, page 89) with font-specific glyph names. This is a big advantage
since it allows to select symbol glyphs based on their names, without getting bogged
down in Unicode/encoding problems.

As an exception, the widely used Symbol and ZapfDingbats fonts have standardized
Unicode values (outside of the PUA). If they are loaded with unicode encoding the glyphs
can be addressed with the Unicode values U+2700 and up.

Builtin encoding for TrueType fonts. TrueType fonts with non-text characters, such as
the Wingdings font, can be used with builtin encoding. If a font requires builtin encoding
but the client requested a different encoding, PDFlib will enforce builtin encoding never-
theless.

Builtin encoding for OpenType fonts with PostScript outlines (*.otf). OTF fonts with
non-text characters must be used with builtin encoding. Some OTF fonts contain an in-
ternal default encoding. PDFlib will detect this case, and dynamically construct an en-
coding which is suited for this particular font. The encoding name builtin will be modi-
fied to builtin_<fontname> internally. Although this new encoding name can be used in
future calls to PDF_load_font() it is only reasonable for use with the same font.

110 Chapter 5: Font Handling

5.4.2 Glyph ID Addressing for TrueType and OpenType Fonts
In addition to 8-bit encodings, Unicode, and CMaps PDFlib supports a method of ad-
dressing individual characters within a font called glyph id addressing. In order to use
this technique all of the following requirements must be met:

> The font is available in the TrueType or OpenType format.
> The font must be embedded in the PDF document (with or without subsetting).
> The developer is familiar with the internal numbering of glyphs within the font.

Glyph ids (GIDs) are used internally in TrueType and OpenType fonts, and uniquely ad-
dress individual glyphs within a font. GID addressing frees the developer from any re-
striction in a given encoding scheme, and provides access to all glyphs which the font
designer put into the font file. However, there is generally no relationship at all be-
tween GIDs and more common addressing schemes, such as Windows encoding or Uni-
code. The burden of converting application-specific codes to GIDs is placed on the
PDFlib user.

GID addressing is invoked by supplying the keyword glyphid as the encoding parame-
ter of PDF_load_font(). GIDs are numbered consecutively from 0 to the last glyph id val-
ue, which can be queried with the fontmaxcode parameter.

5.4.3 The Euro Glyph
The symbol denoting the European currency Euro raises a number of issues when it
comes to properly displaying and printing it. In this section we’d like to give some hints
so that you can successfully deal with the Euro character. First of all you’ll have to
choose an encoding which includes the Euro character and check on which position the
Euro is located. Some examples:

> With unicode encoding use the character U+20AC. Alternatively, you can address the
Euro glyph with the corresponding character reference € (by name) or
€ (by numerical value).

> In winansi encoding the location is 0x80 (hexadecimal) or 128 (decimal).
> The common iso8859-1 encoding does not contain the Euro character. However, the

iso8859-15 encoding is an extension of iso8859-1 which adds the Euro character at
0xA4 (hexadecimal) or 164 (decimal).

> The original macroman encoding does not contain the Euro character. However, Ap-
ple modified this encoding and replaced the old currency glyph which the Euro
glyph at 0xDB (hexadecimal) or 219 (decimal). In order to use this modified Mac en-
coding use macroman_apple instead of macroman.

Next, you must choose a font which contains the Euro glyph. Many modern fonts in-
clude the Euro glyph, but not all do. Again, some examples:

> The built-in fonts in PostScript Level 1 and Level 2 devices do not contain the Euro
character, while those in PostScript 3 devices usually do.

> If a font does not contain the Euro character you can use the Euro from the Symbol
core font instead, which is located at position 0xA0 (hexadecimal) or 160 (decimal). It
is available in the version of the Symbol font shipped with Acrobat 4.0 and above,
and the one built into PostScript 3 devices.

5.4 Miscellaneous Topics 111

5.4.4 Unicode-compatible Fonts
Precise Unicode semantics are important for PDFlib’s internal processing, and crucial
for properly extracting text from a PDF document, or otherwise reusing the document,
e.g., converting the contents to another format. This is especially important when creat-
ing Tagged PDF which has strict requirements regarding Unicode compliance (see Sec-
tion 9.6.1, »Generating Tagged PDF with PDFlib«, page 216). In addition to Tagged PDF
Unicode compatibility is relevant for the Textflow feature.

Unicode-compatible fonts. A font – more precisely: a combination of font and
encoding – is considered Unicode-compatible if the encoding used for loading the font
complies to all of the following conditions:

> The encoding builtin is only allowed for the Symbol and ZapfDingbats fonts and Post-
Script-based OpenType fonts.

> The encoding is not glyphid.
> If the encoding is one of the predefined CMaps in Table 4.5 it must be one of the UCS2

or UTF16 CMaps.

Unicode-compatible output. If you want to make sure that text can reliably be extract-
ed from the generated PDF, and for generating Tagged PDF the output must be Unicode-
compatible. PDF output created with PDFlib will be Unicode-compatible if all of the fol-
lowing conditions are true:

> All fonts used in the document must be Unicode-compatible as defined above, or use
one of the predefined CMaps in Table 4.5.

> If the encoding has been constructed with PDF_encoding_set_char() and glyph names
without corresponding Unicode values, or loaded from an encoding file, all glyph
names must be contained in the Adobe Glyph List or the list of well-known glyph
names in the Symbol font.

> The unicodemap parameter or option is true.
> All text strings must have clearly defined semantics according to the Unicode stan-

dard, i.e. characters from the Private Use Area (PUA) are not allowed.
> PDF pages imported with PDI must be Unicode-compatible. PDI does not change the

Unicode compatibility status of imported pages: it will neither remove nor add Uni-
code information.

When creating Tagged PDF output, text portions which violate these rules can still be
made Unicode-compatible by supplying proper Unicode text with the ActualText option
in PDF_begin_item().

112 Chapter 5: Font Handling

5.5 Font Metrics and Text Variations
5.5.1 Font and Glyph Metrics

Text position. PDFlib maintains the text position independently from the current
point for drawing graphics. While the former can be queried via the textx/texty parame-
ters, the latter can be queried via currentx/currenty.

Glyph metrics. PDFlib uses the glyph and font metrics system used by PostScript and
PDF which shall be briefly discussed here.

The font size which must be specified by PDFlib users is the minimum distance be-
tween adjacent text lines which is required to avoid overlapping character parts. The
font size is generally larger than individual characters in a font, since it spans ascender
and descender, plus possibly additional space between lines.

The leading (line spacing) specifies the vertical distance between the baselines of ad-
jacent lines of text. By default it is set to the value of the font size. The capheight is the
height of capital letters such as T or H in most Latin fonts. The xheight is the height of
lowercase letters such as x in most Latin fonts. The ascender is the height of lowercase
letters such as f or d in most Latin fonts. The descender is the distance from the baseline
to the bottom of lowercase letters such as j or p in most Latin fonts. The descender is
usually negative. The values of xheight, capheight, ascender, and descender are measured
as a fraction of the font size, and must be multiplied with the required font size before
being used.

The gaplen property is only available in TrueType and OpenType fonts (it will be esti-
mated for other font formats). The gaplen value is read from the font file, and specifies
the difference between the recommended distance between baselines and the sum of
ascender and descender.

PDFlib may have to estimate one or more of these values since they are not guaran-
teed to be present in the font or metrics file. In order to find out whether real or estimat-
ed values are used you can call PDF_info_font() to query the xheight with the option
faked. The character metrics for a specific font can be queried from PDFlib as follows:

font = p.load_font("Times-Roman", "unicode", "");

capheight = p.info_font(font, "capheight", "");
ascender = p.info_font(font, "ascender", "");

font size

baseline

capheight

descender

ascender

Fig. 5.1 Font and character metrics

5.5 Font Metrics and Text Variations 113

descender = p.info_font(font, "descender", "");
xheight = p.info_font(font, "xheight", "");

Note The position and size of superscript and subscript cannot be queried from PDFlib.

CPI calculations. While most fonts have varying character widths, so-called mono-
spaced fonts use the same widths for all characters. In order to relate PDF font metrics to
the characters per inch (CPI) measurements often used in high-speed print environ-
ments, some calculation examples for the mono-spaced Courier font may be helpful. In
Courier, all characters have a width of 600 units with respect to the full character cell of
1000 units per point (this value can be retrieved from the corresponding AFM metrics
file). For example, with 12 point text all characters will have an absolute width of

12 points * 600/1000 = 7.2 points

with an optimal line spacing of 12 points. Since there are 72 points to an inch, exactly 10
characters of Courier 12 point will fit in an inch. In other words, 12 point Courier is a 10
cpi font. For 10 point text, the character width is 6 points, resulting in a 72/6 = 12 cpi
font. Similarly, 8 point Courier results in 15 cpi.

5.5.2 Kerning
Some character combinations can lead to unpleasant appearance. For example, two Vs
next to each other can look like a W, and the distance between T and e must be reduced
in order to avoid ugly white space. This compensation is referred to as kerning. Many
fonts contain comprehensive kerning tables which contain spacing adjustment values
for certain critical letter pairs. There are two PDFlib controls for the kerning behavior:

> By default, kerning information in a font is not read when loading a font. If kerning
is desired the kerning option must be set in the respective call to PDF_load_font(). This
instructs PDFlib to read the font’s kerning data (if available).

> When a font for which kerning data has been read is used with any text output func-
tion, the positional corrections provided by the kerning data will be applied. How-
ever, kerning can also be disabled by setting the kerning parameter to false:

p.set_parameter("kerning", "false"); /* disable kerning */

No kerning

Kerning applied

Character movement caused by kerning

Fig. 5.2 Kerning

114 Chapter 5: Font Handling

Temporarily disabling kerning may be useful, for example, for tabular figures when
the kerning data contains pairs of figures, since kerned figures wouldn’t line up in a
table.

Kerning is applied in addition to any character spacing, word spacing, and horizontal
scaling which may be activated. PDFlib does not have any limit for the number of kern-
ing pairs in a font.

5.5.3 Text Variations

Artificial font styles. Bold and italic variations of a font should normally be created by
choosing an appropriate font. In addition, PDFlib also supports artificial font styles:
based on a regular font Acrobat will simulate bold, italic, or bold-italic styles by embold-
ening or slanting the base font. The aesthetic quality of artificial font styles does not
match that of real bold or italic fonts which have been fine-tuned by the font designer.
However, in situations where a particular font style is not available directly, artificial
styles can be used as a workaround. In particular, artificial font styles are useful for the
standard CJK fonts which support only normal fonts, but not any bold or italic variants.

Note Using the fontstyle feature for fonts other than the standard CJK fonts is not recommended.
Also note that the fontstyle feature may not work in PDF viewers other than Adobe Acrobat.

Due to restrictions in Adobe Acrobat, artificial font styles work only if all of the follow-
ing conditions are met:

> The base font is a TrueType or OpenType font, including standard and custom CJK
fonts. The base font must not be one of the PDF core fonts (see Section 5.3.3, »Font
Embedding«, page 105). Font styles can not be applied to TrueType Collections (TTC).

> The encoding is winansi, macroman, or one of the predefined CJK CMaps listed in Ta-
ble 4.5 (since otherwise PDFlib will force font embedding).

> The embedding option must be set to false.
> The base font must be installed on the target system where the PDF will be viewed.

While PDFlib will check the first three conditions, it is the user’s responsibility to ensure
the last one.

Artificial font styles can be requested by using one of the normal (no change of the
base font), bold, italic, or bolditalic keywords for the fontstyle option of PDF_load_font():

font = p.load_font("HeiseiKakuGo-W5", "UniJIS-UCS2-H", "fontstyle bold");

The fontstyle feature should not be confused with the similar concept of Windows font
style names. While fontstyle only works under the conditions above and relies on Acro-
bat for simulating the artificial font style, the Windows style names are entirely based
on the Windows font selection engine and cannot be used to simulate non-existent
styles.

Simulated bold fonts. While fontstyle feature operates on a font, PDFlib supports an al-
ternate mechanism for creating artificial bold text for individual text strings. This is
controlled by the fakebold parameter or option.

Simulated italic fonts. As an alternative to the fontstyle feature the italicangle parame-
ter or option can be used to simulate italic fonts when only a regular font is available.
This method creates a fake italic font by skewing the regular font by a user-provided an-

5.5 Font Metrics and Text Variations 115

gle, and does not suffer from the fontstyle restrictions mentioned above. Negative val-
ues will slant the text clockwise. Be warned that using a real italic or oblique font will re-
sult in much more pleasing output. However, if an italic font is not available the
italicangle parameter or option can be used to easily simulate one. This feature may be
especially useful for CJK fonts. Typical values for the italicangle parameter or option are
in the range -12 to -15 degrees:

font = p.load_font("Doxy", "italicangle=-12"); /* create fake italic font */

Note The italicangle parameter or option is not supported for vertical writing mode.

Underline, overline, and strikeout text. PDFlib can be instructed to put lines below,
above, or in the middle of text. The stroke width of the bar and its distance from the
baseline are calculated based on the font’s metrics information. In addition, the current
values of the horizontal scaling factor and the text matrix are taken into account when
calculating the width of the bar. The respective parameter names for PDF_set_
parameter() can be used to switch the underline, overline, and strikeout feature on or
off, as well as the corresponding options in the text output functions. The underline-
position and underlinewidth parameters and options can be used for fine-tuning.

The current stroke color is used for drawing the bars. The current linecap and dash
parameters are ignored, however. Aesthetics alert: in most fonts underlining will touch
descenders, and overlining will touch diacritical marks atop ascenders.

Text rendering modes. PDFlib supports several rendering modes which affect the ap-
pearance of text. This includes outline text and the ability to use text as a clipping path.
Text can also be rendered invisibly which may be useful for placing text on scanned im-
ages in order to make the text accessible to searching and indexing, while at the same
time assuring it will not be visible directly. The rendering modes are described in the
PDFlib Reference, and can be set with the textrendering parameter or option.

When stroking text, graphics state parameters such as linewidth and color will be ap-
plied to the glyph outline. The rendering mode has no effect on text displayed using a
Type 3 font.

Note Text rendering mode 7 (use text as clipping path) will not have any effect when creating text
output with PDF_fit_textline() or PDF_fit_textflow().

Text color. Text will usually be display in the current fill color, which can be set using
PDF_setcolor(). However, if a rendering mode other than 0 has been selected, both stroke
and fill color may affect the text depending on the selected rendering mode.

116 Chapter 5: Font Handling

5.6 Chinese, Japanese, and Korean Fonts
5.6.1 Standard CJK Fonts

Acrobat supports various standard fonts for CJK text. These fonts are supplied with the
Acrobat installation (or the Asian FontPack), and therefore don’t have to be embedded
in the PDF file. These fonts contain all characters required for common encodings, and
support both horizontal and vertical writing modes. The standard fonts are listed in Ta-
ble 5.2 along with applicable CMaps (see Section 4.5, »Encodings for Chinese, Japanese,
and Korean Text«, page 85, for more details on CJK CMaps).

Note Acrobat’s standard CJK fonts do not support bold and italic variations. However, these can be
simulated with the artificial font style feature (see Section 5.5.3, »Text Variations«, page 114).

Table 5.2 Acrobat’s standard fonts and CMaps (encodings) for Japanese, Chinese, and Korean text

locale font name sample supported CMaps (encodings)

Simplified
Chinese

STSong-Light1

STSongStd-Light-Acro2

AdobeSongStd-Light-Acro3

AdobeSongStd-Light6

1. Available in Acrobat 4; Acrobat 5 and 6 will substitute these with different fonts.
2. Available in Acrobat 5 only
3. Available in Acrobat 6 only

GB-EUC-H, GB-EUC-V, GBpc-EUC-H, GBpc-EUC-V,
GBK-EUC-H, GBK-EUC-V, GBKp-EUC-H4, GBKp-EUC-
V2, GBK2K-H2, GBK2K-V2, UniGB-UCS2-H, UniGB-
UCS2-V, UniGB-UTF16-H5, UniGB-UTF16-V5

4. Only available when generating PDF 1.4 or above
5. Only available when generating PDF 1.5 or above

Traditional
Chinese

MHei-Medium1

MSung-Light1

MSungStd-Light-Acro2

AdobeMingStd-Light-Acro3

AdobeMingStd-Light6

B5pc-H, B5pc-V, HKscs-B5-H4, HKscs-B5-V4, ETen-B5-
H, ETen-B5-V, ETenms-B5-H, ETenms-B5-V, CNS-EUC-
H, CNS-EUC-V, UniCNS-UCS2-H, UniCNS-UCS2-V,
UniCNS-UTF16-H5, UniCNS-UTF16-V5

Japanese HeiseiKakuGo-W51

HeiseiMin-W31

KozMinPro-Regular-Acro2, 7

KozGoPro-Medium-Acro3, 7

KozGoPro-Medium6

KozMinProVI-Regular6

6. Only available when generating PDF 1.6 or above

83pv-RKSJ-H, 90ms-RKSJ-H, 90ms-RKSJ-V, 90msp-
RKSJ-H, 90msp-RKSJ-V, 90pv-RKSJ-H, Add-RKSJ-H,
Add-RKSJ-V, EUC-H, EUC-V, Ext-RKSJ-H, Ext-RKSJ-V,
H, V, UniJIS-UCS2-H, UniJIS-UCS2-V, UniJIS-UCS2-
HW-H7, UniJIS-UCS2-HW-V7, UniJIS-UTF16-H5, Un-
iJIS-UTF16-V5

7. The HW CMaps are not allowed for the KozMinPro-Regular-Acro and KozGoPro-Medium-Acro fonts because these fonts contain only
proportional ASCII characters, but not any halfwidth forms.

Korean HYGoThic-Medium1

HYSMyeongJo-Medium1

HYSMyeongJoStd-Medium-Acro2

AdobeMyungjoStd-Medium-Acro3

AdobeMyungjoStd-Medium6

KSC-EUC-H, KSC-EUC-V, KSCms-UHC-H, KSCms-
UHC-V, KSCms-UHC-HW-H, KSCms-UHC-HW-V,
KSCpc-EUC-H, UniKS-UCS2-H, UniKS-UCS2-V, UniKS-
UTF16-H5, UniKS-UTF16-V5

5.6 Chinese, Japanese, and Korean Fonts 117

Horizontal and vertical writing mode. PDFlib supports both horizontal and vertical
writing modes. For standard CJK fonts and CMaps the writing mode is selected along
with the encoding by choosing the appropriate CMap name. CMaps with names ending
in -H select horizontal writing mode, while the -V suffix selects vertical writing mode.
Fonts with encodings other than a CMap can be used for vertical writing mode by sup-
plying the vertical option to PDF_load_font().

Note Some PDFlib functions change their semantics according to the writing mode. For example,
PDF_continue_text() should not be used in vertical writing mode, and the character spacing
must be negative in order to spread characters apart in vertical writing mode.

Standard CJK font example. Standard CJK fonts can be selected with the PDF_load_
font() interface, supplying the CMap name as the encoding parameter. However, you
must take into account that a given CJK font supports only a certain set of CMaps (see
Table 5.2), and that Unicode-aware language bindings support only UCS2-compatible
CMaps. The KozMinPro-Regular-Acro sample in Table 5.2 can been generated with the fol-
lowing code:

font = p.load_font("KozMinPro-Regular-Acro", "UniJIS-UCS2-H", "");
if (font == -1) { ... }
p.setfont(font, 24);
p.set_text_pos(50, 500);
p.show("\u65E5\u672C\u8A9E");

These statements locate one of the Japanese standard fonts, choosing a Shift-JIS-com-
patible CMap (Ext-RKSJ) and horizontal writing mode (H). The fontname parameter must
be the exact name of the font without any encoding or writing mode suffixes. The
encoding parameter is the name of one of the supported CMaps (the choice depends on
the font) and will also indicate the writing mode (see above). PDFlib supports all of Acro-
bat’s default CMaps, and will complain when it detects a mismatch between the re-
quested font and the CMap. For example, PDFlib will reject a request to use a Korean
font with a Japanese encoding.

Forcing monospaced fonts. Some applications are not prepared to deal with propor-
tional CJK fonts, and calculate the extent of text based on a constant glyph width and
the number of glyphs. PDFlib can be instructed to force monospaced glyphs even for
fonts that usually have glyphs with varying widths. Use the monospace option of PDF_
load_font() to specify the desired width for all glyphs. For standard CJK fonts the value
1000 will result in pleasing results:

font = p.load_font("KozMinPro-Regular-Acro", "UniJIS-UCS2-H", "monospace=1000");

The monospace option is only recommended for standard CJK fonts.

5.6.2 Custom CJK Fonts
In addition to Acrobat’s standard CJK fonts PDFlib supports custom CJK fonts (fonts out-
side the list in Table 5.2) in the TrueType (including TrueType Collections, TTC) and
OpenType formats. Custom CJK fonts will be processed as follows:

> If the embedding option is true, the font will be converted to a CID font and embed-
ded in the PDF output.

118 Chapter 5: Font Handling

> CJK host font names on Windows can be supplied to PDF_load_font() as UTF-8 with
initial BOM, or UTF-16. Non-Latin host font names are not supported on the Mac,
though.

> Treatment of non-Unicode CMaps: if the keepnative option is true, native codes (e.g.
Shift-JIS) will be written to the PDF output; otherwise the text will be converted to
Unicode. The visual appearance will be identical in both cases, but this option affects
the use of such fonts for Textflow and form fields (see description of keepnative in
the PDFlib Reference). In order to avoid subtle problems in Acrobat we recommend
to set keepnative=false if no font embedding is desired, and to set embedding=true if
keepnative=true is desired.

Note Windows EUDC fonts (end-user defined characters) are supported, but linking individual end-
user defined characters into all fonts is not supported (see »End-user defined characters
(EUDC)«, page 119).

Custom CJK font example with Japanese Shift-JIS text. The following C example uses
the MS Mincho font to display some Japanese text which is supplied in Shift-JIS format
according to Windows code page 932:

font = PDF_load_font(p, "MS Mincho", 0, "cp932", "");
if (font == -1) { ... }
PDF_setfont(p, font, 24);
PDF_set_text_pos(p, 50, 500);

PDF_show2(p, "\x82\xA9\x82\xC8\x8A\xBF\x8E\x9A", 8);

Custom CJK font example with Chinese Unicode text. The following example uses the
ArialUnicodeMS font to display some Chinese text. The font must either be installed on
the system or must be configured according to Section 5.3.1, »Searching for Fonts«, page
101):

font = p.load_font("Arial Unicode MS", "unicode", "");

p.setfont(font, 24);
p.set_text_pos(50, 500);

p.show("\u4e00\u500b\u4eba");

Accessing individual fonts in a TrueType Collection (TTC). TTC files contain multiple
separate fonts. You can access each font by supplying its proper name. However, if you
don’t know which fonts are contained in a TTC file you can numerically address each
font by appending a colon character and the number of the font within the TTC file
(starting with 0). If the index is 0 it can be omitted. For example, the TTC file msgothic.ttc
contains multiple fonts which can be addressed as follows in PDF_load_font() (each line
contains equivalent font names):

msgothic:0 MS Gothic msgothic:
msgothic:1 MS PGothic
msgothic:2 MS UI Gothic

Note that msgothic (without any suffix) will not work as a font name since it does not
uniquely identify a font. Font name aliases (see Section , »Sources of Font Data«, page

5.6 Chinese, Japanese, and Korean Fonts 119

101) can be used in combination with TTC indexing. If a font with the specified index
cannot be found, the function call will fail.

It is only required to configure the TTC font file once; all indexed fonts in the TTC file
will be found automatically. The following code is sufficient to configure all indexed
fonts in msgothic.ttc (see Section 5.3.1, »Searching for Fonts«, page 101):

p.set_parameter("FontOutline", "msgothic=msgothic.ttc");

End-user defined characters (EUDC). PDFlib does not support linking end-user defined
characters into fonts, but you can use the EUDC editor available in Windows to create
custom characters for use with PDFlib. Proceed as follows:

> Use the eudcedit.exe to create one or more custom characters at the desired Unicode
position(s).

> Locate the EUDC.TTE file in the directory \Windows\fonts and copy it to some other di-
rectory. Since this file is invisible in Windows Explorer use the dir and copy com-
mands in a DOS box to find the file. Now configure the font for use with PDFlib, us-
ing one of the methods discussed in (see Section 5.3.1, »Searching for Fonts«, page
101):

p.set_parameter("FontOutline", "EUDC=EUDC.TTE");
p.set_parameter("SearchPath", "...directory name...");

or place EUDC.TTE in the current directory.
> As an alternative to the preceding step you can use the following function call to

configure the font file directly from the Windows directory. This way you will always
access the current EUDC font used in Windows:

p.set_parameter("FontOutline", "EUDC=C:\Windows\fonts\EUDC.TTE");

> Use the following call to load the font:

font = p.load_font("EUDC", "unicode", "");

and supply the Unicode character codes chosen in the first step to output the charac-
ters.

6.1 Importing Raster Images 121

6 Importing Images and PDF Pages
PDFlib offers a variety of features for importing raster images and pages from existing
PDF documents, and placing them on the page. This chapter covers the details of deal-
ing with raster images and importing pages from existing PDF documents. Placing im-
ages and PDF pages on an output page is discussed in Section 7.3, »Placing Images and
Imported PDF Pages«, page 158.

6.1 Importing Raster Images
6.1.1 Basic Image Handling

Embedding raster images with PDFlib is easy to accomplish. First, the image file has to
be opened with a PDFlib function which does a brief analysis of the image parameters.
The PDF_load_image() function returns a handle which serves as an image descriptor.
This handle can be used in a call to PDF_fit_image(), along with positioning and scaling
parameters:

image = p.load_image("auto", "image.jpg", "");
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

p.fit_image(image, 0.0, 0.0, "");
p.close_image(image);

The last argument to the PDF_fit_image() function is an option list which supports a va-
riety of options for positioning, scaling, and rotating the image. Details regarding these
options are discussed in Section 7.3, »Placing Images and Imported PDF Pages«, page 158.

Re-using image data. PDFlib supports an important PDF optimization technique for
using repeated raster images. Consider a layout with a constant logo or background on
multiple pages. In this situation it is possible to include the actual image data only once
in the PDF, and generate only a reference on each of the pages where the image is used.
Simply load the image file once, and call PDF_fit_image() every time you want to place
the logo or background on a particular page. You can place the image on multiple pages,
or use different scaling factors for different occurrences of the same image (as long as
the image hasn’t been closed). Depending on the image’s size and the number of occur-
rences, this technique can result in enormous space savings.

Scaling and dpi calculations. PDFlib never changes the number of pixels in an import-
ed image. Scaling either blows up or shrinks image pixels, but doesn’t do any downsam-
pling (the number of pixels in an image will always remain the same). A scaling factor of
1 results in a pixel size of 1 unit in user coordinates. In other words, the image will be im-
ported with its native resolution (or 72 dpi if it doesn’t contain any resolution informa-
tion) if the user coordinate system hasn’t been scaled (since there are 72 default units to
an inch).

Color space of imported images. Except for adding or removing ICC profiles and ap-
plying a spot color according to the options provided in PDF_load_image(), PDFlib will

122 Chapter 6: Importing Images and PDF Pages

generally try to preserve the native color space of an imported image. However, this is
not possible for certain rare combinations, such as YCbCr in TIFF which will be convert-
ed to RGB.

PDFlib does not perform any conversion between RGB and CMYK. If such a conver-
sion is required it must be applied to the image data before loading the image in PDFlib.

Inline images. As opposed to reusable images, which are written to the PDF output as
image XObjects, inline images are written directly into the respective content stream
(page, pattern, template, or glyph description) . This results in some space savings, but
should only be used for small amounts of image data (up to 4 KB) per a recommenda-
tion in the PDF reference. The primary use of inline images is for bitmap glyph descrip-
tions in Type 3 fonts.

Inline images can be generated with the PDF_load_image() interface by supplying the
inline option. Inline images cannot be reused, i.e., the corresponding handle must not be
supplied to any call which accepts image handles. For this reason if the inline option has
been provided PDF_load_image() internally performs the equivalent of the following
code:

p.fit_image(image, 0, 0, "");
p.close_image(image);

Inline images are only supported for imagetype=ccitt, jpeg, and raw. For other image
types the inline option will silently be ignored.

6.1.2 Supported Image File Formats
PDFlib deals with the image file formats described below. By default, PDFlib passes the
compressed image data unchanged to the PDF output if possible since PDF internally
supports most compression schemes used in common image file formats. This tech-
nique (called pass-through mode in the descriptions below) results in very fast image im-
port, since decompressing the image data and subsequent recompression are not neces-
sary. However, PDFlib cannot check the integrity of the compressed image data in this
mode. Incomplete or corrupt image data may result in error or warning messages when
using the PDF document in Acrobat (e.g., Read less image data than expected). Pass-
through mode can be controlled with the passthrough option of PDF_load_image().

If an image file can’t be imported successfully PDF_load_image() will return an error
code. If you need to know more details about the image failure, call PDF_get_errmsg() to
retrieve a detailed error message.

PNG images. PDFlib supports all flavors of PNG images (ISO 15948). PNG images are
handled in pass-through mode in most cases. PNG images which make use of interlac-
ing or contain an alpha channel (which will be lost anyway, see below) will have to be
uncompressed, which takes significantly longer than pass-through mode. If a PNG im-
age contains transparency information, the transparency is retained in the generated
PDF (see Section 6.1.4, »Image Masks and Transparency«, page 125). However, alpha
channels are not supported by PDFlib.

JPEG images. JPEG images (ISO 10918-1) are never decompressed, but some flavors may
require transcoding for proper display in Acrobat. PDFlib automatically applies trans-
coding to certain critical types of JPEG images, but transcoding can also be controlled

6.1 Importing Raster Images 123

via the passthrough option of PDF_load_image(). PDFlib supports the following JPEG im-
age flavors:

> Grayscale, RGB (usually encoded as YCbCr), and CMYK color
> Baseline JPEG compression which accounts for the vast majority of JPEG images.
> Progressive JPEG compression.

JPEG images can be packaged in several different file formats. PDFlib supports all com-
mon JPEG file formats, and will read resolution information from the following flavors:

> JFIF, which is generated by a wide variety of imaging applications.
> JPEG files written by Adobe Photoshop and other Adobe applications. PDFlib applies

a workaround which is necessary to correctly process Photoshop-generated CMYK
JPEG files. PDFlib will also read clipping paths from JPEG images created with Adobe
Photoshop.

Note PDFlib does not interpret color space or resolution information from JPEG images in the SPIFF
or Exif formats.

JPEG2000 images. JPEG2000 images (ISO 15444-2) require PDF 1.5 or above, and are al-
ways handled in pass-through mode. PDFlib supports JPEG2000 images as follows:

> JP2 and JPX baseline images (usually *.jp2 or *.jpf) are supported, subject to the color
space conditions below. All valid color depth values are supported.

> The following color spaces are supported: sRGB, sRGB-grey, ROMM-RGB, sYCC,
e-sRGB, e-sYCC, CIELab, ICC-based color spaces (restricted and full ICC profile), and
CMYK. PDFlib will not alter the original color space in the JPEG2000 image file.

> Images containing a soft mask can be used with the mask option to prepare a mask
which can be applied to other images.

> External ICC profiles can not be applied to a JPEG2000 image, i.e. the iccprofile option
must not be used. ICC profiles contained in the JPEG2000 image file will always be
kept, i.e. the honoriccprofile option is always true.

> The colorize option is not supported for JPEG2000 images.

Note Raw JPEG2000 code streams without JPX wrapper (often *.j2k) and JPM compound image files
according to ISO 15444-6 (usually *.jpm) are not supported.

GIF images. PDFlib supports all GIF flavors (specifically GIF 87a and 89a) with inter-
laced and non-interlaced pixel data and all palette sizes. GIF images will always be re-
compressed with Flate compression.

TIFF images. PDFlib will handle most TIFF images in pass-through mode. PDFlib sup-
ports the following flavors of TIFF images:

> compression schemes: uncompressed, CCITT (group 3, group 4, and RLE), ZIP (=Flate),
and PackBits (=RunLength) are handled in pass-through mode; other compression
schemes, such as LZW and JPEG, are handled by uncompressing.

> color: black and white, grayscale, RGB, CMYK, CIELab, and YCbCr images; any alpha
channel or mask which may be present in the file will be ignored.

> TIFF files containing more than one image (see Section 6.1.6, »Multi-Page Image
Files«, page 128)

> Color depth must be 1, 2, 4, 8, or 16 bits per color sample. In PDF 1.5 mode 16 bit color
depth will be retained in most cases with pass-through mode, but reduced to 8 bit for

124 Chapter 6: Importing Images and PDF Pages

certain image files (ZIP compression with little-endian/Intel byte order and 16-bit
palette images).

Multi-strip TIFF images are converted to multiple images in the PDF file which will visu-
ally exactly represent the original image, but can be individually selected with Acrobat’s
TouchUp object tool. Multi-strip TIFF images can be converted to single-strip images
with the tiffcp command line tool which is part of the TIFFlib package.1 The Image-
Magick2 tool always writes single-strip TIFF images.

PDFlib fully interprets the orientation tag which specifies the desired image orienta-
tion in some TIFF files. PDFlib can be instructed to ignore the orientation tag (as many
applications do) by setting the ignoreorientation option to true.

PDFlib will read clipping paths from TIFF images created with Adobe Photoshop.
Some TIFF features (e.g., spot color) and certain combinations of features (e.g., CMYK

images with a mask) are not supported. Although TIFF images with JPEG compression
are generally supported, some flavors of so-called old-style TIFF-JPEG will be rejected.

BMP images. BMP images cannot be handled in pass-through mode. PDFlib supports
the following flavors of BMP images:

> BMP versions 2 and 3;
> color depth 1, 4, and 8 bits per component, including 3 x 8 = 24 bit TrueColor. 16-bit

images will be treated as 5+5+5 plus 1 unused bit. 32-bit images will be treated as 3 x 8
bit images (the remaining 8 bits will be ignored).

> black and white or RGB color (indexed and direct);
> uncompressed as well as 4-bit and 8-bit RLE compression;
> PDFlib will not mirror images if the pixels are stored in bottom-up order (this is a

rarely used feature in BMP which is interpreted differently in applications).

CCITT images. Group 3 or Group 4 fax compressed image data are always handled in
pass-through mode. Note that this format actually means raw CCITT-compressed image
data, not TIFF files using CCITT compression. Raw CCITT compressed image files are usu-
ally not supported in end-user applications, but can only be generated with fax-related
software. Since PDFlib is unable to analyze CCITT images, all relevant image parameters
have to be passed to PDF_load_image() by the client.

Raw data. Uncompressed (raw) image data may be useful for some special applica-
tions. The nature of the image is deduced from the number of color components: 1 com-
ponent implies a grayscale image, 3 components an RGB image, and 4 components a
CMYK image.

6.1.3 Clipping Paths
PDFlib supports clipping paths in TIFF and JPEG images created with Adobe Photoshop.
An image file may contain multiple named paths. Using the clippingpathname option of
PDF_load_image() one of the named paths can be selected and will be used as a clipping
path: only those parts of the image inside the clipping path will be visible, other parts
will remain invisible. This is useful to separate background and foreground, eliminate
unwanted portions of an image, etc.

1. See www.libtiff.org
2. See www.imagemagick.org

http://www.libtiff.org
http://www.imagemagick.org

6.1 Importing Raster Images 125

Alternatively, an image file may specify a default clipping path. If PDFlib finds a de-
fault clipping path in an image file it will automatically apply it to an image (see Figure
6.1). In order to prevent the default clipping path from being applied set the honor-
clippingpath option in PDF_load_image() to false. If you have several instances of the
same image and only some instances shall have the clipping path applied, you can sup-
ply the ignoreclippingpath option in PDF_fit_image() in order to disable the clipping path.
When a clipping path is applied, the bounding box of the clipped image will be used as
the basis for all calculations related to placing or fitting the image.

6.1.4 Image Masks and Transparency

Transparency in PDF. PDF supports various transparency features, all of which are im-
plemented in PDFlib:

> Masking by position: an image may carry the intrinsic information »print the fore-
ground or the background«. This is realized by a 1-bit mask image, and is often used
in catalog images.

> Masking by color value: pixels of a certain color are not painted, but the previously
painted part of the page shines through instead (»ignore all blue pixels in the im-
age«). In TV and video technology this is also known as bluescreening, and is most of-
ten used for combining the weather man and the map into one image.

> PDF 1.4 introduced alpha channels or soft masks. These can be used to create a
smooth transition between foreground and background, or to create semi-transpar-
ent objects (»blend the image with the background«). Soft masks are represented by
1-component images with 1-8 bit per pixel.

PDFlib supports three kinds of transparency information in images: implicit transpar-
ency, explicit transparency, and image masks.

Note The mask must have the same orientation as the underlying image; otherwise it will be reject-
ed. Since the orientation depends on the image file format and other factors it is difficult to de-
tect. For this reason it is recommended to use the same file format and creation software for
both mask and image.

Implicit transparency. In the implicit case, the transparency information from an ex-
ternal image file is respected, provided the image file format supports transparency or

Fig. 6.1
Using a clipping path to separate
foreground and background

126 Chapter 6: Importing Images and PDF Pages

an alpha channel (this is not the case for all image file formats). Transparency informa-
tion is detected in the following image file formats:

> GIF image files may contain a single transparent color value which is respected by
PDFlib.

> PNG image files may contain several flavors of transparency information, or a full al-
pha channel. PDFlib will retain single transparent color values; if multiple color val-
ues with an attached alpha value are given, only the first one with an alpha value be-
low 50 percent is used. A full alpha channel is ignored.

Explicit transparency. The explicit case requires two steps, both of which involve im-
age operations. First, a grayscale image must be prepared for later use as a transparency
mask. This is accomplished by opening the image with the mask option. In PDF 1.3,
which supports only 1-bit masks, using this option is required; in PDF 1.4 it is optional.
The following kinds of images can be used for constructing a mask:

> PNG images
> TIFF images (only single-strip)
> raw image data

Pixel values of 0 (zero) in the mask will result in the corresponding area of the masked
image being painted, while high pixel values result in the background shining through.
If the pixel has more than 1 bit per pixel, intermediate values will blend the foreground
image against the background, providing for a transparency effect. In the second step
the mask is applied to another image which itself is acquired through one of the image
functions:

mask = p.load_image("png", maskfilename, "mask");
if (mask == -1)

throw new Exception("Error: " + p.get_errmsg());

String optlist = "masked " + mask;
image = p.load_image(type, filename, optlist)
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

p.fit_image(image, x, y, "");

Note the different use of the option list for PDF_load_image(): mask for defining a mask,
and masked for applying a mask to another image.

The image and the mask may have different pixel dimensions; the mask will auto-
matically be scaled to the image’s size.

Note PDFlib converts multi-strip TIFF images to multiple PDF images, which would be masked indi-
vidually. Since this is usually not intended, this kind of images will be rejected both as a mask
as well as a masked target image. Also, it is important to not mix the implicit and explicit cases,
i.e., don’t use images with transparent color values as mask.

Image masks. Image masks are images with a bit depth of 1 (bitmaps) in which zero
bits are treated as transparent: whatever contents already exist on the page will shine
through the transparent parts of the image. 1-bit pixels are colorized with the current
fill color. The following kinds of images can be used as image masks:

> PNG images
> TIFF images (single- or multi-strip)

6.1 Importing Raster Images 127

> JPEG images (only as soft mask, see below)
> BMP; note that BMP images are oriented differently than other image types. For this

reason BMP images must be reflected along the x axis before they can be used as a
mask.

> raw image data

Image masks are simply opened with the mask option, and placed on the page after the
desired fill color has been set:

mask = p.load_image("tiff", maskfilename, "mask");
p.setcolor("fill", "rgb", 1.0, 0.0, 0.0, 0.0);
if (mask != -1)
{

p.fit_image(mask, x, y, "");
}

If you want to apply a color to an image without the zero bit pixels being transparent
you must use the colorize option (see Section 6.1.5, »Colorizing Images«, page 127).

Soft masks. Soft masks generalize the concept of image masks to masks with more
than 1 bit. They have been introduced in PDF 1.4 and blend the image against some ex-
isting background. PDFlib accepts all kinds of single-channel (grayscale) images as soft
mask. They can be used the same way as image masks, provided the PDF output com-
patibility is at least PDF 1.4.

Ignoring transparency. Sometimes it is desirable to ignore any transparency informa-
tion which may be contained in an image file. For example, Acrobat’s anti-aliasing fea-
ture (also known as »smoothing«) isn’t used for 1-bit images which contain black and
transparent as their only colors. For this reason imported images with fine detail (e.g.,
rasterized text) may look ugly when the transparency information is retained in the
generated PDF. In order to deal with this situation, PDFlib’s automatic transparency
support can be disabled with the ignoremask option when opening the file:

image = p.load_image("gif", filename, "ignoremask");

6.1.5 Colorizing Images
Similarly to image masks, where a color is applied to the non-transparent parts of an
image, PDFlib supports colorizing an image with a spot color. This feature works for
black and white or grayscale images in the following formats:

> BMP
> PNG
> JPEG
> TIFF
> GIF

For images with an RGB palette, colorizing is only reasonable when the palette contains
only gray values, and the palette index is identical to the gray value.

In order to colorize an image with a spot color you must supply the colorize option
when loading the image, and supply the respective spot color handle which must have
been retrieved with PDF_makespotcolor():

128 Chapter 6: Importing Images and PDF Pages

p.setcolor("fillstroke", "cmyk", 1, .79, 0, 0);
spot = p.makespotcolor("PANTONE Reflex Blue CV");

String optlist = "colorize=" + spot;
image = p.load_image("tiff", "image.tif", optlist);
if (image != -1)
{

p.fit_image(image, x, y, "");
}

6.1.6 Multi-Page Image Files
PDFlib supports TIFF files which contain more than one image, also known as multi-
page files. In order to use multi-page TIFFs, additional string and numerical parameters
are used in the call to PDF_load_image():

image = p.load_image("tiff", filename, "page=2");

The page option indicates that a multi-image file is to be used. The last parameter speci-
fies the number of the image to use. The first image is numbered 1. This option may be
increased until PDF_load_image() returns -1, signalling that no more images are avail-
able in the file.

A code fragment similar to the following can be used to convert all images in a multi-
image TIFF file to a multi-page PDF file:

for (frame = 1; /* */ ; frame++)
{

String optlist = "page=" + frame;
image = p.load_image("tiff", filename, optlist);
if (image == -1)

break;
p.begin_page_ext(width, height, "");
p.fit_image(image, 0.0, 0.0, "");
p.close_image(image);
p.end_page_ext("");

}

6.1.7 OPI Support
When loading an image additional information according to OPI (Open Prepress Inter-
face) version 1.3 or 2.0 can be supplied in the call to PDF_load_image(). PDFlib accepts all
standard OPI 1.3 or 2.0 PostScript comments as options (not the corresponding PDF key-
words!), and will pass through the supplied OPI information to the generated PDF out-
put without any modification. The following example attaches OPI information to an
image:

String optlist13 =
"OPI-1.3 { ALDImageFilename bigfile.tif " +
"ALDImageDimensions {400 561} " +
"ALDImageCropRect {10 10 390 550} " +
"ALDImagePosition {10 10 10 540 390 540 390 10} }";

image = p.load_image("tiff", filename, optlist13);

6.1 Importing Raster Images 129

Note Some OPI servers, such as the one included in Helios EtherShare, do not properly implement OPI
processing for PDF Image XObjects, which PDFlib generates by default. In such cases generation
of Form XObjects can be forced by supplying the template option to PDF_load_image().

130 Chapter 6: Importing Images and PDF Pages

6.2 Importing PDF Pages with PDI (PDF Import Library)
Note All functions described in this section require PDFlib+PDI. The PDF import library (PDI) is not

contained in PDFlib or PDFlib Lite. Although PDI is integrated in all precompiled editions of
PDFlib, a license key for PDI (or PPS, which includes PDI) is required.

6.2.1 PDI Features and Applications
When the optional PDI (PDF import) library is attached to PDFlib, pages from existing
PDF documents can be imported. PDI contains a parser for the PDF file format, and pre-
pares pages from existing PDF documents for easy use with PDFlib. Conceptually, im-
ported PDF pages are treated similarly to imported raster images such as TIFF or PNG:
you open a PDF document, choose a page to import, and place it on an output page, ap-
plying any of PDFlib’s transformation functions for translating, scaling, rotating, or
skewing the imported page. Imported pages can easily be combined with new content
by using any of PDFlib’s text or graphics functions after placing the imported PDF page
on the output page (think of the imported page as the background for new content). Us-
ing PDFlib and PDI you can easily accomplish the following tasks:

> overlay two or more pages from multiple PDF documents (e.g., add stationary to ex-
isting documents in order to simulate preprinted paper stock);

> place PDF ads in existing documents;
> clip the visible area of a PDF page in order to get rid of unwanted elements (e.g., crop

marks), or scale pages;
> impose multiple pages on a single sheet for printing;
> process multiple PDF/X or PDF/A documents to create a new PDF/X or PDF/A file;
> copy the PDF/X or PDF/A output intent of a file;
> add some text (e.g., headers, footers, stamps, page numbers) or images (e.g., company

logo) to existing PDF pages;
> copy all pages from an input document to the output document, and place barcodes

on the pages;
> use the pCOS interface to query arbitrary properties of a PDF document (see Chapter

8, »The pCOS Interface«, page 183).

In order to place a PDF background page and populate it with dynamic data (e.g., mail
merge, personalized PDF documents on the Web, form filling) we recommend using PDI
along with PDFlib blocks (see Chapter 10, »Variable Data and Blocks«, page 225).

6.2.2 Using PDI Functions with PDFlib

General considerations. It is important to understand that PDI will only import the ac-
tual page contents, but not any interactive features (such as sound, movies, embedded
files, hypertext links, form fields, JavaScript, bookmarks, thumbnails, and notes) which
may be present in the imported PDF document. These interactive features can be gener-
ated with the corresponding PDFlib functions. PDFlib blocks will also be ignored when
importing a page.

You can not re-use individual elements of imported pages with other PDFlib func-
tions. For example, re-using fonts from imported documents for some other content is
not possible. Instead, all required fonts must be configured in PDFlib. If multiple im-
ported documents contain embedded font data for the same font, PDI will not remove
any duplicate font data. On the other hand, if fonts are missing from some imported

6.2 Importing PDF Pages with PDI (PDF Import Library) 131

PDF, they will also be missing from the generated PDF output file. As an optimization
you should keep the imported document open as long as possible in order to avoid the
same fonts to be embedded multiple times in the output document.

PDI does not change the color of imported PDF documents in any way. For example,
if a PDF contains ICC color profiles these will be retained in the output document.

PDFlib uses the template feature for placing imported PDF pages on the output page.
Since some third-party PDF software does not correctly support the templates, restric-
tions in certain environments other than Acrobat may apply (see Section 3.2.4, »Tem-
plates«, page 58).

PDFlib-generated output which contains imported pages from other PDF documents
can be processed with PDFlib+PDI again. However, due to restrictions in PostScript
printing the nesting level should not exceed 10.

Code fragments for importing PDF pages. Dealing with pages from existing PDF docu-
ments is possible with a very simple code structure. The following code snippet opens a
page from an existing document, and copies the page contents to a new page in the out-
put PDF document (which must have been opened before):

int doc, page, pageno = 1;
String filename = "input.pdf";

if (p.begin_document(outfilename, "") == -1) {...}
...

doc = p.open_pdi_document(infilename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

page = p.open_pdi_page(doc, pageno, "");
if (page == -1)

throw new Exception("Error: " + p.get_errmsg());

/* dummy page size, will be modified by the adjustpage option */
p.begin_page_ext(20, 20, "");
p.fit_pdi_page(page, 0, 0, "adjustpage");
p.close_pdi_page(page);
...add more content to the page using PDFlib functions...
p.end_page_ext("");
p.close_pdi_document(doc);

The last argument to PDF_fit_pdi_page() is an option list which supports a variety of op-
tions for positioning, scaling, and rotating the imported page. Details regarding these
options are discussed in Section 7.3, »Placing Images and Imported PDF Pages«, page 158.

Dimensions of imported PDF pages. Imported PDF pages are regarded similarly to im-
ported raster images, and can be placed on the output page using PDF_fit_pdi_page(). By
default, PDI will import the page exactly as it is displayed in Acrobat, in particular:

> cropping will be retained (in technical terms: if a CropBox is present, PDI favors the
CropBox over the MediaBox; see Section 3.2.2, »Page Size«, page 56);

> rotation which has been applied to the page will be retained.

132 Chapter 6: Importing Images and PDF Pages

Alternatively, you can use the pdiusebox option to explicitly instruct PDI to use any of
the MediaBox, CropBox, BleedBox, TrimBox or ArtBox entries of a page (if present) for
determining the size of the imported page.

Imported PDF pages with layers. Acrobat 6 (PDF 1.5) introduced the layer functionality
(technically known as optional content). PDI will ignore any layer information which
may be present in a file. All layers in the imported page, including invisible layers, will
be visible in the generated output.

Imported PDF with OPI information. OPI information present in the input PDF will be
retained in the output unmodified.

Optimization across multiple imported documents. While PDFlib itself creates highly
optimized PDF output, imported PDF may contain redundant data structures which can
be optimized. In addition, importing multiple PDFs may bloat the output file size when
multiple files contain identical resources, e.g. fonts. In this situation you can use the
optimize option of PDF_begin_document(). It will detect redundant objects in imported
files, and remove them without affecting the visual appearance or quality of the gener-
ated output.

6.2.3 Acceptable PDF Documents
Generally, PDI will happily process all kinds of PDF documents which can be opened
with Acrobat, regardless of PDF version number or features used within the file. In order
to import pages from encrypted documents (i.e., files with permission settings or pass-
word) the corresponding master password must be supplied.

PDI implements a repair mode for damaged PDFs so that even certain kinds of dam-
aged documents can be opened. However, in rare cases a PDF document or a particular
page of a document may be rejected by PDI.

If a PDF document or page can’t be imported successfully PDF_open_pdi_document()
and PDF_open_pdi_page() will return an error code. If you need to know more details
about the failure you can query the reason with PDF_get_errmsg(). Alternatively, you
can set the errorpolicy option or parameter to true, which will result in an exception if
the document cannot be opened.

The following kinds of PDF documents will be rejected by default; however, they can
be opened for querying information with pCOS (as opposed to importing pages) by set-
ting the infomode option to true:

> PDF documents which use a higher PDF version number than the PDF output docu-
ment that is currently being generated can not be imported with PDI. The reason is
that PDFlib can no longer make sure that the output will actually conform to the re-
quested PDF version after a PDF with a higher version number has been imported.
Solution: set the version of the output PDF to the required level using the compatibi-
lity option in PDF_begin_document().

> Encrypted PDF documents without the corresponding password (exception: PDF 1.6
documents created with the Distiller setting »Object Level Compression: Maxi-
mum«; these cannot be opened even in info mode).

> Tagged PDF when the tagged option in PDF_begin_document() is true.
> PDF/A or PDF/X documents which don’t conform to the PDF/A or PDF/X level of the

current output document.

7.1 Placing and Fitting Single-Line Text 133

7 Formatting Features
7.1 Placing and Fitting Single-Line Text

The function PDF_fit_textline() for placing a single line of text on a page offers a wealth
of formatting options. The most important options will be discussed in this section us-
ing some common application examples. A complete description of these options can
be found in the PDFlib Reference. Most options for PDF_fit_textline() are identical to those
of PDF_fit_image(). Therefore we will only use text-related examples here; it is recom-
mended to take a look at the examples in Section 7.3, »Placing Images and Imported PDF
Pages«, page 158, for an introduction to image formatting.

The examples below demonstrate only the relevant call of PDF_fit_textline(), assum-
ing that the required font has already been loaded and set in the desired font size.

PDF_fit_textline() uses a hypothetical text box to determine the positioning of the
text: the width of the text box is identical to the width of the text, and the box height is
identical to the height of capital letters in the font. The text box can be extended to the
left and right or top and bottom using the margin option. The margin will be scaled
along with the text line.

In the examples below, the coordinates of the reference point are supplied as x, y pa-
rameters of PDF_fit_textline(). The fitbox for text lines is the area where text will be
placed. It is defined as the rectangular area specified with the x, y parameters of PDF_fit_
textline() and appropriate options (boxsize, position, rotate).

7.1.1 Simple Text Placement

Positioning text at the reference point. By default, the text will be placed with the
lower left corner at the reference point. However, in this example we want to place the
text with the bottom centered at the reference point. The following code fragment plac-
es the text box with the bottom centered at the reference point (30, 20).

p.fit_textline(text, 30, 20, "position={center bottom}");

Figure 7.1 illustrates centered text placement. Similarly, you can use the position option
with another combination of the keywords left, right, center, top, and bottom to place text
at the reference point.

Placing text with orientation. Our next goal is to rotate text while placing its lower
left corner (after the rotation) at the reference point. The following code fragment ori-
entates the text to the west (90˚ counterclockwise) and then translates the lower left
corner of the rotated text to the reference point (0, 0).

x

Kraxiy Kr
ax

i

x

y

Fig. 7.2
Simple text with
orientation west

Fig. 7.1
Centered text

134 Chapter 7: Formatting Features

p.fit_textline(text, 0, 0, "orientate=west");

Figure 7.2 illustrates simple text placement with orientation.

7.1.2 Positioning Text in a Box
In order to position the text, an additional box with predefined width and height can be
used, and the text can be positioned relative to this box. Figure 7.3 illustrates the general
behaviour.

Positioning text in the box. We define a rectangular box and place the text within this
box on the top right. The following code fragment defines a box with a width of 50 units
and a height of 22 units at reference point (30, 20). In Figure 7.4a, the text is placed on the
top right of the box.

Similarly, we can place the text at the center of the bottom. This case is illustrated in
Figure 7.4b.

To achieve some distance between the text and the box we can add the margin option
(see Figure 7.4c).

Note that the blue box or line depicted for visualizing the box size in the figures is
not part of the actual output.

Fig. 7.4 Placing text in a box subject to various positioning options

Generated output Option list for PDF_fit_textline()

a) boxsize={50 22} position={right top}

b) boxsize={50 22} position={center bottom}

c) boxsize={50 22} position={center bottom} margin={0 3}

d) boxsize={50 0} position={center bottom}

e) boxsize={0 35} position={left center} orientate=west

20

20 Kraxi box 50 wide, 0 high
text at bottom center of the box

30

20
Kraxi box 50 wide, 22 high

text on top right of the box

Fig. 7.3 Positioning text in a box

Kraxi

Kraxi

Kraxi

Kraxi

K
ra

xi

7.1 Placing and Fitting Single-Line Text 135

Aligning text at a horizontal or vertical line. Positioning text along a horizontal or
vertical line (i.e. a box with zero height or width) is a somewhat extreme case which may
be useful nevertheless. In Figure 7.4d the text is placed with the bottom centered at the
box. With a width of 50 and a height of 0, the box resembles to a horizontal line.

To align the text centered along a vertical line we will orientate it to the west and po-
sition it at the left center of the box. This case is shown in Figure 7.4e.

7.1.3 Fitting Text into a Box
In this section we use various fit methods to fit the text into the box. The current font
and font size are assumed to be the same in all examples so that we can see how the font
size and other properties will implicitly be changed by the different fit methods.

Let’s start with the default case: no fit method will be used so that no clipping or scal-
ing occurs. The text will be placed in the center of the box which is 100 units wide and 35
units high (see Figure 7.5a).

Decreasing the box width from 100 to 50 units doesn’t have any effect on the output.
The text will remain in its original font size and will exceed beyond the box (see Figure
7.5b).

Proportionally fitting text into a small box. Now we will completely fit the text into
the box while maintaining its proportions. This can be achieved with the
fitmethod=auto option. In Figure 7.5c the box is wide enough to keep the text in its origi-
nal size completely so that the text will be fit into the box unchanged.

When scaling down the width of the box from 100 to 58, the text is too long to fit
completely. The auto fit method will try to condense the text horizontally, subject to the
shrinklimit option (default: 0.75). Figure 7.5d shows the text being shrunk down to 75 per-
cent of its original length.

When decreasing the box width further down to 30 units the text will not fit even if
shrinking is applied. Then the meet method will be applied. The meet method will de-
crease the font size until the text fits completely into the box. This case is shown in Fig-
ure 7.5e.

Fitting the text into the box with increased font size. You might want to fit the text so
that it covers the whole width (or height) of the box but maintains its proportions. Us-
ing fitmethod=meet with a box larger than the text, the text will be increased until its
width matches the box width. This case is illustrated in Figure 7.5f.

Completely fitting text into a box. We can further fit the text so that it completely fills
the box. In this case, fitmethod=entire is used. However, this combination will rarely be
used since the text will most probably be distorted (see Figure 7.5g).

Fitting text into a box with clipping. In another rare case you might want to fit the
text in its original size and clip the text if it exceeds the box. In this case, fitmethod=clip
can be used. In Figure 7.5h the text is placed at the bottom left of a box which is not
broad enough. The text will be clipped on the right.

136 Chapter 7: Formatting Features

Fig. 7.5 Fitting text into a box on the page subject to various options

Vertically centering text. The text height in PDF_fit_textline() is the capheight, i.e. the
height of the capital letter H, by default. If the text is positioned in the center of a box it
will be vertically centered according to its capheight (see Figure 7.6a).

To specify another height for the text line we can use the Matchbox feature (see also
Section 7.5, »Matchboxes«, page 177). The matchbox option of PDF_fit_textline() define the
height of a textline which is the capheight of the given font size, by default. The height
of the matchbox is calculated according to its boxheight suboption. The boxheight sub-
option determines the extent of the text above and below the baseline.
matchbox={boxheight={capheight none}} is the default setting, i.e. the top border of the
matchbox will touch the capheight above the baseline, and the bottom border of the
matchbox will not extend below the baseline.

To illustrate the size of the matchbox we will fill it with red color (see Figure 7.6b).
Figure 7.6c vertically centers the text according to the xheight by defining a matchbox
with a corresponding box height.

Generated output Option list for PDF_fit_textline()

a) boxsize={100 35} position=center fontsize=12

b) boxsize={50 35} position=center fontsize=12

c)
boxsize={100 35} position=center fontsize=12
fitmethod=auto

d)
boxsize={58 35} position=center fontsize=12
fitmethod=auto

e)
boxsize={30 35} position=center fontsize=12
fitmethod=auto

f)
boxsize={100 35} position=center fontsize=12
fitmethod=meet

g)
boxsize={100 35} position=center fontsize=12
fitmethod=entire

h)
boxsize={50 35} position={left center}
fontsize=12 fitmethod=clip

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems
Kraxi Sys

7.1 Placing and Fitting Single-Line Text 137

Figure 7.6d–f shows the matchbox (red) with various useful boxheight settings to de-
termine the height of the text to be centered in the box (blue).

Fig. 7.6 Fitting text proportionally into a box according to different box heights

7.1.4 Aligning Text at a Character

Aligning text at a character. You might want to align text at a certain character, e.g. at
the decimal point in a number. In the following code fragment the text is positioned at
the center of the fitbox. Using the alignchar=. option the numbers are aligned at the dot
character (see Figure 7.7a).

/* align floating point numbers at the dot character */
String optlist =

"font=" + normalfont + " fontsize=8 boxsize={70 8} " +
"position={center bottom} alignchar=.";

p.fit_textline("127.123", 10, 50, optlist);
p.fit_textline("12.01", 10, 40, optlist);
p.fit_textline("123.0", 10, 30, optlist);
p.fit_textline("4025.20", 10, 20, optlist);

You can omit the position option which places the dots in the center of the box. In this
case, the default position={left bottom} will be used which places the dots at the reference
point (see Figure 7.7b). In general, the alignment character will be placed with the lower
right corner at the reference point.

Generated output Option list for PDF_fit_textline()

a) boxsize={80 20} position=center fitmethod=auto

b)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={capheight none}
fillcolor={rgb 1 0.8 0.8}}

c)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={xheight none}
fillcolor={rgb 1 0.8 0.8}}

d)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={ascender none}
fillcolor={rgb 1 0.8 0.8}}

e)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={ascender descender}
fillcolor={rgb 1 0.8 0.8}}

f)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={fontsize none}
fillcolor={rgb 1 0.8 0.8}}

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

138 Chapter 7: Formatting Features

Fig. 7.7 Aligning a textline to the dot character

7.1.5 Placing a Stamp
As an alternative to rotated text, the stamp feature offers a convenient method for plac-
ing text diagonally in a box. The stamp function will automatically perform some so-
phisticated calculations to determine a suitable font size and rotation so that the text
covers the box. To place a diagonal stamp, e.g. in the page background, the following
code fragment will fit the text from the lower left to the upper right corner (ll2ur) of the
fitbox. The borders are shown with showborder=true to illustrate the fitbox and the
bounding box of the stamp (see Figure 7.8).

/* fit the text line and add a stamp from the lower left to the upper right */
String optlist = "font=" + normalfont + " fontsize=8 boxsize={160 50} " +

"showborder=true stamp=ll2ur";

p.fit_textline("Giant Wing", 5, 5, optlist);

Fig. 7.8 Fitting a text line like a stamp from the lower left to the upper right

7.1.6 Using Leaders
Leaders can be used to fill the space between the borders of the fitbox and the text. For
example, dot leaders are often used as a visual aid between the entries in a table of con-
tents and the corresponding page numbers.

Leaders in a table of contents. The following code fragment places a text line. Using
the leader option with the alignment={none right} suboption, leaders are appended to the
right, and repeated until the right border of the text box. There will be an equal distance
between the rightmost leader and the right border, while the distance between the text
and the leftmost leader may differ (see Figure 7.9a).

/* fit the text line and add a leader like in the entries of a table of contents */
String optlist =

"font=" + normalfont + " fontsize=8 boxsize={200 10} " +
"leader={alignment={none right}}";

Generated output Option list for PDF_fit_textline()

a) boxsize={70 8} position={center bottom} alignchar=.

b) boxsize={70 8} position={left bottom} alignchar=.

Generated output Option list for PDF_fit_textline()

fontsize=8 boxsize={160 50} showborder=true stamp=ll2ur

127.123
12.01

123.0
4025.20

127.123
12.01

123.0
4025.20

Giant Wing

7.1 Placing and Fitting Single-Line Text 139

p.fit_textline("Features of Giant Wing", 10, 60, optlist);
p.fit_textline("Description of Long Distance Glider", 10, 40, optlist);
p.fit_textline("Benefits of Cone Head Rocket", 10, 20, optlist);

Leaders in a news ticker. In another use case you might want to create a news ticker
effect. In this case we use a plus and a space character »+ « as leaders. The text is placed
in the center, and the leaders are printed before and after the text (alignment={left
right}). The left and right leaders are aligned to the left and right border, and might have
a varying distance to the text (see Figure 7.9b).

/* fit the text line and add a Ticker-like leader */
String optlist =

"font=" + normalfont + " fontsize=8 boxsize={200 10} " +
"position={center bottom} leader={alignment={left right} text={+ }}";

p.fit_textline("Giant Wing in purple!", 10, 60, optlist);
p.fit_textline("Long Distance Glider with sensational range!", 10, 40, optlist);
p.fit_textline("Cone Head Rocket incredibly fast!", 10, 20, optlist);

Fig. 7.9 Fitting a text line using leaders

Generated output Option list for PDF_fit_textline()

a)
boxsize={200 10}
leader={alignment={none right}}

b)

boxsize={200 10}
position={center bottom}
leader={alignment={left right}}
text={+ }

Features of Giant Wing ..

Description of Long Distance Glider.................................

Benefits of Cone Head Rocket ...

Giant Wing in purple!+ + + + + + + + + + + + + + + + + +

Long Distance Glider with sensational range!+ + + +

Cone Head Rocket incredibly fast!+ + + + + + + + + +

140 Chapter 7: Formatting Features

7.2 Multi-Line Textflows
In addition to placing single lines of text on the page, PDFlib supports a feature called
Textflow which can be used to place arbitrarily long text portions. The text may extend
across any number of lines, columns, or pages, and its appearance can be controlled
with a variety of options. Character properties such as font, size, and color can be ap-
plied to any part of the text. Textflow properties such as justified or ragged text, para-
graph indentation and tab stops can be specified; line breaking opportunities designat-
ed by soft hyphens in the text will be taken into account. Figure 7.10 and Figure 7.11
demonstrate how various parts of an invoice can be placed on the page using the Text-
flow feature. We will discuss the options for controlling the output in more detail in the
following sections.

leading
= 140%

parindent
= 7%

leftindent
= 55

alignment
= left

rightindent
= 60

alignment
= justify

minlinecount
= 2

17, Aviation Road
Paperfield

Phone 7079-4301
Fax 7079-4302

www.kraxi.com
info@kraxi.com

Kraxi Systems, Inc.

Paper Planes

Kraxi Systems, Inc. 17, Aviation Road Paperfield

John Q. Doe
255 Customer Lane
Suite B
12345 User Town
Everland

INVOICE 14.03.2004

ITEM DESCRIPTION QUANTITY PRICE AMOUNT
1 Super Kite 2 20,00 40,00
2 Turbo Flyer 5 40,00 200,00
3 Giga Trash 1 180,00 180,00
4 Bare Bone Kit 3 50,00 150,00
5 Nitty Gritty 10 20,00 200,00
6 Pretty Dark Flyer 1 75,00 75,00
7 Free Gift 1 0,00 0,00

845,00

Terms of payment: 30 days net. 30 days warranty starting at the day of sale. This
warranty covers defects in workmanship only. Kraxi Systems, Inc., at its option, repairs or
replaces the product under warranty. This warranty is not transferable. Returns or
exchanges are not possible for wet products.

Have a look at our new paper plane models!
Our paper planes are the ideal way of passing the time. We offer revolutionary

new developments of the traditional common paper planes. If your lesson,
conference, or lecture turn out to be deadly boring, you can have a wonderful time
with our planes. All our models are folded from one paper sheet.

They are exclusively folded without using any adhesive. Several models are
equipped with a folded landing gear enabling a safe landing on the intended location
provided that you have aimed well. Other models are able to fly loops or cover long
distances. Let them start from a vista point in the mountains and see where they
touch the ground.

1. Long Distance Glider
With this paper rocket you can send all your messages even when
sitting in a hall or in the cinema pretty near the back.

2. Giant Wing
An unbelievable sailplane! It is amazingly robust and can even do

hortabmethod ruler
tabalignment left rightright right right

ruler 30 45 475375275

leftindent = 75

leftindent = 105

Fig. 7.10
Formatting
Textflows

7.2 Multi-Line Textflows 141

A multi-line Textflow can be placed into one or more rectangles (so-called fitboxes)
on one or more pages. The following steps are required for placing a Textflow on the
page:

> The function PDF_add_textflow() accepts portions of text and corresponding format-
ting options, creates a Textflow object, and returns a handle. As an alternative, the
function PDF_create_textflow() analyzes the complete text in a single call, where the
text may contain inline options for formatting control. These functions do not place
any text on the page.

> The function PDF_fit_textflow() places all or parts of the Textflow in the supplied fit-
box. To completely place the text, this step must possibly be repeated several times
where each of the function calls provides a new fitbox which may be located on the
same or another page.

> The function PDF_delete_textflow() deletes the Textflow object after it has been
placed in the document.

The functions PDF_add/create_textflow() for creating Textflows support a variety of op-
tions for controlling the formatting process. These options can be provided in the func-
tion’s option list, or embedded as inline options in the text when using PDF_create_
textflow(). PDF_info_textflow() can be used to query formatting results and many other
Textflow details. We will discuss Textflow placement using some common application
examples. A complete list of Textflow options can be found in the PDFlib Reference.

Many of the options supported by PDF_add/create_textflow() are identical to those of
PDF_fit_textline(). It is therefore recommended to familiarize yourself with the exam-
ples in Section 7.1, »Placing and Fitting Single-Line Text«, page 133. In the below sections
we will focus on options related to multi-line text.

7.2.1 Placing Textflows in the Fitbox
The fitbox for Textflow is the area where text will be placed. It is defined as the rectan-
gular area specified with the llx, lly, urx, ury parameters of PDF_fit_textflow().

Placing text in a single fitbox. Let’s start with an easy example. The following code
fragment uses two calls to PDF_add_textflow() to assemble a piece of bold text and a
piece of normal text. Font, font size, and encoding are specified explicitly. In the first
call to PDF_add_textflow(), -1 is supplied, and the Textflow handle will be returned to be

aerobatics. But it is best suited to gliding.

3. Cone Head Rocket
This paper arrow can be thrown with big swing. We launched it from
the roof of a hotel. It stayed in the air a long time and covered a
considerable distance.

4. Super Dart
The super dart can fly giant loops with a radius of 4 or 5 meters and
cover very long distances. Its heavy cone point is slightly bowed
upwards to get the lift required for loops.

5. German Bi-Plane
Brand-new and ready for take-off. If you have lessons in the history of
aviation you can show your interest by letting it land on your teacher's
desk.

fillcolor, charspacing,
fontsize, fontname

Fig. 7.11
Formatting
Textflows

142 Chapter 7: Formatting Features

used in subsequent calls to PDF_add_textflow(), if required. text1 and text2 are assumed
to contain the actual text to be printed.

With PDF_fit_textflow(), the resulting Textflow is placed in a fitbox on the page using
default formatting options.

/* Add text with bold font */
tf = p.add_textflow(-1, text1, "fontname=Helvetica-Bold fontsize=9 encoding=unicode");
if (tf == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Add text with normal font */
tf = p.add_textflow(tf, text2, "fontname=Helvetica fontsize=9 encoding=unicode");
if (tf == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Place all text */
result = p.fit_textflow(tf, left_x, left_y, right_x, right_y, "");
if (!result.equals("_stop"))

{ /* ... */}

p.delete_textflow(tf);

Placing text in two fitboxes on multiple pages. If the text placed with PDF_fit_
textflow() doesn’t completely fit into the fitbox, the output will be interrupted and the
function will return the string _boxfull. PDFlib will remember the amount of text al-
ready placed, and will continue with the remainder of the text when the function is
called again. In addition, it may be necessary to create a new page. The following code
fragment demonstrates how to place a Textflow in two fitboxes per page on one or
more pages until the text has been placed completely (see Figure 7.12).

/* Loop until all of the text is placed; create new pages as long as more text needs
* to be placed. Two columns will be created on all pages.

*/
do
{

String optlist = "verticalalign=justify linespreadlimit=120%";

1 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 2 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
3 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 4 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
5 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 6 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
7 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure

dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 8 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
9 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 10 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
11 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 12 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
13 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 14 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do

eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
15 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 16 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
17 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 18 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
19 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 20 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat

nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
21 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 22 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
23 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 24 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
25 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 26 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
27 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.

fitbox 1

Fig. 7.12
Placing a Textflow
in two fitboxes

fitbox 2 fitbox 3 fitbox 4
page 1 page 2

7.2 Multi-Line Textflows 143

p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

/* Fill the first column */
result = p.fit_textflow(tf, llx1, lly1, urx1, ury1, optlist);

/* Fill the second column if we have more text*/
if (!result.equals("_stop"))

result = p.fit_textflow(tf, llx2, lly2, urx2, ury2, optlist);

p.end_page_ext("");

/* "_boxfull" means we must continue because there is more text;
 * "_nextpage" is interpreted as "start new column"
 */

} while (result.equals("_boxfull") || result.equals("_nextpage"));

/* Check for errors */
if (!result.equals("_stop"))
{

/* "_boxempty" happens if the box is very small and doesn't hold any text at all.
*/
if (result.equals("_boxempty"))

throw new Exception("Error: " + p.get_errmsg());
else
{

/* Any other return value is a user exit caused by the "return" option;
 * this requires dedicated code to deal with.
*/

}
}
p.delete_textflow(tf);

7.2.2 Paragraph Formatting Options
In the previous example we used default settings for the paragraphs. For example, the
default alignment is left-justified, and the leading is 100% (which equals the font size).

In order to fine-tune the paragraph formatting we can feed more options to PDF_
add_textflow(). For example, we can indent the text 15 units from the left and 10 units
from the right margin. The first line of each paragraph should be indented by an addi-
tional 20 units. The text should be justified against both margins, and the leading in-
creased to 140%. Finally, we’ll reduce the font size to 8 points. To achieve this, extend
the option list for PDF_add_textflow() as follows (see Figure 7.13):

String optlist =
"leftindent=15 rightindent=10 parindent=20 alignment=justify " +
"leading=140% fontname=Helvetica fontsize=8 encoding=unicode";

7.2.3 Inline Option Lists and Macros
The text in Figure 7.13 is not yet perfect. The headline »Have a look at our new paper
plane models!« should sit on a line of its own, should use a larger font, and should be
centered. There are several ways to achieve this.

Inline option lists for PDF_create_textflow(). Up to now we provided formatting op-
tions in an option list supplied directly to the function. In order to continue the same
way we would have to split the text, and place it in two separate calls, one for the head-

144 Chapter 7: Formatting Features

line and another one for the remaining text. However, in certain situations, e.g. with
lots of formatting changes, this method might be pretty cumbersome.

For this reason, PDF_create_textflow() can be used instead of PDF_add_texflow(). PDF_
create_textflow() interprets text and so-called inline options which are embedded di-
rectly in the text. Inline option lists are provided as part of the body text. By default,
they are delimited by »<« and »>« characters. We will therefore integrate the options for
formatting the heading and the remaining paragraphs into our body text as follows.

Note Inline option lists are colorized in all subsequent samples; end-of-paragraph characters are vi-
sualized with arrows.

<leftindent=15 rightindent=10 alignment=center fontname=Helvetica fontsize=12
encoding=winansi>Have a look at our new paper plane models!
<alignment=justify fontname=Helvetica leading=140% fontsize=8 encoding=winansi>
Our paper planes are the ideal way of passing the time. We offer
revolutionary new developments of the traditional common paper planes.
<parindent=20>If your lesson, conference, or lecture
turn out to be deadly boring, you can have a wonderful time
with our planes. All our models are folded from one paper sheet.
They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe
landing on the intended location provided that you have aimed well.
Other models are able to fly loops or cover long distances. Let them
start from a vista point in the mountains and see
where they touch the ground.

Have a look at our new paper plane models! Our paper planes
are the ideal way of passing the time. We offer revolutionary new
developments of the traditional common paper planes.

If your lesson, conference, or lecture turn out to be deadly boring,
you can have a wonderful time with our planes. All our models are
folded from one paper sheet.

They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe landing
on the intended location provided that you have aimed well. Other
models are able to fly loops or cover long distances. Let them start
from a vista point in the mountains and see where they touch the
ground.

leading = 140%

parindent = 20

leftindent = 15
rightindent = 10

alignment =
justify

Fig. 7.13
Placing a Textflow

with options

Have a look at our new paper plane models!
Our paper planes are the ideal way of passing the time. We offer
revolutionary new developments of the traditional common paper
planes.

If your lesson, conference, or lecture turn out to be deadly boring,
you can have a wonderful time with our planes. All our models are
folded from one paper sheet.

They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe landing
on the intended location provided that you have aimed well. Other
models are able to fly loops or cover long distances. Let them start
from a vista point in the mountains and see where they touch the
ground.

H1
Body

Body_indented

Fig. 7.14
Combining inline

options with macros

7.2 Multi-Line Textflows 145

The characters for bracketing option lists can be redefined with the begoptlistchar and
endoptlistchar options. Supplying the keyword none for the begoptlistchar option com-
pletely disables the search for option lists. This is useful if the text doesn’t contain any
inline option lists, and you want to make sure that »<« and »>« will be processed as reg-
ular characters.

Macros. The text above contains several different types of paragraphs, such as head-
ing or body text with or without indentation. Each of these paragraph types is format-
ted differently and occurs multiply in longer Textflows. In order to avoid starting each
paragraph with the corresponding inline options, we can combine these in macros, and
refer to the macros in the text via their names. As shown in Figure 7.14 we define three
macros called H1 for the heading, Body for main paragraphs, and Body_indented for in-
dented paragraphs. In order to use a macro we place the & character in front of its name
and put it into an option list. The following code fragment defines three macros accord-
ing to the previously used inline options and uses them in the text:

<macro {
H1 {leftindent=15 rightindent=10 alignment=center
fontname=Helvetica fontsize=12 encoding=winansi}

Body {leftindent=15 rightindent=10 alignment=justify leading=140%
fontname=Helvetica fontsize=8 encoding=winansi}

Body_indented {parindent=20 leftindent=15 rightindent=10 alignment=justify
leading=140% fontname=Helvetica fontsize=8 encoding=winansi}
}>
<&H1>Have a look at our new paper plane models!
<&Body>Our paper planes are the ideal way of passing the time. We offer
revolutionary new developments of the traditional common paper planes.
<&Body_indented>If your lesson, conference, or lecture
turn out to be deadly boring, you can have a wonderful time
with our planes. All our models are folded from one paper sheet.
They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe
landing on the intended location provided that you have aimed well.
Other models are able to fly loops or cover long distances. Let them
start from a vista point in the mountains and see
where they touch the ground.

Explicitly setting options. Note that all options which are not set in macros will retain
their previous values. In order to avoid side effects caused by unwanted »inheritance«
of options you should explicitly specify all settings required for a particular macro. This
way you can ensure that the macros will behave consistently regardless of their order-
ing or combination with other option lists.

On the other hand, you can take advantage of this behavior for deliberately retaining
certain settings from the context instead of supplying them explicitly. For example, a
macro could specify the font name without supplying the fontsize option. As a result,
the font size will always match that of the preceding text.

Inline options or options passed as function parameters? When using Textflows it
makes an important difference whether the text is contained literally in the program
code or comes from some external source, and whether the formatting instructions are

146 Chapter 7: Formatting Features

separate from the text or part of it. In most applications the actual text will come from
some external source such as a database. In practise there are two main scenarios:

> Text contents from external source, formatting options in the program: An external
source delivers small text fragments which are assembled within the program, and
combined with formatting options (in the function call) at runtime.

> Text contents and formatting options from external source: Large amounts of text
including formatting options come from an external source. The formatting is pro-
vided by inline options in the text, represented as simple options or macros. When it
comes to macros a distinction must be made between macro definition and macro
call. This allows an interesting intermediate form: the text content comes from an
external source and contains macro calls for formatting. However, the macro defini-
tions are only blended in at runtime. This has the advantage that the formatting can
easily be changed without having to modify the external text. For example, when
generating greeting cards one could define different styles via macros to give the
card a romantic, technical, or other touch.

7.2.4 Tab Stops
In the next example we will place a table with left- and right-aligned columns using tab
characters. The table contains the following lines of text, where individual entries are
separated from each other with a tab character (indicated by arrows):

ITEM DESCRIPTION QUANTITY PRICE AMOUNT
1 Super Kite 2 20.00 40.00
2 Turbo Flyer 5 40.00 200.00
3 Giga Trash 1 180.00 180.00

 TOTAL 420.00

The following code fragment places the table, using the ruler option for defining the tab
positions, tabalignment for specifying the alignment of tab stops, and hortabmethod for
specifying the method used to process tab stops (the result can be seen in Figure 7.15):

/* assemble option list */
String optlist =

"ruler ={30 150 250 350} " +
"tabalignment={left right right right} " +
"hortabmethod=ruler leading=120% fontname=Helvetica fontsize=9 encoding=winansi";

/* place Textflow in fitbox */
textflow = p.add_textflow(-1, table, optlist);
if (textflow == -1)

throw new Exception("Error: " + p.get_errmsg());

hortabmethod ruler
tabalignment left right right right

ruler 30 350250150

ITEM DESCRIPTION QUANTITY PRICE AMOUNT
1 Super Kite 2 20.00 40.00
2 Turbo Flyer 5 40.00 200.00
3 Giga Trash 1 180.00 180.00

TOTAL 420.00

Fig. 7.15
Placing text

as a table

7.2 Multi-Line Textflows 147

result = p.fit_textflow(textflow, left_x, left_y, right_x, right_y, "");
if (!result.equals("_stop"))

{ /* ... */ }

p.delete_textflow(textflow);

Note PDFlib’s table feature is recommended for creating complex tables (see Section 7.4, »Table For-
matting«, page 164).

7.2.5 Numbered Lists and Paragraph Spacing
The following example demonstrates how to format a numbered list using the inline
option leftindent (see Figure 7.16):

1.<leftindent 10>Long Distance Glider: With this paper rocket you can send all
your messages even when sitting in a hall or in the cinema pretty near the back.
<leftindent 0>2.<leftindent 10>Giant Wing: An unbelievable sailplane! It is amazingly
robust and can even do aerobatics. But it is best suited to gliding.
<leftindent 0>3.<leftindent 10>Cone Head Rocket: This paper arrow can be thrown with big
swing. We launched it from the roof of a hotel. It stayed in the air a long time and
covered a considerable distance.

Setting and resetting the indentation value is cumbersome, especially since it is re-
quired for each paragraph. A more elegant solution defines a macro called list. For con-
venience it defines a macro indent which is used as a constant. The macro definitions are
as follows:

<macro {
indent {25}

list {parindent=-&indent leftindent=&indent hortabsize=&indent
hortabmethod=ruler ruler={&indent}}
}>
<&list>1. Long Distance Glider: With this paper rocket you can send all your messages
even when sitting in a hall or in the cinema pretty near the back.
2. Giant Wing: An unbelievable sailplane! It is amazingly robust and can even do
aerobatics. But it is best suited to gliding.
3. Cone Head Rocket: This paper arrow can be thrown with big swing. We launched
it from the roof of a hotel. It stayed in the air a long time and covered a
considerable distance.

The leftindent option specifies the distance from the left margin. The parindent option,
which is set to the negative of leftindent, cancels the indentation for the first line of each
paragraph. The options hortabsize, hortabmethod, and ruler specify a tab stop which cor-
responds to leftindent. It makes the text after the number to be indented with the

1. Long Distance Glider: With this paper rocket you can send all your
messages even when sitting in a hall or in the cinema pretty near the
back.

2. Giant Wing: An unbelievable sailplane! It is amazingly robust and can
even do aerobatics. But it is best suited to gliding.

3. Cone Head Rocket: This paper arrow can be thrown with big swing. We
launched it from the roof of a hotel. It stayed in the air a long time and
covered a considerable distance.

Fig. 7.16
Numbered list

148 Chapter 7: Formatting Features

amount specified in leftindent. Figure 7.17 shows the parindent and leftindent options at
work.

Setting the distance between two paragraphs. In many cases more distance between
adjacent paragraphs is desired than between the lines within a paragraph. This can be
achieved by inserting an extra empty line (which can be created with the nextline op-
tion), and specifying a suitable leading value for this empty line. This value is the dis-
tance between the baseline of the last line of the previous paragraph and the baseline of
the empty line. The following example will create 80% additional space between the
two paragraphs (where 100% equals the most recently set value of the font size):

1. Long Distance Glider: With this paper rocket you can send all your messages
even when sitting in a hall or in the cinema pretty near the back.
<nextline leading=80%><nextparagraph leading=100%>2. Giant Wing: An unbelievable
sailplane! It is amazingly robust and can even do aerobatics. But it is best suited to
gliding.

7.2.6 Control Characters, Character Mapping, and Symbol Fonts

Control characters in Textflows. Various characters are given special treatment in
Textflows. PDFlib supports symbolic character names which can be used instead of the
corresponding character codes in the charmapping option (which replaces characters in
the text before processing it, see below). Table 4.8 lists all control characters which are
evaluated by the Textflow functions along with their symbolic names, and explains
their meaning. An option must only be used once per option list, but multiple option
lists can be provided one after the other. For example, the following sequence will cre-
ate an empty line:

<nextline><nextline>

Replacing characters or sequences of characters. The charmapping option can be used
to replace some characters in the text with others. Let’s start with an easy case where we
will replace all tabs in the text with space characters. The charmapping option to achieve
this looks as follows:

charmapping={hortab space}

This command uses the symbolic character names hortab and space. You can find a list
of all known character names in the PDFlib Reference. To achieve multiple mappings at
once you can use the following command which will replace all tabs and line break com-
binations with space characters:

leftindent = &indent
parindent = – &indent 1. Long Distance Glider: With this paper rocket you can send all your

messages even when sitting in a hall or in the cinema pretty near
the back.

2. Giant Wing: An unbelievable sailplane! It is amazingly robust and
can even do aerobatics. But it is best suited to gliding.

3. Cone Head Rocket: This paper arrow can be thrown with big swing.
We launched it from the roof of a hotel. It stayed in the air a long
time and covered a considerable distance.

Fig. 7.17
Numbered list

with macros

7.2 Multi-Line Textflows 149

charmapping={hortab space CRLF space LF space CR space}

The following command removes all soft hyphens:

charmapping={shy {shy 0}}

Each tab character will be replaced with four space characters:

charmapping={hortab {space 4}}

Each arbitrary long sequence of linefeed characters will be reduced to a single linefeed
character:

charmapping={linefeed {linefeed -1}}

Each sequence of CRLF combinations will be replaced with a single space:

charmapping={CRLF {space -1}}

We will take a closer look at the last example. Let’s assume you receive text where the
lines have been separated with fixed line breaks by some other software, and therefore
cannot be properly formatted. You want to replace the linebreaks with space characters
in order to achieve proper formatting within the fitbox. To achieve this we replace arbi-
trarily long sequences of linebreaks with a single space character. The initial text looks
as follows:

To fold the famous rocket looper proceed as follows:
Take a sheet of paper. Fold it
lengthwise in the middle.
Then, fold down the upper corners. Fold the
long sides inwards
that the points A and B meet on the central fold.

The following code fragment demonstrates how to replace the redundant linebreak
characters and format the resulting text:

/* assemble option list */
String optlist =

"fontname=Helvetica fontsize=9 encoding=winansi alignment=justify " +
"charmapping {CRLF {space -1}}"

/* place textflow in fitbox */
textflow = p.add_textflow(-1, text, optlist);
if (textflow == -1)

throw new Exception("Error: " + p.get_errmsg());

result = p.fit_textflow(textflow, left_x, left_y, right_x, right_y, "");
if (!result.equals("_stop"))

{ /* ... */ }

p.delete_textflow(textflow);

Figure 7.18 shows Textflow output with the unmodified text and the improved version
with the charmapping option.

150 Chapter 7: Formatting Features

Symbol fonts in Textflows and the textlen option. Symbol fonts, more precisely: text
in a font which is not Unicode-compatible according to Section 5.4.4, »Unicode-compat-
ible Fonts«, page 111, deserves some special attention when used within Textflows:

> The control characters will not be treated specially, i.e. they have no special meaning.
> Some Textflow options will be ignored since they do not make sense for symbol

fonts, e.g. tabalignchar.
> Since inline option lists cannot be used in text portions with symbol fonts (since the

symbols don’t have any intrinsic meaning it would be impossible to locate and inter-
pret option lists), the length of text fragments consisting of symbol characters must
explicitly be specified using the textlen option.

> After textlen characters a new inline option list must be placed in the text. Usually
the next option list will switch to another font/encoding combination, but this is not
required.

Omitting the textlen option for Symbol fragments, or failing to supply another inline
option list immediately after the Symbol fragment will result in an exception.

The following fragment contains a Greek character from the Symbol font inserted
between Latin characters:

<fontname=Helvetica fontsize=12 encoding=winansi>The Greek letter <fontname=Symbol
encoding=builtin textlen=1>A<fontname=Helvetica encoding=winansi> symbolizes beginning.

Using characters with codes greater than 127 (0x7F) can get a bit tricky subject to the
syntax requirements of the programming language in use. The following examples cre-
ate a right arrow from the ZapfDingbats font. This character has glyph name a161 and
code 0xD5 which corresponds to the character Õ in winansi.

The following example uses PDFlib’s escape sequence syntax \xD5. If used directly in
a C language program, the backslash must be preceded by another backslash. Processing
escape sequences must be enabled with the escapesequence option. The length of the
fragment (after \\ processing) is 4 bytes:

<escapesequence fontname=ZapfDingbats encoding=builtin textlen=4>\\xD5<fontname=Helvetica
encoding=winansi>

The following example uses the \u syntax of Java and other languages. The length of the
text fragment (after \u expansion) is 1 Unicode character:

<fontname=ZapfDingbats encoding=builtin textlen=1>\u00D5<fontname=Helvetica
encoding=winansi>

To fold the famous rocket looper proceed as follows:

Take a sheet of paper. Fold it
lengthwise in the middle.
Then, fold down the upper corners. Fold the
long sides inwards
that the points A and B meet on the central fold.

To fold the famous rocket looper proceed as follows: Take a sheet of
paper. Fold it lengthwise in the middle. Then, fold down the upper
corners. Fold the long sides inwards that the points A and B meet on
the central fold.

Fig. 7.18
Top: text with redundant line
breaks

Bottom: replacing the linebreaks
with the charmapping option

7.2 Multi-Line Textflows 151

The following example uses a literal character, assuming the source code is compiled in
the winansi/cp1252 codepage (e.g. javac -encoding 1252). Again, the length of the text frag-
ment is 1:

<fontname=ZapfDingbats encoding=builtin textlen=1>Õ<fontname=Helvetica encoding=winansi>

Instead of numerically addressing the character we can refer to its glyph name, using
PDFlib’s glyph name reference syntax (see Section 4.6.2, »Character References and
Glyph Name References«, page 89) which requires unicode encoding. Glyph name pro-
cessing must be enabled with the charref option. The length of the text fragment is 7
characters since the complete contents of the glyph name reference are counted. In Uni-
code-aware language bindings the following example will do the trick:

<charref fontname=ZapfDingbats encoding=unicode textlen=7>&.a161;<fontname=Helvetica
encoding=winansi>

In non-Unicode-aware language bindings we must set the text format to bytes since oth-
erwise two bytes per character would be required for unicode encoding:

<charref fontname=ZapfDingbats encoding=unicode textformat=bytes textlen=7>&.a161;
<fontname=Helvetica encoding=winansi>

7.2.7 Hyphenation
PDFlib does not automatically hyphenate text, but can break words at hyphenation op-
portunities which are explicitly marked in the text by soft hyphen characters. The soft
hyphen character is at position U+00AD in Unicode, but several methods are available
for specifying the soft hyphen in non-Unicode environments:

> In all cp1250 – cp1258 (including winansi) and iso8859-1 – iso8859-16 encodings the soft
hyphen is at decimal 173, octal 255, or hexadecimal 0xAD.

> In ebcdic encoding the soft hyphen is at decimal 202, octal 312, or hexadecimal 0xCA.
> A character entity reference can be used if an encoding does not contain the soft hy-

phen character (e.g. macroman): ­

U+002D will be used as hyphenation character. In addition to breaking opportunities
designated by soft hyphens, words can be forcefully hyphenated in extreme cases when
other methods of adjustment, such as changing the word spacing or shrinking text, are
not possible.

Justified text with or without hyphen characters. In the following example we will
print the following text with justified alignment. The text contains soft hyphen charac-
ters (visualized here as dashes):

Our paper planes are the ideal way of pas sing the time. We offer revolu tionary
brand new dev elop ments of the tradi tional common paper planes. If your lesson,
confe rence, or lecture turn out to be deadly boring, you can have a wonder ful time
with our planes. All our models are folded from one paper sheet. They are exclu sively
folded without using any adhe sive. Several models are equip ped with a folded
landing gear enab ling a safe landing on the intended loca tion provided that you
have aimed well. Other models are able to fly loops or cover long dist ances. Let them
start from a vista point in the mount ains and see where they touch the ground.

Figure 7.19 shows the generated text output with default settings for justified text. It
looks perfect since the conditions are optimal: the fitbox is wide enough, and there are

152 Chapter 7: Formatting Features

explicit break opportunities specified by the soft hyphen characters. As you can see in
Figure 7.20, the output looks okay even without explicit soft hyphens. The option list in
both cases looks as follows:

fontname=Helvetica fontsize=9 encoding=winansi alignment=justify

7.2.8 Controlling the Linebreak Algorithm
PDFlib implements a sophisticated line-breaking algorithm.1 Table 7.1 lists Textflow op-
tions which control the line-breaking algorithm.

Line-breaking rules. When a word or other sequence of text surrounded by space char-
acters doesn’t fully fit into a line, it must be moved to the next line. In this situation the
line-breaking algorithm decides after which characters a line break is possible.

For example, a formula such as -12+235/8*45 will never be broken, while the string
PDF-345+LIBRARY may be broken to the next line at the minus character. If the text

contains soft hyphen characters it can also be broken after such a character.
For parentheses and quotation marks it depends on whether we have an opening or

closing character: opening parentheses and quotations marks do not offer any break
opportunity. In order to find out whether a quotation mark starts or ends a sequence,
pairs of quotation marks are examined.

An inline option list generally does not create a line break opportunity in order to al-
low option changes within words. However, when an option list is surrounded by space
characters there is a line break opportunity at the beginning of the option list. If a line
break occurs at the option list and alignment=justify, the spaces preceding the option list
will be discarded. The spaces after the option list will be retained, and will appear at the
beginning of the next line.

Preventing linebreaks. You can use the charclass option to prevent Textflow from
breaking a line after specific characters. For example, the following option will prevent
line breaks immediately after the / character:

charclass={letter /}

1. For interested users we’ll note that PDFlib honors the recommendations in »Unicode Standard Annex #14: Line Breaking
Properties« (see www.unicode.org/reports/tr14). Combining marks are not taken into account.

Our paper planes are the ideal way of
passing the time. We offer revolu-
tionary brand new developments of the
traditional common paper planes. If
your lesson, conference, or lecture turn
out to be deadly boring, you can have
a wonderful time with our planes. All
our models are folded from one paper
sheet. They are exclusively folded
without using any adhesive. Several
models are equipped with a folded
landing gear enabling a safe landing
on the intended location provided that
you have aimed well. Other models are
able to fly loops or cover long dist-
ances. Let them start from a vista point
in the mountains and see where they
touch the ground.

Our paper planes are the ideal way of
passing the time. We offer revolutionary
brand new developments of the
traditional common paper planes. If
your lesson, conference, or lecture turn
out to be deadly boring, you can have
a wonderful time with our planes. All
our models are folded from one paper
sheet. They are exclusively folded
without using any adhesive. Several
models are equipped with a folded
landing gear enabling a safe landing
on the intended location provided that
you have aimed well. Other models are
able to fly loops or cover long
distances. Let them start from a vista
point in the mountains and see where
they touch the ground.

Fig. 7.19
Justified text with soft hyphen characters,
using default settings and a wide fitbox

Fig. 7.20
Justified text without soft hyphens, using
default settings and a wide fitbox.

http://www.unicode.org/reports/tr14

7.2 Multi-Line Textflows 153

In order to prevent a sequence of text from being broken across lines you can bracket it
with avoidbreak...noavoidbreak.

Table 7.1 Options for controlling the line-breaking algorithm

option explanation

adjust-
method

(Keyword) The method used to adjust a line when a text portion doesn’t fit into a line after compressing
or expanding the distance between words subject to the limits specified by the minspacing and max-
spacing options. Default: auto
auto The following methods are applied in order: shrink, spread, nofit, split.
clip Same as nofit (see below), except that the long part at the right edge of the fitbox (taking

into account the rightindent option) will be clipped.
nofit The last word will be moved to the next line provided the remaining (short) line will not be

shorter than the percentage specified in the nofitlimit option. Even justified paragraphs
will look slightly ragged in this case.

shrink If a word doesn’t fit in the line the text will be compressed subject to the shrinklimit option
until the word fits. If it still doesn’t fit the nofit method will be applied.

split The last word will not be moved to the next line, but will forcefully be hyphenated. For text
fonts a hyphen character will be inserted, but not for symbol fonts.

spread The last word will be moved to the next line and the remaining (short) line will be justified by
increasing the distance between characters in a word, subject to the spreadlimit option. If
justification still cannot be achieved the nofit method will be applied.

avoidbreak (Boolean) If true, avoid any line breaks until avoidbreak is reset to false. Default: false

charclass (List of pairs, where the first element in each pair is a keyword, and the second element is either a unichar
or a list of unichars) The specified unichars will be classified by the specified keyword to determine the
line breaking behaviour of those character(s):
letter behave like a letter (e.g. a B)
punct behave like a punctuation character (e.g. + / ; :)
open behave like an open parenthesis (e.g. [)
close behave like a close parenthesis (e.g.])
default reset all character classes to PDFlib’s builtin defaults
Example: charclass={ close » open « letter {/ : =} punct & }

hyphenchar (Unichar or keyword) Unicode value of the character which replaces a soft hyphen at line breaks. The val-
ue 0 and the keyword none completely suppress hyphens. Default: U+00AD (SOFT HYPHEN) if available
in the font, U+002D (HYPHEN-MINUS) otherwise

maxspacing
minspacing

(Float or percentage) Specifies the maximum or minimum distance between words (in user coordinates,
or as a percentage of the width of the space character). The calculated word spacing is limited by the pro-
vided values (but the wordspacing option will still be added). Defaults: minspacing=50%,
maxspacing=500%

nofitlimit (Float or percentage) Lower limit for the length of a line with the nofit method (in user coordinates or as
a percentage of the width of the fitbox). Default: 75%.

shrinklimit (Percentage) Lower limit for compressing text with the shrink method; the calculated shrinking factor is
limited by the provided value, but will be multiplied with the value of the horizscaling option. Default:
85%

spreadlimit (Float or percentage) Upper limit for the distance between two characters for the spread method (in user
coordinates or as a percentage of the font size); the calculated character distance will be added to the
value of the charspacing option. Default: 0

154 Chapter 7: Formatting Features

Formatting CJK text. The textflow engine is prepared to deal with CJK text, and prop-
erly treats CJK characters as ideographic glyphs as per the Unicode standard. As a result,
CJK text will never be hyphenated. For improved formatting the following options are
recommended when using Textflow with CJK text; they will disable hyphenation for in-
serted Latin text and create evenly spaced text output:

hyphenchar=none
alignment=justify
shrinklimit=100%
spreadlimit=100%

Vertical writing mode is not supported in Textflow.

Justified text in a narrow fitbox. The narrower the fitbox, the more important are the
options for controlling justified text. Figure 7.21 demonstrates the results of the various
methods for justifying text in a narrow fitbox. The option settings in Figure 7.21 are ba-
sically okay, with the exception of maxspacing which provides a rather large distance be-
tween words. However, it is recommended to keep this for narrow fitboxes since other-
wise the ugly forced hyphenation caused by the split method will occur more often.

If the fitbox is so narrow that occasionally forced hyphenations occur, you should
consider inserting soft hyphens, or modify the options which control justified text.

Option shrinklimit for justified text. The most visually pleasing solution is to reduce
the shrinklimit option which specifies a lower limit for the shrinking factor applied by
the shrink method. Figure 7.22a shows how to avoid forced hyphenation by compressing
text down to shrinklimit=50%.

Our paper planes
are the ideal way of
passing the time.We
offer revolutionary
brand new develop-
ments of the traditional
common paper planes.
If your lesson, conf-
erence, or lecture
turn out to be deadly
boring, you can have
a wonderful time
with our planes. All

decrease the distance between words (minspacing option)

compress the line (shrink method, shrinklimit option)

force hyphenation (split method)

increase the distance between words (spread method, maxspacing option)

Fig. 7.21 Justified text in a narrow fitbox with default settings

7.2 Multi-Line Textflows 155

Fig. 7.22 Options for justified text in a narrow fitbox

Option spreadlimit for justified text. Expanding text, which is achieved by the spread
method and controlled by the spreadlimit option, is another method for controlling line
breaks. This unpleasing method should be rarely used, however. Figure 7.22b demon-
strates a very large maximum character distance of 5 units using spreadlimit=5.

Option nofitlimit for justified text. The nofitlimit option controls how small a line can
get when the nofit method is applied. Reducing the default value of 75% is preferable to
forced hyphenation when the fitbox is very narrow. Figure 7.22c shows the generated
text output with a minimum text width of 50%.

7.2.9 Wrapping Text
The wrapping feature can be used to place graphics within a Textflow and wrap text
around it, or to fill arbitrary polygonal shapes with text. By means of matchboxes, rect-
angles, or polygons you can specify wrapping areas for the Textflow. Alternatively, the
Textflow can be placed within the specified areas instead of being wrapped around. This
means that you can place Textflow in arbitrary shapes instead of only rectangles.

Wrapping text around an image with matchbox. In the first example we will place an
image within the Textflow and run the text around the image. To accomplish this we
load the image and fit it into a box, define this box as the wrapping area, and wrap the
text around the image (see Figure 7.23).

image = p.load_image("auto", "plane.jpg", "");
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());
p.fit_image(image, 50, 35,

"boxsize={80 46} fitmethod=meet position=center matchbox={name=img margin=-5}");

textflow = p.add_textflow(-1, text,
"fontname=Helvetica fontsize=9 encoding=unicode alignment=justify");

Generated output Option list for PDF_fit_textflow()

a)

alignment=justify shrinklimit=50%

b)

alignment=justify spreadlimit=5

c)

alignment=justify nofitlimit=50

passing the time.We
offer revolutionary
brand new developments
of the traditional
common paper planes.
If your lesson, conference,
or lecture turn out to

Our paper planes
are the ideal way of
passing the time.We
offer revolutionary
b r a n d n e w
developments of the

ments of the traditional
common paper planes.
If your lesson,
conference, or lecture
turn out to be deadly
boring, you can have

156 Chapter 7: Formatting Features

if (textflow == -1)
throw new Exception("Error: " + p.get_errmsg());

result = p.fit_textflow(textflow, left_x, left_y, right_x, right_y,
"wrap={usematchboxes={{img}}}");

if (!result.equals("_stop"))
{ /* ... */ }

p.delete_textflow(textflow);

First the image is loaded and placed into the box at the desired position. To refer to the
image by name later, we define a matchbox with the name img and a margin of 5 units
with the option list matchbox={name=img margin=-5} in PDF_fit_image(). Then the Text-
flow is added and placed using the wrap option with the image’s matchbox img as the
area to run around: wrap={usematchboxes={{img all}}}.

Before placing the text you can fit more images using the same matchbox name. In
this case the text will run around all images since the keyword all refers to all rectangles
comprising the named matchbox.

Wrapping text around non-rectangular shapes. In addition to wrapping text around a
rectangle specified by a matchbox you can define arbitrary polygons as wrapping
shapes. For example, the following option list will wrap the text around a triangular
shape (see Figure 7.24):

wrap={ polygons={ {50% 80% 20% 30% 80% 30% 50% 80%} } }

Note that the showborder=true option has been used to illustrate the margins of the
shapes. The wrap option can contain multiple shapes. The following option list will
wrap the text around two triangle shapes:

wrap={ polygons={ {50% 80% 20% 30% 80% 30% 50% 80%}
{20% 90% 10% 70% 30% 70% 20% 90%} } }

Instead of percentages (relative coordinates within the fitbox) absolute coordinates on
the page can be used.

Note It is recommended to set fixedleading=true when using shapes with segments which are nei-
ther horizontally nor vertically oriented.

Filling non-rectangular shapes. The wrap feature can also be used to place the con-
tents of a Textflow in arbitrarily shaped areas. This is achieved with the addfitbox subop-
tion of the wrap option. Instead of wrapping the text around the specified shapes the
text will be placed within one or more shapes. The following option list can be used to

Have a look at our new paper plane models! Our
paper planes are the ideal way of passing the time.
We offer revolutionary new
developme- nts of the traditi-
onal com- mon paper planes.
If your les- son, conference,
or lecture turn out to be
deadly bor- ing, you can
have a wonderful time with our planes. All our
models are folded from one paper sheet. They are
exclusively folded without using any adhesive.

Fig. 7.24
Wrapping text around a triangular shape

Fig. 7.23
Wrapping text around an image with matchbox

Our paper planes are the ideal way of passing the time.
We offer a lot of revolutionary brand-new developments
of the traditional common paper planes. If your
lesson, conference, or lecture turn out to be
deadly boring, you can have a wonderful
time with our planes. All our models are
folded from one paper sheet. They
are exclusively folded without
using any adhesive.
Several models are equipped with a folded landing gear.
enabling a safe landing on the intended location provided
that you have aimed well. Other models are able to fly
loops or cover long distances.

50% 80%

20% 30% 80% 30%

7.2 Multi-Line Textflows 157

flow text into a rhombus shape, where the coordinates are provided as percentages of
the fitbox rectangle (see Figure 7.25):

wrap={ addfitbox polygons={ {50% 100% 10% 50% 50% 0% 90% 50% 50% 100%} } }

Note that the showborder=true option has been again used to illustrate the margins of
the shape. Without the addfitbox option the rhombus shape will remain empty and the
text will be wrapped around it.

Filling overlapping shapes. In the next example we will fill a shape comprising two
overlapping polygons, namely a hexagon with a rectangle inside. Using the addfitbox
option the fitbox itself will be excluded from being filled, and the polygons in the sub-
sequent list will be filled except in the overlapping area (see Figure 7.26):

wrap={ addfitbox polygons=
{ {20% 10% 80% 10% 100% 50% 80% 90% 20% 90% 0% 50% 20% 10%}

{35% 35% 65% 35% 65% 65% 35% 65% 35% 35%} } }

Without the addfitbox option you will get the opposite effect: the previously filled area
will remain empty, and the previously empty areas will be filled with text.

Our
paper

planes are
the ideal way
of passing the

time. We offer a lot
of revolutionary brand-

new developments of the
traditional common paper

planes. If your lesson, con-
ference, or lecture turn
out to be deadly bor-

ing, you can have
a wonderful

time with
our pla-

nes.

Our paper planes are
the ideal way of pas-

sing the time. We offer
revolutionary new develop-

ments of the tradi-
tional co- mmon pa-

per planes. If your les-
son, conf- erence, or
lecture turn out to be
deadly boring,
you can have a wonderful
time with our planes. All
our models are folded
from one paper sheet.

Fig. 7.26
Filling overlapping shapesFig. 7.25

Filling a rhombus
shape with text

90% 50%10% 50%

50% 100%

50% 0%

158 Chapter 7: Formatting Features

7.3 Placing Images and Imported PDF Pages
The function PDF_fit_image() for placing raster image and templates as well as PDF_fit_
pdi_page() for placing imported PDF pages offer a wealth of options for controlling the
placement on the page. This section demonstrates the most important options by look-
ing at some common application tasks. A complete list and descriptions of all options
can be found in the PDFlib Reference.

Embedding raster images is easy to accomplish with PDFlib. The image file must first
be loaded with PDF_load_image(). This function returns an image handle which can be
used along with positioning and scaling options in PDF_fit_image().

Embedding imported PDF pages works along the same line. The PDF page must be
opened with PDF_open_pdi_page() to retrieve a page handle for use in PDF_fit_pdi_
page(). The same positioning and scaling options can be used as for raster images.

All samples in this section work the same for raster images, templates, and imported
PDF pages. Although code samples are only presented for raster images we talk about
placing objects in general. Before calling any of the fit functions a call to PDF_load_
image() or PDF_open_pdi_document() and PDF_open_pdi_page() must be issued. For the
sake of simplicity these calls are not reproduced here.

7.3.1 Simple Object Placement

Positioning an image at the reference point. By default, an object will be placed in its
original size with the lower left corner at the reference point. In this example we will
place an image with the bottom centered at the reference point. The following code
fragment places the image with the bottom centered at the reference point (0, 0).

p.fit_image(image, 0, 0, "position={center bottom}");

Similarly, you can use the position option with another combination of the keywords
left, right, center, top, and bottom to place the object at the reference point.

Placing an image with scaling. The following variation will place the image while
modifying its size:

p.fit_image(image, 0, 0, "scale=0.5");

This code fragment places the object with its lower left corner at the point (0, 0) in the
user coordinate system. In addition, the object will be scaled in x and y direction by a
scaling factor of 0.5, which makes it appear at 50 percent of its original size.

7.3.2 Positioning an Object in a Box
In order to position an object, an additional box with predefined width and height can
be used. Figure 7.27 shows the output of the examples described below. Note that the
blue box or line is depicted for visualising the box size; it is not part of the actual out-
put.

Positioning an image in the box. We define a box and place an image within the box
on the top right. The box has a width of 70 units and a height of 45 units and is placed at
the reference point (0, 0). The image is placed on the top right of the box (see Figure

7.3 Placing Images and Imported PDF Pages 159

7.27a). Similarly, we can place the image at the center of the bottom. This case is depicted
in Figure 7.27b.

Fig. 7.27 Placing an image in a box subject to various positioning options

7.3.3 Fitting an Object into a Box
In this section we fit the object into the box by using various fit methods. Let’s start
with the default case, where no fit method will be used and no clipping or scaling will be
applied. The image will be placed at the center of the box, 70 units wide and 45 high. The
box will be placed at reference point (0, 0). Figure 7.28a illustrate that simple case.

Decreasing the box width from 70 to 35 units doesn’t have any effect on the output.
The image will remain in its original size and will exceed the box (see Figure 7.28b).

Fitting an image in the center of a box. In order to center an image within a pre-
defined rectangle you don’t have to do any calculations, but can achieve this with suit-
able options. With position=center we place the image in the center of the box, 70 units
wide and 45 high (boxsize={70 45}). Using fitmethod=meet, the image is proportionally re-
sized until its height completely fits into the box (see Figure 7.28c).

Decreasing the box width from 70 to 35 units will scale down the image until its
width completely fits into the box (see Figure 7.28d).

Completely fitting the image into a box. We can further fit the image so that it com-
pletely fills the box. This is accomplished with fitmethod=entire. However, this combina-
tion will rarely be useful since the image will most probably be distorted (see Figure
7.28e).

Clipping an image when fitting it into the box. Using another fit method
(fitmethod=clip) we can clip the object if it exceeds the target box. We decrease the box
size to a width and height of 30 units and position the image in its original size at the
center of the box (see Figure 7.28f).

By positioning the image at the center of the box, the image will be cropped evenly
on all sides. Similary, to completely show the upper right part of the image you can po-
sition it with position={right top} (see Figure 7.28g).

Generated output Option list for PDF_fit_image

a) boxsize {70 45} position={right top}

b) boxsize {70 45} position={center bottom}

160 Chapter 7: Formatting Features

Fig. 7.28 Fitting an image into a box subject to various fit methods

Adjusting an object to the page. Adjusting an object to a given page size can easily be
accomplished by choosing the page as target box for placing the object. The following
statement uses an A4-sized page with dimensions 595 x 842:

p.fit_image(image, 0, 0, "boxsize={595 842} position={left bottom} fitmethod=slice");

In this code fragment a box is placed at the lower left corner of the page. The size of the
box equals the size of an A4 page. The object is placed in the lower left corner of the box
and scaled proportionally until it fully covers the box and therefore the page. If the ob-
ject exceeds the box it will be cropped. Note that fitmethod=slice results in the object be-
ing scaled (as opposed to fitmethod=clip which doesn’t scale the object). Of course the
position and fitmethod options could also be varied in this example.

7.3.4 Orientating an Object

Placing an image with orientation. In our next example we orientate an image to-
wards western direction (orientate=west). This means that the image is rotated by 90˚
counterclockwise and then the lower left corner of the rotated object is translated to the
reference point (0, 0). The object will be rotated in itself (see Figure 7.31a). Since we have

Generated output Option list for PDF_fit_image()

a) boxsize={70 45} position=center

b) boxsize={35 45} position=center

c) boxsize={70 45} position=center fitmethod=meet

d) boxsize={35 45} position=center fitmethod=meet

e) boxsize={70 45} position=center fitmethod=entire

f) boxsize={30 30} position=center fitmethod=clip

g) boxsize={30 30} position={right top} fitmethod=clip

7.3 Placing Images and Imported PDF Pages 161

not specified any fit method the image will be output in its original size and will exceed
the box.

Fitting an image proportionally into a box with orientation. Our next goal is to orien-
tate the image to the west with a predefined size. We define a box of the desired size and
fit the image into the box with the image’s proportions being unchanged
(fitmethod=meet). The orientation is specified as orientate=west. By default, the image
will be placed in the lower left corner of the box (see Figure 7.31b). Figure 7.31c shows the
image orientated to the east, and Figure 7.31d the orientation to the south.

The orientate option supports the direction keywords north, east, west, and south as
demonstrated in Figure 7.30.

Note that the orientate option has no influence on the whole coordinate system but
only on the placed object.

Fig. 7.31 Orientating an image

Generated output Option list for PDF_fit_image()

a) boxsize {70 45} orientate=west

b) boxsize {70 45} orientate=west fitmethod=meet

c) boxsize {70 45} orientate=east fitmethod=meet

d) boxsize {70 45} orientate=south fitmethod=meet

e)
boxsize {70 45} position={center bottom} orientate=east
fitmethod=clip

Fig. 7.29
The rotate option

Fig. 7.30
The orientate option

162 Chapter 7: Formatting Features

Fitting an oriented image into a box with clipping. We orientate the image to the east
(orientate=east) and position it centered at the bottom of the box (position={center
bottom}). In addition, we place the image in its original size and clip it if it exceeds the
box (fitmethod=clip) (see Figure 7.31e).

7.3.5 Rotating an Object
Rotating an object works similarly to orientation. However, it does not only affect the
placed object but the whole coordinate system.

Placing an image with rotation. Our first goal is to rotate an image by 90˚ counter-
clockwise. Before placing the object the coordinate system will be rotated at the refer-
ence point (50, 0) by 90˚ counterclockwise. The rotated object’s lower right corner
(which is the unrotated object’s lower left corner) will end up at the reference point. This
case is shown in Figure 7.32a.

Since the rotation affects the whole coordinate system, the box will be rotated as
well. Similarly, we can rotate the image by 30˚ counterclockwise (see Figure 7.32b). Fig-
ure 7.29 demonstrates the general behaviour of the rotate option.

Fitting an image with rotation. Our next goal is to fit the image rotated by 90˚ coun-
terclockwise into the box while maintaining its proportions. This is accomplished using
fitmethod=meet (see Figure 7.32c). Similarly, we can rotate the image by 30˚ counter-
clockwise and proportionally fit the image into the box (see Figure 7.32d).

Fig. 7.32 Rotating an image

Generated output Option list for PDF_fit_image()

a) boxsize {70 45} rotate=90

b) boxsize {70 45} rotate=30

c) boxsize {70 45} rotate=90 fitmethod=meet

d) boxsize {70 45} rotate=30 fitmethod=meet

(x, y)

(x, y)

(x, y)

(x, y)

7.3 Placing Images and Imported PDF Pages 163

7.3.6 Adjusting the Page Size
In the next example we will automatically adjust the page size to the object’s size. This
can be useful, for example, for archiving images in the PDF format. The reference point
(x, y) can be used to specify whether the page will have exactly the object’s size, or some-
what larger or smaller. When enlarging the page size (see Figure 7.33) some border will
be kept around the image. If the page size is smaller than the image some parts of the
image will be clipped. Let’s start with exactly matching the page size to the object’s size:

p.fit_image(image, 0, 0, "adjustpage");

The next code fragment increases the page size by 40 units in x and y direction, creating
a white border around the object:

p.fit_image(image, 40, 40, "adjustpage");

The next code fragment decreases the page size by 40 units in x and y direction. The ob-
ject will be clipped at the page borders, and some area within the object (with a width of
40 units) will be invisible:

p.fit_image(image, -40, -40, "adjustpage");

In addition to placing by means of x and y coordinates (which specify the object’s dis-
tance from the page edges, or the coordinate axes in the general case) you can also spec-
ify a target box. This is a rectangular area in which the object will be placed subject to
various formatting rules. These can be controlled with the boxsize, fitmethod and
position options.

Fig. 7.33
Adjusting the page

size. Left to right:
exact, enlarge,

shrink

164 Chapter 7: Formatting Features

7.4 Table Formatting
The table formatting feature can be used to automatically format complex tables. Table
cells may contain single- or multi-line text, images or PDF graphics. Tables are not re-
stricted to a single fitbox, but can span multiple pages.

General aspects of a table. The description of the table formatter is based on the fol-
lowing concepts and terms (see Figure 7.34):

> A table is a virtual object with a rectangular outline. It is comprised of horizontal
rows and vertical columns.

> A simple cell is a rectangular area within a table, defined as the intersection of a row
and a column. A spanning cell spans more than one column, more than one row, or
both. The term cell will be used to designate both simple and spanning cells.

> The complete table may fit into one fitbox, or several fitboxes may be required. The
rows of the table which are placed in one fitbox constitute a table instance. Each call
to PDF_fit_table() will place one table instance in one fitbox (see Section 7.4.5, »Table
Instances«, page 174).

> The header or footer is a group of one or more rows at the beginning or end of the ta-
ble which are repeated at the top or bottom of each table instance. Rows which are
neither part of the header nor footer are called body rows.

As an example, all aspects of creating the table in Figure 7.34 will be explained. A com-
plete description of the table formatting options can be found in the PDFlib Reference.
Creating a table starts by defining the contents and visual properties of each table cell
with PDF_add_table_cell(). Then you place the table using one or more calls to PDF_fit_
table().

When placing the table the size of its fitbox and the ruling and shading of table rows
or columns can be specified. Use the Matchbox feature for details such as cell-specific
shading (see Section 7.5, »Matchboxes«, page 177, for more information).

Our Paper Plane Models

2 Long Distance Glider

Material

Benefit

Drawing paper 180g/sqm

With this paper rocket you
can send all your messages
even when sitting in the
cinema pretty near the back.

1 Giant Wing

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and
can even do aerobatics. But
it is best suited to gliding.

Amazingly robust!

3 Cone Head Rocket

Material

Benefit

Kent paper 200g/sqm

This paper arrow can be
thrown with big swing. It
stays in the air a long time.

With big swing!

Fig. 7.34
Sample table

Header

Cell containing
image and text line

Cell spanning
three rows

Cell spanning
three columns

Simple cell

Footer

Cell containing
Textflow

7.4 Table Formatting 165

In this section the most important options for defining the table cells and fitting the
table will be discussed. All examples demonstrate the relevant calls of PDF_add_table_
cell() and PDF_fit_table() only, assuming that the required font has already been loaded.

Note Table processing is independent from the current graphics state. Table cells can be defined in
document scope while the actual table placement must be done in page scope.

7.4.1 Placing a Simple Table
Before we describe the table concepts in more detail, we will demonstrate a simple ex-
ample for creating a table. The table contains six cells which are arranged in three rows
and two columns. Four cells contain text lines, and one cell contains a multi-line Text-
flow. All cell contents are horizontally aligned to the left, and vertically aligned to the
center with a margin of 2 points.

To create the table we first prepare the option list for the text line cells by defining
the required options font and fontsize and a position of {left center} in the fittextline sub-
option list. In addition, we define cell margins of 2 points. Then we add the text line cells
one after the other in their respective column and row, with the actual text supplied di-
rectly in the call to PDF_add_table_cell().

In the next step we create a Textflow, use the Textflow handle to assemble the option
list for the Textflow table cell, and add that cell to the table.

Finally we place the table with PDF_fit_table() while visualizing the table and cell
borders with black lines. Since we didn’t supply any column widths, they will be calcu-
lated automatically from the supplied text lines plus the margins.

The following code fragment shows how to create the simple table. The result is
shown in Figure 7.35.

/* Text for filling a table cell with multi-line Textflow */
String tf_text = "It is amazingly robust and can even do aerobatics. " +

"But it is best suited to gliding.";

/* Define the lower left and upper right corners of the table instance (fitbox) */
int llx=1, lly=1, urx=199, ury=99;

/* Load the font */
tfont = p.load_font("Helvetica", "unicode", "");
if (normalfont == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Define the option list for the text line cells */
optlist = "fittextline={position={left center} font=" + tfont + " fontsize=8} margin=2";

/* Add a text line cell in column 1 row 1 */
tbl = p.add_table_cell(tbl, 1, 1, "Our Paper Planes", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Our Paper Planes

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and
can even do aerobatics.
But it is best suited to
gliding.

Fig. 7.35
Simple table

166 Chapter 7: Formatting Features

/* Add a text line cell in column 1 row 2 */
tbl = p.add_table_cell(tbl, 1, 2, "Material", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Add a text line cell in column 1 row 3 */
tbl = p.add_table_cell(tbl, 1, 3, "Benefit", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Add a text line cell in column 2 row 2 */
tbl = p.add_table_cell(tbl, 2, 2, "Offset print paper 220g/sqm", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Add a Textflow */
optlist = "font=" + tfont + " fontsize=8 leading=110%";
tflow = p.add_textflow(-1, tf_text, optlist);

/* Define the option list for the Textflow cell using the handle retrieved above */
optlist = "textflow=" + tflow + " margin=2";

/* Add the Textflow table cell in column 2 row 3 */
tbl = p.add_table_cell(tbl, 2, 3, "", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

p.begin_page_ext(0, 0, "width=200 height=100");

/* Define the option list for fitting the table with outside and cell ruling */
optlist = "stroke={{line=frame linewidth=0.3} {line=other linewidth=0.3}}";

/* Place the table instance */
result = p.fit_table(tbl, llx, lly, urx, ury, optlist);

/* Check the result; "_stop" means all is ok. */
if (!result.equals("_stop")) {

if (result.equals("_error"))
throw new Exception("Error: " + p.get_errmsg());

else {
/* Any other return value requires dedicated code to deal with. */

}
}
p.end_page_ext("");

/* This will also delete Textflow handles used in the table */
p.delete_table(tbl, "");

7.4 Table Formatting 167

7.4.2 Contents of a Table Cell
When adding a cell to a table with PDF_add_table_cell(), you can specify various kinds of
cell contents. For example, the cells of the paper plane table contain the elements illus-
trated in Figure 7.36.

Single-line text. The text is supplied in the text parameter of PDF_add_table_cell(). In
the fittextline option all of the formatting options of PDF_fit_textline() can be specified.
The default fit method is fitmethod=nofit. The cell will be enlarged if the text doesn’t
completely fit into the cell. To avoid this, use fitmethod=auto to shrink the text subject
to the shrinklimit option. If no row height is given it will be calculated as the font size
times 1.5. The same applies to the row width for rotated text.

Multi-line text with Textflow. The Textflow must have been prepared outside the ta-
ble functions and created with PDF_create_textflow() or PDF_add_textflow() before call-
ing PDF_add_table_cell(). The Textflow handle is supplied in the textflow option. In the
fittextflow option all of the formatting options of PDF_fit_textflow() can be specified.

The default fit method is fitmethod=clip. This means: First it is attempted to com-
pletely fit the text into the cell. If the cell is not large enough its height will be increased.
If the text do not fit anyway it will be clipped at the bottom. To avoid this, use
fitmethod=auto to shrink the text subject to the minfontsize option.

When the cell is too narrow the Textflow could be forced to split single words at un-
desired positions. If the checkwordsplitting option is true the cell width will be enlarged
until no word splitting occurs any more.

Images and templates. Images must be loaded with PDF_load_image() before calling
PDF_add_table_cell(). Templates must be created with PDF_begin_template(). The image
or template handle is supplied in the image option. In the fitimage option all of the for-
matting options of PDF_fit_image() can be specified. The default fit method is
fitmethod=meet. This means that the image/template will be placed completely inside
the cell without distorting its aspect ratio. The cell size will not be changed due to the
size of the image/template.

Pages from an imported PDF document. The PDI page must have been opened with
PDF_open_pdi_page() before calling PDF_add_table_cell(). The PDI page handle is sup-
plied in the pdipage option. In the fitpdipage option all of the formatting options of PDF_
fit_pdi_page() can be specified. The default fit method is fitmethod=meet. This means
that the PDI page will be placed completely inside the cell without distorting its aspect
ratio. The cell size will not be changed due to the size of the PDI page.

Text line
Text line

Text line

Text line

Text line

Textflow
..
..

Text line
Fig. 7.36
Contents of the
table cells

168 Chapter 7: Formatting Features

Multiple content types in a cell. Table cells can contain one or more of those content
types at the same time. Additional ruling and shading is available, as well as matchbox-
es for interactive features such as links or form fields.

Positioning cell contents. By default, cell contents are positioned with respect to the
cell box. The margin options of PDF_add_table_cell() can be used to specify some distance
from the cell borders. The resulting rectangle is called the inner cell box. If any of the
margins is defined, the cell contents will be placed with respect to the inner cell box (see
Figure 7.37). If no margins are defined the inner cell box will be identical to the cell box.

In addition, the cell contents may be subject to further options supplied in the content-
specific fit options, as described in section Section 7.4.4, »Large Table Example«, page
169.

7.4.3 Table and Column Widths
When adding a cell to the table, you define the number of columns and/or rows
spanned by the cell with the colspan and rowspan options. By default, a cell spans one
column and one row. The total number of columns and rows in the table is implicitly in-
creased by the respective values when adding a cell. Figure 7.38 shows an example of a
table containing three columns and four rows.

Furthermore you can explicitly supply the width of the first column spanned by the cell
with the colwidth option. By supplying each cell with a defined first column width all

inner cell box

cell box

left margin

top margin

bottom margin

right margin

Fig. 7.37
Fitting contents in
the inner cell box

cell spanning three columns

cell spanning two columns
2

4

33

4

2

11

1

1

1

2

2

3

simple cellsimple cell

simple cell simple cell

row 1

row 2

row 3

row 4

column 1 column 2 column 3

cell
.... spanning

.... three rows

Fig. 7.38
Simple cells and cells spanning
several rows or columns

7.4 Table Formatting 169

those width values will implicitly add up to the total table width. Figure 7.39 shows an
example.

Alternatively, you can specify the column widths as percentages if appropriate. In this
case the percentages refer to the width of the table’s fitbox. Either none or all column
widths must be supplied as percentages.

If some columns are combined to a column scaling group with the colscalegroup op-
tion of PDF_add_table_cell(), their widths will be adjusted to the widest column in the
group (see Figure 7.40),

If absolute coordinates are used (as opposed to percentages) and there are cells left
without any column width defined, the missing widths are calculated as follows: First,
for each cell containing a text line the actual width is calculated based on the column
width or the text width (or the text height in case of rotated text). Then, the remaining
table width is evenly distributed among the column widths which are still missing.

7.4.4 Large Table Example
In the following sections we will create the sample table shown in Figure 7.41 step by
step. As a prerequisite we need to load two fonts, define the table size and start a new
page in DIN A4 format:

int tablewidth = 240, tableheight = 150;

boldfont = p.load_font("Helvetica-Bold", "unicode", "");
normalfont = p.load_font("Helvetica", "unicode", "");

p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

Step 1: Adding the first cell. We start with the first cell of our table. The cell will be
placed in the first column of the first row and will span three columns. The first column

2

4

33

4

2

11

1

1

1

2

2

3

colspan=1
colwidth=100

colspan=1
colwidth=50

colspan=1
colwidth=50

colspan=1
colwidth=100

50 100 90

colspan=2
colwidth=50

rowspan=3
colwidth=90

colspan=3
colwidth=50

total table width of 240

Fig. 7.39
Column widths define
the total table width.

Long Distance Glider

Giant Wing

Cone Head Rocket

M
ax

. L
oa

d

R
an

ge

12g

W
ei

gh
t

14g

11.2g

12.4g

5g

7g

30m

7m

18m

S
pe

ed

8m/s

5m/s

6m/s

column scaling group
Fig. 7.40
The last four cells in the first row are in the
same column scaling group. They will have
the same widths.

170 Chapter 7: Formatting Features

has a width of 50 points. The text line is centered vertically and horizontally, with a
margin of 2 points from all borders. The following code fragment shows how to add the
first cell:

String optlist =
"fittextline={font=" + boldfont + " fontsize=12 position=center} " +
"margin=2 colspan=3 colwidth=50";

tbl = p.add_table_cell(tbl, 1, 1, "Our Paper Plane Models", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Step 2: Adding one cell spanning two columns. In the next step we add the cell con-
taining the text line 1 Giant Wing. It will be placed in the first column of the second row
and spans two columns. The first column has a width of 50 points. The row height is 14
points. The text line is horizontally positioned on the left and vertically centered, with a
margin of 2 points from all borders.

Since the Giant Wing heading cell doesn’t cover a complete row but only two of three
columns it cannot be filled with color using on of the row-based shading options. We
apply the Matchbox feature instead to fill the rectangle covered by the cell with a gray
background color. (The Matchbox feature is discussed in detail in Section 7.5, »Match-
boxes«, page 177.) The following code fragment demonstrates how to add the Giant Wing
heading cell:

String optlist =
"fittextline={font=" + boldfont + " fontsize=8 position={left center}} " +
"margin=2 colspan=2 colwidth=50 matchbox={fillcolor={gray .92}}";

tbl = p.add_table_cell(tbl, 1, 2, "1 Giant Wing", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Fig. 7.41 Adding table cells with different properties step by step

Step 3: Add three more text line cells. The following code fragment adds the Material,
Benefit and Offset print paper... cells. The Offset print paper... cell will start in the second
column defining a column width of 120 points. The cell contents are horizontally posi-
tioned on the left and vertically centered, with a margin of 2 points from all borders.

String optlist =
"fittextline={font=" + boldfont + " fontsize=8 position={left center}}" +
" margin=2 colwidth=50";

tbl = p.add_table_cell(tbl, 1, 3, "Material", optlist);

Generated table Generation steps

Step 1: Add a cell spanning 3 columns
Step 2: Add a cell spanning 2 columns
Step 3: Add 3 more text line cells
Step 4: Add the Textflow cell
Step 5: Add the image cell with a text line

Our Paper Plane Models
1 Giant Wing

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and can
even do aerobatics. But it is
best suited to gliding.

Amazingly robust!

7.4 Table Formatting 171

if (tbl == -1)
throw new Exception("Error: " + p.get_errmsg());

tbl = p.add_table_cell(tbl, 1, 4, "Benefit", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

optlist = "fittextline={font=" + normalfont + " fontsize=8 position={left center}}" +
"margin=2 colwidth=120";

tbl = p.add_table_cell(tbl, 2, 3, "Offset print paper 220g/sqm", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Step 4: Add the Textflow cell. The following code fragment adds the It is amazingly...
Textflow cell:

String tftext =
"It is amazingly robust and can even do aerobatics. " +
"But it is best suited to gliding.";

String optlist = "font=" + normalfont + " fontsize=8 leading=110%";

tflow = p.add_textflow(-1, tftext, optlist);
if (tflow == -1)

throw new Exception("Error: " + p.get_errmsg());

optlist = "textflow=" + tflow + " margin=2 colwidth=120";

tbl = p.add_table_cell(tbl, 2, 4, "", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Step 5: Add the image cell with a text line. In the last step we add a cell containing an
image of the Giant Wing paper plane as well as the Amazingly robust! text line. The cell
will start in the third column of the second row and spans three rows. The column width
is 90 points. The cell margins are set to 4 points. For a first variant we place a JPEG image
in the cell:

giant_wing_image = p.load_image("auto", "giant_wing.jpg", "");
if (giant_wing_image == -1)

throw new Exception("Error: " + p.get_errmsg());

String optlist =
"fittextline={font=" + boldfont + " fontsize=8} image=" + giant_wing_image +
" colwidth=90 rowspan=3 margin=4;

tbl = p.add_table_cell(tbl, 3, 2, "Amazingly robust!", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Alternatively, you could import the image as a PDF page. Make sure that the PDI page is
closed only after the call to PDF_fit_table().

int doc = p.open_pdi("giant_wing.pdf", "", 0);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

172 Chapter 7: Formatting Features

int page = p.open_pdi_page(doc, pageno, "");
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

String optlist =
"fittextline={font=" + boldfont + " fontsize=8} pdipage=" + page +
" colwidth=90 rowspan=3 margin=4";

tbl = p.add_table_cell(tbl, 3, 2, "Amazingly robust!", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Fine-tuning the vertical alignment of cell contents. When we vertically center con-
tents of various types in the table cells, they will be positioned with varying distance
from the borders. In Figure 7.42a, the four text line cells have been placed with the fol-
lowing option list:

optlist = "fittextline={position={left center} font=" + normalfont +
" fontsize=8} colwidth=80 margin=2";

The Textflow cell is added without any special options. Since we vertically centered the
text lines, the Benefit line will move down with the height of the Textflow.

Fig. 7.42 Aligning text lines and Textflow in table cells

As shown in Figure 7.42b, we want all cell contents to have the same vertical distance
from the cell borders regardless of whether they are Textflows or text lines.

To accomplish this we first prepare the option list for the text lines. We define a fixed
row height of 14 points, and the position of the text line to be on the top left with a mar-
gin of 4 points.

The fontsize=8 option which we supplied before doesn’t exactly represent the letter
height but adds some space below and above. However, the height of an uppercase let-
ter is exactly represented by the capheight value of the font. For this reason we use
fontsize={capheight=6} which will approximately result in a font size of 8 points and
(along with margin=4), will sum up to an overall height of 14 points corresponding to the
rowheight option. The complete option list of PDF_add_table_cell() for our text line cells
looks as follows:

Generated output

a)

b)

Our Paper Planes

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and can
even do aerobatics. But it is
best suited to gliding.

Our Paper Planes

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and can
even do aerobatics. But it is
best suited to gliding.

7.4 Table Formatting 173

/* option list to add text line cells */
optlist = "fittextline={position={left top} font=" + normalfont +

" fontsize={capheight=6}} rowheight=14 colwidth=80 margin=4";

In addition, we want the baseline of the Benefit text aligned with the first line of the
Textflow. At the same time, the Benefit text should have the same distance from the top
cell border as the Material text. To avoid any space from the top we add the Textflow cell
using fittextflow={firstlinedist=capheight}. Then we add a margin of 4 points, the same as
for the text lines:

/* option list for the Textflow cell */
optlist = "textflow=" + tflow + " fittextflow={firstlinedist=capheight} "

"colwidth=120 margin=4";

The following code fragment shows how to place the vertically aligned table cells shown
in Figure 7.42b:

/* Add the text line cells */
String optlist =

"fittextline={position={left top} font=" + normalfont +
" fontsize={capheight=6}} rowheight=14 colwidth=80 margin=4";

tbl = p.add_table_cell(tbl, 1, 1, "Our Paper Planes", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

tbl = p.add_table_cell(tbl, 1, 2, "Material", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

tbl = p.add_table_cell(tbl, 1, 3, "Benefit", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

tbl = p.add_table_cell(tbl, 2, 2, "Offset print paper 220g/sqm", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Add the Textflow cell */
optlist = "font=" + normalfont + " fontsize={capheight=6} leading=110%";
tflow = p.add_textflow(-1, tf_text, optlist);
optlist = "textflow=" + tflow + " fittextflow={firstlinedist=capheight} " +

"colwidth=120 margin=4";
tbl = p.add_table_cell(tbl, 2, 3, "", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Place the table instance */
p.begin_page_ext(0, 0, "width=230 height=110");
optlist = "stroke={{line=frame linewidth=0.3} {line=other linewidth=0.3}}";
result = p.fit_table(tbl, 1, 1, 220, 100, optlist);
if (result.equals("_error"))

throw new Exception("Error: " + p.get_errmsg());
p.end_page_ext("");

174 Chapter 7: Formatting Features

7.4.5 Table Instances
The rows of the table which are placed in one fitbox comprise a table instance. One or
more table instances may be required to represent the full table. Each call to PDF_fit_
table() will place one table instance in one fitbox. The fitboxes can be placed on the
same page, e.g. with a multi-column layout, or on several pages.

The table in Figure 7.43 is spread over three pages. Each table instance is placed in
one fitbox on one page. For each call to PDF_fit_table() the first row is defined as header
and the last row is defined as footer.

The following code fragment shows the general loop for fitting table instances until the
table has been placed completely. New pages are created as long as more table instances
need to be placed.

do {
/* Create a new page */
p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

/* Use the first row as header and draw lines for all table cells */
optlist = "header=1 stroke={{line=other}}";

/* Place the table instance */
result = p.fit_table(tbl, llx, lly, urx, ury, optlist);
if (result.equals("_error"))

throw new Exception("Error: " + p.get_errmsg());

p.end_page_ext("");

} while (result.equals("_boxfull"));

/* Check the result; "_stop" means all is ok. */
if (!result.equals("_stop")) {

if (result.equals("_error"))
throw new Exception("Error: " + p.get_errmsg());

else {

3 Cone Head Rocket

Material

Benefit

Kent paper 200g/sqm

This paper arrow can be
thrown with big swing. It
stays in the air a long time.

With big swing!

Our Paper Plane Models

Page 3

header

footer

row join
group

ta
bl

e i
ns

ta
nc

e

2 Long Distance Glider

Drawing paper 180g/sqm

With this paper rocket you
can send all your messages
even when sitting in the
cinema pretty near the back.

Material

Benefit

Our Paper Plane Models

Page 2

Our Paper Plane Models

Material

Benefit

1 Giant Wing

Offset print paper 220g/sqm

It is amazingly robust and
can even do aerobatics. But
it is best suited to gliding.

Amazingly robust!

table’s fitbox

Page 1

Fig. 7.43
Table broken into several
table instances placed in
one fitbox each.

7.4 Table Formatting 175

/* Any other return value is a user exit caused by the "return" option;
 * this requires dedicated code to deal with. */
throw new Exception ("User return found in Textflow");

}
}
/* This will also delete Textflow handles used in the table */
p.delete_table(tbl, "");

Headers and footers. With the header and footer options of PDF_fit_table() you can de-
fine the number of initial or final table rows which will be placed at the top or bottom of
a table instance. Using the fill option with area=header or area=footer, headers and foot-
ers can be individually filled with color. Header rows consist of the first n rows of the ta-
ble definition and footer rows of the last m rows.

Headers and footers are specified per table instance in PDF_fit_table(). Consequently,
they can differ among table instances: while some table instances include headers/foot-
ers, others can omit them, e.g. to specify a special row in the last table instance.

Joining rows. In order to ensure that a set of rows will be kept together in the same ta-
ble instance, they can be assigned to the same row join group using the rowjoingroup op-
tion. The row join group contains multiple consecutive rows. All rows in the group will
be prevented from being separated into multiple table instances.

The rows of a cell spanning these rows don’t constitute a join group automatically.

Fitbox too low. If the fitbox is too low to hold the required header and footer rows,
and at least one body row or row join group the row heights will be decreased uniformly
until the table fits into the fitbox. However, if the required shrinking factor is smaller
than the limit set in vertshrinklimit, no shrinking will be performed and PDF_fit_table()
will return the string _error instead, or the respective error message. In order to avoid
any shrinking use vertshrinklimit=100%.

Fitbox too narrow. The coordinates of the table’s fitbox are explicitly supplied in the
call to PDF_fit_table(). If the actual table width as calculated from the sum of the sup-
plied column widths exceeds the table’s fitbox, all columns will be reduced until the ta-
ble fits into the fitbox. However, if the required shrinking factor is smaller than the lim-
it set in horshrinklimit, no shrinking will be performed and PDF_fit_table() will return the
string _error instead, or the respective error message. In order to avoid any shrinking
use horshrinklimit=100%.

Splitting a cell. If the last rows spanned by a cell doesn’t fit in the fitbox the cell will be
split. In case of an image, PDI page or text line cell, the cell contents will be repeated in
the next table instance. In case of a Textflow cell, the cell contents will continue in the
remaining rows of the cell.

176 Chapter 7: Formatting Features

Figure 7.44 shows how the Textflow cell will be split while the Textflow continues in
the next row. In Figure 7.45, an image cell is shown which will be repeated in the first
row of the next table instance.

Splitting a row. If the last body doesn’t completely fit into the table’s fitbox, it will
usually not be split. This behaviour is controlled by the minrowheight option of PDF_fit_
table() with a default value of 100%. In this default case the row will not be split but will
completely be placed in the next table instance.

You can decrease the minrowheight value to split the last body row with the given
percentage of contents in the first instance, and place the remaining parts of that row in
the next instance.

Figure 7.45 illustrates how the Textflow It’s amazingly robust... is split and the Text-
flow is continued in the first body row of the next table instance. The image cell span-
ning several rows will be split and the image will be repeated. The Benefit text line will
be repeated as well.

Material

1 Giant Wing

Offset print paper 220g/sqmtable
instance 1

table
instance 2

Benefit
It is amazingly robust and
can even do aerobatics. But
it is best suited to gliding.

Our paper planes are the
ideal way of passing the
time. We offer revolutionary

new developments of the
traditional common paper
planes.

Fig. 7.44
Splitting a cell

Material

Benefit

1 Giant Wing

Offset print paper 220g/sqm

It is amazingly robust and
can even do aerobatics. But

table
instance 1

table
instance 2 Benefit it is best suited to gliding.

Fig. 7.45
Splitting a row

7.5 Matchboxes 177

7.5 Matchboxes
Matchboxes provide access to coordinates calculated by PDFlib as a result of placing
some content on the page. Matchboxes are not defined with a dedicated function, but
with the matchbox option in the function call which places the actual element, for ex-
ample PDF_fit_textline() and PDF_fit_image(). Matchboxes can be used for various pur-
poses:

> Matchboxes can be decorated, e.g. filled with color or surrounded by a frame.
> Matchboxes can be used to automatically create one or more annotations with PDF_

create_annotation().
> Matchboxes define the height of a text line which will be fit into a box with PDF_fit_

textline() or the height of a text fragment in a Textflow which will be decorated
(boxheight option).

> Matchboxes define the clipping for an image.
> The coordinates of the matchbox and other properties can be queried with PDF_info_

matchbox() to perform some other task, e.g. insert an image.

For each element PDFlib will calculate the matchbox as a rectangle corresponding to the
bounding box which describes the position of the element on the page (as specified by
all relevant options). For Textflows and table cells a matchbox may consist of multiple
rectangles because of line or row breaking. The rectangle(s) of a matchbox will be drawn
before drawing the actual element itself. As a result, the element may obscure the effect
of the matchbox options, but not vice versa.

In the following sections some examples for using matchboxes are shown. For de-
tails about the functions which support the matchbox option list, see the PDFlib
Reference.

7.5.1 Decorating a Text Line
Let’s start with a discussion of matchboxes in text lines. In PDF_fit_textline() the match-
box is the textbox of the supplied text. The width of the textbox is the text width, and
the height is the capheight of the given font size, by default. To illustrate the matchbox
size the following code fragment will fill the matchbox with blue background color (see
Figure 7.46a).

String optlist =
"font=" + normalfont + " fontsize=8 position={left top} " +
"matchbox={fillcolor={rgb 0.8 0.8 0.87} boxheight={capheight none}}";

p.fit_textline("Giant Wing Paper Plane", 2, 20, optlist);

You can omit the boxheight option since boxheight={capheight none} is the default set-
ting. It will look better if we increase the box height so that it also covers the descenders
using the boxheight option (see Figure 7.46b).

To increase the box height to match the font size we can use boxheight={fontsize
descender} (see Figure 7.46c).

In the next step we extend the matchbox by some offsets to the left, right and bot-
tom to make the distance between text and box margins the same. In addition, we draw
a rectangle around the matchbox by specifying the border width (see Figure 7.46d).

178 Chapter 7: Formatting Features

Fig. 7.46 Decorating a text line using a matchbox with various suboptions

7.5.2 Using Matchboxes in a Textflow

Decorating parts of a Textflow. In this section we will decorate some text within a
Textflow: The words very dangerous will be emphasized similar to a marker pen. To ac-
complish this the words are enclosed in the matchbox and matchbox=end inline options
(see Figure 7.47).

String tftext =
"It is <matchbox={boxheight={ascender descender} fillcolor={rgb 1 0 0}}>" +
"very dangerous<matchbox=end> to fly the Giant Wing in a thunderstorm.";

String optlist = "font=" + normalfont + " fontsize=8 leading=110%";

tflow = p.create_textflow(tftext, optlist);
if (tflow == -1)

throw new Exception("Error: " + p.get_errmsg());
p.fit_textflow(tflow, 0, 0, 100, 30, "");
if (!result.equals("_stop"))

{ /* ... */ }

Fig. 7.47 Textflow with matchbox inline option

Adding a Web link to the Textflow matchbox. Now we will add a Web link to parts of a
Textflow. In the first step we create the Textflow with a matchbox called kraxi indicating
the text part to be linked. Second, we will create the action for opening a URL. Third, we
create an annotation of type Link with an invisible frame. In its option list we reference
the kraxi matchbox to be used as the link’s rectangle (the rectangle coordinates in PDF_
create_textflow() will be ignored).

/* create and fit Textflow with matchbox "kraxi" */
String tftext =

"For more information about the Giant Wing Paper Plane see the Web site of " +
"<underline=true matchbox={name=kraxi boxheight={fontsize descender}}>" +
"Kraxi Systems, Inc.<matchbox=end underline=false>";

String optlist = "font=" + normalfont + " fontsize=8 leading=110%";
tflow = p.create_textflow(tftext, optlist);

Generated output Suboptions of the matchbox option of PDF_fit_textline()

a) boxheight={capheight none}

b) boxheight={ascender descender}

c) boxheight={fontsize descender}

d)
boxheight={fontsize descender} borderwidth=0.3
offsetleft=-2 offsetright=2 offsetbottom=-2

Generated output Text and inline options for PDF_create_textflow()

It is <matchbox={fillcolor={rgb 1 0 0}
boxheight={ascender descender}}>very dangerous
<matchbox=end> to fly the Giant Wing in a thunderstorm.

Giant Wing Paper Plane

Giant Wing Paper Plane

Giant Wing Paper Plane

Giant Wing Paper Plane

It is very dangerous to fly
the Giant Wing in a
thunderstorm.

7.5 Matchboxes 179

if (tflow == -1)
throw new Exception("Error: " + p.get_errmsg());

result = p.fit_textflow(tflow, 0, 0, 50, 70, "fitmethod=auto");
if (!result.equals("_stop"))

{ /* ... */ }

/* create URI action */
optlist = "url={http://www.kraxi.com}";
act = p.create_action("URI", optlist);

/* create Link annotation on matchbox "kraxi" */
optlist = "action={activate " + act + "} linewidth=0 usematchbox={kraxi}";
p.create_annotation(0, 0, 0, 0, "Link", optlist);

Even if the text Kraxi Systems, Inc. spans several lines the appropriate number of link an-
notations will be created automatically with a single call to PDF_create_annotation(). The
result in shown in Figure 7.48.

7.5.3 Matchboxes and Images

Drawing a frame around an image. In this example we completely fit an image into a
box while maintaining its proportions using fitmethod=meet. We use the matchbox op-
tion with the borderwidth suboption to draw a thick rectangle around the image. The
strokecolor suboption determines the border color, and the linecap and linejoin subop-
tions are used to round the corners.

The matchbox is always drawn before the image which means it would be hidden by
the image. To avoid this we use the offset suboptions with 50 percent of the border
width to enlarge the frame beyond the area covered by the image (see Figure 7.49):

image = p.load_image("auto", "kraxi.jpg", "");
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

String optlist =
"boxsize={60 60} position={center} fitmethod=meet " +
"matchbox={name=kraxi borderwidth=4 offsetleft=-2 offsetright=2 " +
"offsetbottom=-2 offsettop=2 linecap=round linejoin=round " +
"strokecolor {rgb 0.0 0.3 0.3}}";

p.fit_image(image, 6, 5, optlist);
p.close_image(image);

For information about
Giant Wing Paper
Planes see the Web
site of Kraxi Systems,
Inc.

Fig. 7.48
Add Weblinks to parts of a Textflow

180 Chapter 7: Formatting Features

Fig. 7.49 Using the matchbox feature to draw a frame around the image

Drawing a frame based on matchbox coordinates. In the next example the image is
orientated to the west and the fit method meet is selected to fit the image proportional-
ly to the supplied box. Then we retrieve the actual coordinates of the fitbox with PDF_
info_matchbox() and place a vertical text line relative to the lower right (x1, y1) corner of
the fitbox. The border of the box is stroked in blue while the border of the image’s actual
fitbox is shown in black. The coordinates (x1, y1) of the fitbox are retrieved from the
matchbox info (see Figure 7.50):

/* load and fit the image */
String optlist =

"boxsize={130 130} position={center} orientate=west " +
"fitmethod=meet matchbox={name=giantwing borderwidth=1 " +
"offsetleft=-0.5 offsetright=0.5 offsetbottom=-0.5 offsettop=0.5}";

image = p.load_image("auto", "giant_wing.jpg", "");
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

p.fit_image(image, 10, 10, optlist);
p.close_image(image);

/* retrieve the coordinates of the first matchbox corner; usually this will be the lower
* left corner but with being orientated to the west it will be moved to the bottom
* right.
*/

if ((int) p.info_matchbox("giantwing", 1, "exists") == 1)
{

x1 = p.info_matchbox("giantwing", 1, "x1");
y1 = p.info_matchbox("giantwing", 1, "y1");

}
/* start the text line at that corner */
optlist = "font=" + normalfont + " fontsize=8 orientate=west";
p.fit_textline("Foto: Kraxi", x1+2, y1+2, optlist);

Generated output Option list for PDF_fit_image()

boxsize={60 60} position={center} fitmethod=meet
matchbox={name=kraxi borderwidth=4 offsetleft=-2 offsetright=2
offsetbottom=-2 offsettop=2 linecap=round linejoin=round
strokecolor {rgb 0.0 0.3 0.3}}

7.5 Matchboxes 181

Fig. 7.50 Using the matchbox feature to retrieve the coordinates to fit the text line

Adding a link to an image. Similar to the Textflow matchbox above, the image match-
box can be used to add a Web link to the area covered by the image. You can use almost
the same code as in the Web link example above, only the name has to be adjusted to
the image matchbox name giantwing:

/* load and fit the image */
String optlist = "boxsize={130 130} fitmethod=meet matchbox={name=giantwing}";

image = p.load_image("auto", "giant_wing.jpg", "");
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

p.fit_image(image, 10, 10, optlist);
p.close_image(image);

/* create URI action */
optlist = "url={http://www.kraxi.com}";
act = p.create_action("URI", optlist);

/* create link annotation on matchbox giantwing */
optlist = "action={activate " + act + "} linewidth=0 usematchbox={giantwing}";
p.create_annotation(0, 0, 0, 0, "Link", optlist);

Generated output Generation steps

Step 1: Fit image with matchbox
Step 2: Get matchbox info for coordinates x1, y1
Step 3: Fit text line starting at the retrieved coordinates with option
orientate=west

F
ot

o:
 K

ra
xi

(x1, y1)

8.1 Simple pCOS Examples 183

8 The pCOS Interface
The pCOS (PDFlib Comprehensive Object Syntax) interface provides a simple and elegant
facility for retrieving arbitrary information from all sections of a PDF document which
do not describe page contents, such as page dimensions, metadata, interactive ele-
ments, etc. pCOS users are assumed to have some basic knowledge of internal PDF struc-
tures and dictionary keys, but do not have to deal with PDF syntax and parsing details.

We strongly recommend that pCOS users obtain a copy of the PDF Reference, which is
available as follows:

Adobe Systems Incorporated: PDF Reference, Fifth Edition: Version 1.6. Download-
able PDF from partners.adobe.com/public/developer/pdf/index_reference.html

8.1 Simple pCOS Examples
Assuming a valid PDF document handle is available, the pCOS functions PDF_pcos_get_
number(), PDF_pcos_get_string(), and PDF_pcos_get_stream() can be used to retrieve in-
formation from a PDF using the pCOS path syntax. Table 8.1 lists some common pCOS
paths and their meaning.

Number of pages. The total number of pages in a document can be queried as follows:

pagecount = p.pcos_get_number(doc, "length:pages");

Document info fields. Document information fields can be retrieved with the follow-
ing code sequence:

objtype = p.pcos_get_string(doc, "type:/Info/Title");
if (objtype.equals("string"))
{

/* Document info key found */
title = p.pcos_get_string(doc, "/Info/Title");

}

Page size. Although the MediaBox, CropBox, and Rotate entries of a page can directly be
obtained via pCOS, they must be evaluated in combination in order to find the actual
size of a page. Determining the page size is much easier with the width and height keys
of the pages pseudo object. The following code retrieves the width and height of page 3
(note that indices for the pages pseudo object start at 0):

Table 8.1 pCOS paths for commonly used PDF objects

pCOS path type explanation

length:pages number number of pages in the document

/Info/Title string document info field Title

/Root/Metadata stream XMP stream with the document’s metadata

fonts[...]/name string name of a font; the number of entries can be retrieved with length:fonts

fonts[...]/embedded boolean embedding status of a font

pages[...]/width number width of the visible area of the page

http://partners.adobe.com/public/developer/pdf/index_reference.html

184 Chapter 8: The pCOS Interface

pagenum = 2
width = p.pcos_get_number(doc, "pages[" + pagenum + "]/width");
height = p.pcos_get_number(doc, "pages[" + pagenum + "]/height");

Listing all fonts in a document. The following sequence creates a list of all fonts in a
document along with their embedding status:

fontcount = p.pcos_get_number(doc, "length:fonts");

for (i=0; i < fontcount; i++)
{

fontname = p.pcos_get_string(doc, "fonts[" + i + "]/name");
 embedded = p.pcos_get_number(doc, "fonts[" + i + "]/embedded");
}

Encryption status. You can query the pcosmode pseudo object to determine the pCOS
mode for the document:

if (p.pcos_get_number(doc, "pcosmode") == 2)
{

/* full pCOS mode */
}

XMP meta data. A stream containing XMP meta data can be retrieved with the follow-
ing code sequence:

objtype = p.pcos_get_number(doc, "type:/Root/Metadata");
if (objtype.equals("stream"))
{

/* XMP meta data found */
metadata = p.pcos_get_stream(doc, "", "/Root/Metadata");

}

8.2 Handling Basic PDF Data Types 185

8.2 Handling Basic PDF Data Types
pCOS offers the three functions PDF_pcos_get_number(), PDF_pcos_get_string(), and PDF_
pcos_get_stream(). These can be used to retrieve all basic data types which may appear
in PDF documents.

Numbers. Objects of type integer and real can be queried with PDF_pcos_get_number().
pCOS doesn’t make any distinction between integer and floating point numbers.

Names and strings. Objects of type name and string can be queried with PDF_pcos_get_
string(). Name objects in PDF may contain non-ASCII characters and the # syntax (dec-
oration) to include certain special characters. pCOS deals with PDF names as follows:

> Name objects will be undecorated (i.e. the # syntax will be resolved) before they are
returned.

> Name objects will be returned as Unicode strings in most language bindings. How-
ever, in the C and C++ language bindings they will be returned as UTF-8.

Since the majority of strings in PDF are text strings PDF_pcos_get_string() will treat them
as such. However, in rare situations strings in PDF are used to carry binary information.
In this case strings should be retrieved with the function PDF_pcos_get_stream() which
preserves binary strings and does not modify the contents in any way.

Booleans. Objects of type boolean can be queried with PDF_pcos_get_number() and will
be returned as 1 (true) or 0 (false). PDF_pcos_get_string() can also be used to query bool-
ean objects; in this case they will be returned as one of the strings true and false.

Streams. Objects of type stream can be queried with PDF_pcos_get_stream(). Depend-
ing on the pCOS data type (stream or fstream) the contents will be compressed or uncom-
pressed. Using the keepfilter option of PDF_pcos_get_stream() the client can retrieve com-
pressed data even for type stream.

Stream data in PDF may be preprocessed with one or more filters. The list of filters
present at the stream can be queried from the stream dictionary; for images this infor-
mation is much easier accessible in the image’s filterinfo dictionary. If a stream’s filter
chain contains only supported filters its type will be stream. When retrieving the con-
tents of a stream object, PDF_pcos_get_stream() will remove all filters and return the re-
sulting unfiltered data.

Note pCOS does not support the following stream filters: CCITTFax, JBIG2, and JPX.

If there is at least one unsupported filter in a stream’s filter chain, the object type will be
reported as fstream (filtered stream). When retrieving the contents of an fstream object,
PDF_pcos_get_stream() will remove the supported filters at the beginning of a filter
chain, but will keep the remaining unsupported filters and return the stream data with
the remaining unsupported filters still applied. The list of applied filters can be queried
from the stream dictionary, and the filtered stream contents can be retrieved with PDF_
pcos_get_stream(). Note that the names of supported filters will not be removed when
querying the names of the stream’s filters, so the client should ignore the names of sup-
ported filters.

186 Chapter 8: The pCOS Interface

8.3 Composite Data Structures and IDs
Objects with one of the basic data types can be arranged in two kinds of composite data
structures: arrays and dictionaries. pCOS does not offer specific functions for retrieving
composite objects. Instead, the objects which are contained in a dictionary or array can
be addressed and retrieved individually.

Arrays. Arrays are one-dimensional collections of any number of objects, where each
object may have arbitrary type.

The contents of an array can be enumerated by querying the number N of elements
it contains (using the length prefix in front of the array’s path, see Table 8.2), and then it-
erating over all elements from index 0 to N-1.

Dictionaries. Dictionaries (also called associative arrays) contain an arbitrary number
of object pairs. The first object in each pair has the type name and is called the key. The
second object is called the value, and may have an arbitrary type except null).

The contents of a dictionary can be enumerated by querying the number N of ele-
ments it contains (using the length prefix in front of the dictionary’s path, see Table 8.2),
and then iterating over all elements from index 0 to N-1. Enumerating dictionaries will
provide all dictionary keys in the order in which they are stored in the PDF using the .key
suffix at the end of the dictionary’s path. Similarly, the corresponding values can be
enumerated with the .val suffix. Inherited values (see below) and pseudo objects will not
be visible when enumerating dictionary keys, and will not be included in the length
count.

Some page-related dictionary entries in PDF can be inherited across a tree-like data
structure, which makes it difficult to retrieve them. For example the MediaBox for a
page is not guaranteed to be contained in the page dictionary, but may be inherited
from an arbitrarily complex page tree. pCOS eliminates this problem by transparently
inserting all inherited keys and values into the final dictionary. In other words, pCOS
users can assume that all inheritable entries are available directly in a dictionary, and
don’t have to search all relevant parent entries in the tree. This merging of inherited en-
tries is only available when accessing the pages tree via the pages[] pseudo object; ac-
cessing the /Pages tree, the objects[] pseudo object, or enumerating the keys via
pages[][] will return the actual entries which are present in the respective dictionary,
without any inheritance applied.

pCOS IDs for dictionaries and arrays. Unlike PDF object IDs, pCOS IDs are guaranteed
to provide a unique identifier for an element addressed via a pCOS path (since arrays
and dictionaries can be nested an object can have the same PDF object ID as its parent
array or dictionary). pCOS IDs can be retrieved with the pcosid prefix in front of the dic-
tionary’s or array’s path (see Table 8.2).

The pCOS ID can therefore be used as a shortcut for repeatedly accessing elements
without the need for explicit path addressing. For example, this will improve perfor-
mance when looping over all elements of a large array. Use the objects[] pseudo object to
retrieve the contents of an element identified by a particular ID.

8.4 Path Syntax 187

8.4 Path Syntax
The backbone of the pCOS interface is a simple path syntax for addressing and retriev-
ing any object contained in a PDF document. In addition to the object data itself pCOS
can retrieve information about an object, e.g. its type or length. Depending on the ob-
ject’s type (which itself can be queried) one of the functions PDF_pcos_get_number(),
PDF_pcos_get_string(), and PDF_pcos_get_stream() can be used to obtain the value of an
object. The general syntax for pCOS paths is as follows:

[<prefix>:][pseudoname[<index>]]/<name>[<index>]/<name>[<index>] ... [.key|.val]

The meaning of the various path components is as follows:
> The optional prefix can attain the values listed in Table 8.2.
> The optional pseudo object name may contain one of the values described in Section

8.5, »Pseudo Objects«, page 189.
> The name components are dictionary keys found in the document. Multiple names

are separated with a / character. An empty path, i.e. a single / denotes the docu-
ment’s Trailer dictionary. Each name must be a dictionary key present in the preced-
ing dictionary. Full paths describe the chain of dictionary keys from the initial dic-
tionary (which may be the Trailer or a pseudo object) to the target object.

> Paths or path components specifying an array or dictionary can have a numerical in-
dex which must be specified in decimal format between brackets. Nested arrays or
dictionaries can be addressed with multiple index entries. The first entry in an array
or dictionary has index 0.

> Paths or path components specifying a dictionary can have an index qualifier plus
one of the suffixes .key or .val. This can be used to retrieve a particular dictionary key
or the corresponding value of the indexed dictionary entry, respectively. If a path for
a dictionary has an index qualifier it must be followed by one of these suffixes.

When a path component contains any of the characters /, [,], or #, these must be ex-
pressed by a number sign # followed by a two-digit hexadecimal number.

Path prefixes. Prefixes can be used to query various attributes of an object (as opposed
to its actual value). Table 8.2 lists all supported prefixes.

The length prefix and content enumeration via indices are only applicable to plain
PDF objects and pseudo objects of type array, but not any other pseudo objects. The
pcosid prefix cannot be applied to pseudo objects. The type prefix is supported for all
pseudo objects.

188 Chapter 8: The pCOS Interface

Table 8.2 pCOS path prefixes

prefix explanation

length (Number) Length of an object, which depends on the object’s type:
array Number of elements in the array
dict Number of key/value pairs in the dictionary
stream Number of key/value pairs in the stream dict (not the stream length; use the Length key to

determine the length of stream data in bytes)
fstream Same as stream
other 0

pcosid (Number) Unique pCOS ID for an object of type dictionary or array.
If the path describes an object which doesn’t exist in the PDF the result will be -1. This can be used to
check for the existence of an object, and at the same time obtaining an ID if it exists.

type (String or number) Type of the object as number or string:
0, null Null object or object not present (use to check existence of an object)
1, boolean Boolean object
2, number Integer or real number
3, name Name object
4, string String object
5, array Array object
6, dict Dictionary object (but not stream)
7, stream Stream object which uses only supported filters
8, fstream Stream object which uses one or more unsupported filters

8.5 Pseudo Objects 189

8.5 Pseudo Objects
Pseudo objects extend the set of pCOS paths by introducing some useful elements
which can be used as an abbreviation for information which is present in the PDF, but
cannot easily be accessed by reading a single value. The following sections list all sup-
ported pseudo objects. Pseudo objects of type dict can not be enumerated.

Universal pseudo objects. Universal pseudo objects are always available, regardless of
encryption and passwords. This assumes that a valid document handle is available,
which may require setting the option requiredmode suitably when opening the docu-
ment. Table 8.3 lists all universal pseudo objects.

Table 8.3 Universal pseudo objects

object name explanation

encrypt (Dict) Dictionary with keys describing the encryption status of the document:
length (Number) Length of the encryption key in bits
algorithm (Number)
description(String) Encryption algorithm number or description:

-1 Unknown encryption
0 No encryption
1 40-bit RC4 (Acrobat 2-4)
2 128-bit RC4 (Acrobat 5)
3 128-bit RC4 (Acrobat 6)
4 128-bit AES (Acrobat 7)
5 Public key on top of 128-bit RC4 (Acrobat 5) (unsupported)
6 Public key on top of 128-bit AES (Acrobat 7) (unsupported)
7 Adobe Policy Server (Acrobat 7) (unsupported)

master (Boolean) True if the PDF requires a master password to change security settings
(permissions, user or master password),false otherwise

user (Boolean) True if the PDF requires a user password for opening, false otherwise
noaccessible, noannots, noassemble, nocopy, noforms, nohiresprint, nomodify, noprint

(Boolean) True if the respective access protection is set, false otherwise
plainmetadata

(Boolean) True if the PDF contains unencrypted meta data, false otherwise

filename (String) Name of the PDF file.

filesize (Number) Size of the PDF file in bytes

linearized (Boolean) True if the PDF document is linearized, false otherwise

major
minor
revision

(Number) Major, minor, or revision number of the library, respectively.

pcosinterface (Number) Interface number of the underlying pCOS implementation. This specification describes inter-
face number 3. The following table details which product versions implement various pCOS interface
numbers:
1 TET 2.0, 2.1
2 pCOS 1.0
3 PDFlib+PDI 7, PPS 7, TET 2.2

190 Chapter 8: The pCOS Interface

pcosmode
pcos-
modename

(Number/string) pCOS mode as number or string:
0 minimum
1 restricted
2 full

pdfversion (Number) PDF version number multiplied by 10, e.g. 16 for PDF 1.6

version (String) Full library version string in the format <major>.<minor>.<revision>, possibly suffixed with addi-
tional qualifiers such as beta, rc, etc.

Table 8.3 Universal pseudo objects

object name explanation

8.5 Pseudo Objects 191

Pseudo objects for PDF objects, pages, and interactive elements. Table 8.4 lists pseu-
do objects which can be used for retrieving object or page information, or serve as short-
cuts for various interactive elements.

Table 8.4 Pseudo objects for PDF objects, pages, and interactive elements

object name explanation

articles (Array of dicts) Array containing the article thread dictionaries for the document. The array will have
length 0 if the document does not contain any article threads. In addition to the standard PDF keys pCOS
supports the following pseudo key for dictionaries in the articles array:
beads (Array of dicts) Bead directory with the standard PDF keys, plus the following:

destpage (Number) Number of the target page (first page is 1)

bookmarks (Array of dicts) Array containing the bookmark (outlines) dictionaries for the document. In addition to
the standard PDF keys pCOS supports the following pseudo keys for dictionaries in the bookmarks array:
level (Number) Indentation level in the bookmark hierarchy
destpage (Number) Number of the target page (first page is 1) if the bookmark points to a page in the

same document, -1 otherwise.

fields (Array of dicts) Array containing the form fields dictionaries for the document. In addition to the stan-
dard PDF keys in the field dictionary and the entries in the associated Widget annotation dictionary pCOS
supports the following pseudo keys for dictionaries in the fields array:
level (Number) Level in the field hierarchy (determined by ».« as separator)
fullname (String) Complete name of the form field. The same naming conventions as in Acrobat 7 will

be applied.

names (Dict) A dictionary where each entry provides simple access to a name tree. The following name trees are
supported: AP, AlternatePresentations, Dests, EmbeddedFiles, IDS, JavaScript, Pages, Renditions,
Templates, URLS.
Each name tree can be accessed by using the name as a key to retrieve the corresponding value, e.g.:
names/Dests[0].key retrieves the name of a destination
names/Dests[0].val retrieves the corresponding destination dictionary
In addition to standard PDF dictionary entries the following pseudo keys for dictionaries in the Dests
names tree are supported:
destpage (number) Number of the target page (first page is 1) if the destination points to a page in the

same document, -1 otherwise.
In order to retrieve other name tree entries these must be queried directly via /Root/Names/Dests etc.
since they are not present in the name tree pseudo objects.

objects (Array) Address an element for which a pCOS ID has been retrieved earlier using the pcosid prefix. The ID
must be supplied as array index in decimal form; as a result, the PDF object with the supplied ID will be
addressed. The length prefix cannot be used with this array.

192 Chapter 8: The pCOS Interface

pages (Array of dicts) Each array element addresses a page of the document. Indexing it with the decimal repre-
sentation of the page number minus one addresses that page (the first page has index 0). Using the
length prefix the number of pages in the document can be determined. A page object addressed this way
will incorporate all attributes which are inherited via the /Pages tree. The entries /MediaBox and /
Rotate are guaranteed to be present. In addition to standard PDF dictionary entries the following pseudo
entries are available for each page:
colorspaces, extgstates, fonts, images, patterns, properties, shadings, templates

(Arrays of dicts) Page resources according to Table 8.5.
annots (Array of dicts) In addition to the standard PDF keys pCOS supports the following pseudo key

for dictionaries in the annots array:
destpage (Number; only for Subtype=Link and if a Dest entry is present) Number of the tar-

get page (first page is 1)
blocks (Array of dicts) Shorthand for pages[]/PieceInfo/PDFlib/Private/Blocks[], i.e. the

page’s block dictionary. In addition to the existing PDF keys pCOS supports the following
pseudo key for dictionaries in the blocks array:
rect (Rectangle) Similar to Rect, except that it takes into account any relevant

CropBox/MediaBox and Rotate entries and normalizes coordinate ordering.
height (Number) Height of the page. The MediaBox or the CropBox (if present) will be used to

determine the height. Rotate entries will also be applied.
isempty (Boolean) True if the page is empty, and false if the page is not empty
label (String) The page label of the page (including any prefix which may be present). Labels will be

displayed as in Acrobat. If no label is present (or the PageLabel dictionary is malformed), the
string will contain the decimal page number. Roman numbers will be created in Acrobat’s
style (e.g. VL), not in classical style which is different (e.g. XLV). If /Root/PageLabels doesn’t
exist, the document doesn’t contain any page labels.

width (Number) Width of the page (same rules as for height)
The following entries will be inherited: CropBox, MediaBox, Resources, Rotate.

pdfa (String) PDF/A conformance level of the document (e.g. PDF/A-1a:2005) or none

pdfx (String) PDF/X conformance level of the document (e.g. PDF/X-1a:2001) or none

tagged (Boolean) True if the PDF document is tagged, false otherwise

Table 8.4 Pseudo objects for PDF objects, pages, and interactive elements

object name explanation

8.5 Pseudo Objects 193

Pseudo objects for simplified resource handling. Resources are a key concept for man-
aging various kinds of data which are required for completely describing the contents
of a page. The resource concept in PDF is very powerful and efficient, but complicates
access with various technical concepts, such as recursion and resource inheritance.
pCOS greatly simplifies resource retrieval and supplies several groups of pseudo objects
which can be used to directly query resources. Some of these pseudo resource dictionar-
ies contain entries in addition to the standard PDF keys in order to further simplify re-
source information retrieval.

pCOS supports two groups of pseudo objects for resource retrieval. Global resource
arrays contain all resources in a PDF document, while page resources contain only the
resources used by a particular page. The resource entries in the global and page-based
resource arrays reflect resources from the user’s point of view. They differ from native
PDF resources in several ways:

> Some entries may be added (e.g. inline images, simple color spaces) or deleted (e.g.
the parts of multi-strip images).

> In addition to the original PDF dictionary keys resource dictionaries may contain
some user-friendly keys for auxiliary information (e.g. embedding status of a font,
number of components of a color space).

The following list details the two categories using the images resource type as an exam-
ple; the same scheme applies to all resource types listed in Table 8.5:

> A list of image resources in the document is available in images[].
> A list of image resources on each page is available in pages[]/images[].

Table 8.5 Pseudo objects for resource retrieval; each pseudo object P in this table creates two arrays with resources P[]
and pages[]/P[].

object name explanation

colorspaces (Array of dicts) Array containing dictionaries for all color spaces on the page or in the document. In addi-
tion to the standard PDF keys in color space and ICC profile stream dictionaries the following pseudo keys
are supported:
alternateid

(Integer; only for name=Separation and DeviceN) Index of the underlying alternate color
space in the colorspaces[] pseudo object.

alternateonly
(Boolean) If true, the colorspace is only used as the alternate color space for (one or more)
Separation or DeviceN color spaces, but not directly.

baseid (Integer; only for name=Indexed) Index of the underlying base color space in the
colorspaces[] pseudo object.

colorantname
(Name; only for name=Separation) Name of the colorant

colorantnames
(Array of names; only for name=DeviceN) Names of the colorants

components
(Integer) Number of components of the color space

name (String) Name of the color space
csarray (Array; not for name=DeviceGray/RGB/CMYK) Array describing the underlying native color

space.
Color space resources will include all color spaces which are referenced from any type of object, including
the color spaces which do not require any native PDF resources (i.e. DeviceGray, DeviceRGB, and
DeviceCMYK).

194 Chapter 8: The pCOS Interface

extgstates (Array of dicts) Array containing the dictionaries for all extended graphics states (ExtGStates) on the page
or in the document

fonts (Array of dicts) Array containing dictionaries for all fonts on the page or in the document. In addition to
the standard PDF keys in font dictionaries, the following pseudo keys are supported:
name (String) PDF name of the font without any subset prefix. Non-ASCII CJK font names will be

converted to Unicode.
embedded (Boolean) Embedding status of the font
type (String) Font type
vertical (Boolean) true for fonts with vertical writing mode, false otherwise

images (Array of dicts) Array containing dictionaries for all images on the page or in the document. In addition
to the standard PDF keys the following pseudo keys are supported:
bpc (Integer) The number of bits per component. This entry is usually the same as

BitsPerComponent, but unlike this it is guaranteed to be available.
colorspaceid

(Integer) Index of the image’s color space in the colorspaces[] pseudo object. This can be
used to retrieve detailed color space properties.

filterinfo (Dict) Describes the remaining filter for streams with unsupported filters or when retrieving
stream data with the keepfilter option set to true. If there is no such filter no filterinfo
dictionary will be available. The dictionary contains the following entries:
name (Name) Name of the filter
supported (Boolean) True if the filter is supported
decodeparms

(Dict) The DecodeParms dictionary if one is present for the filter
maskid (Integer) Index of the image’s mask in the images[] pseudo object if the image is masked,

otherwise -1
maskonly (Boolean) If true, the image is only used as a mask for (one or more) other images, but not

directly

patterns (Array of dicts) Array containing dictionaries for all patterns on the page or in the document

properties (Array of dicts) Array containing dictionaries for all properties on the page or in the document

shadings (Array of dicts) Array containing dictionaries for all shadings on the page or in the document. In addition
to the standard PDF keys in shading dictionaries the following pseudo key is supported:
colorspaceid

(Integer) Index of the underlying color space in the colorspaces[] pseudo object.

templates (Array of dicts) Array containing dictionaries for all templates (Form XObjects) on the page or in the doc-
ument

Table 8.5 Pseudo objects for resource retrieval; each pseudo object P in this table creates two arrays with resources P[]
and pages[]/P[].

object name explanation

8.6 Encrypted PDF Documents 195

8.6 Encrypted PDF Documents
pCOS supports encrypted and unencrypted PDF documents as input. However, full ob-
ject retrieval for encrypted documents requires the appropriate master password to be
supplied when opening the document. Depending on the availability of user and mas-
ter password, encrypted documents can be processed in one of the pCOS modes de-
scribed below.

Full pCOS mode (mode 0). Encrypted PDFs can be processed without any restriction
provided the master password has been supplied upon opening the file. All objects will
be returned unencrypted. Unencrypted documents will always be opened in full pCOS
mode.

Restricted pCOS mode (mode 1). If the document has been opened without the appro-
priate master password and does not require a user password (or the user password has
been supplied) pCOS operations are subject to the following restriction: The contents of
objects with type string, stream, or fstream can not be retrieved with the following excep-
tions:

> The objects /Root/Metadata and /Info/* (document info keys) can be retrieved if
nocopy=false or plainmetadata=true.

> The objects bookmarks[...]/Title and annots[...]/Contents (bookmark and annotation
contents) can be retrieved if nocopy=false, i.e. if text extraction is allowed for the
main text on the pages.

Minimum pCOS mode (mode 2). Regardless of the encryption status and the availabili-
ty of passwords, the universal pCOS pseudo objects listed in Table 8.3 are always avail-
able. For example, the encrypt pseudo object can be used to query a document’s encryp-
tion status. Encrypted objects can not be retrieved in minimum pCOS mode.

Table 8.6 lists the resulting pCOS modes for various password combinations. De-
pending on the document’s encryption status and the password supplied when open-
ing the file, PDF object paths may be available in minimum, restricted, or full pCOS
mode. Trying to retrieve a pCOS path which is inappropriate for the respective mode
will raise an exception.

Table 8.6 Resulting pCOS modes for various password combinations

If you know... ...pCOS will run in...

none of the passwords restricted pCOS mode if no user password is set, minimum pCOS mode
otherwise

only the user password restricted pCOS mode

the master password full pCOS mode

9.1 Acrobat and PDF Versions 197

9 Generating various PDF Flavors
9.1 Acrobat and PDF Versions

At the user’s option PDFlib generates output according to PDF 1.3 (Acrobat 4), PDF 1.4
(Acrobat 5), PDF 1.5 (Acrobat 6), or PDF 1.6 (Acrobat 7). In addition, PDF 1.7 (Acrobat 8) files
can be created, but at this time no specific features of PDF 1.7 are supported. The PDF
output version can be controlled with the compatibility option in PDF_begin_document().

PDFlib output features for PDF 1.4 or above. In PDF 1.3 compatibility mode the PDFlib
features for higher PDF versions are not available. Trying to use one of these features in
PDF 1.3 mode will result in an exception.

PDFlib output features for PDF 1.5 or above. In PDF 1.3 or 1.4 compatibility modes the
PDFlib features for higher PDF versions are not available. Trying to use one of these fea-
tures in PDF 1.3 or PDF 1.4 mode will result in an exception.

Table 9.1 PDFlib features for PDF 1.4 which are not available in PDF 1.3 compatibility mode

Feature PDFlib API functions and options

smooth shadings (color blends) PDF_shading_pattern(), PDF_shfill(), PDF_shading()

soft masks PDF_load_image() with the masked option referring to an image with more than
1 bit pixel depth

128-bit encryption PDF_begin_document() with the userpassword, masterpassword, permissions
options

extended permission settings PDF_begin_document() with permissions option, see Table 9.4

certain CMaps for CJK fonts PDF_load_font(), see Table 4.5

transparency and other graphics
state options

PDF_create_gstate() with options alphaisshape, blendmode, opacityfill,
opacitystroke, textknockout

certain options for actions PDF_create_action()

certain options for annotations PDF_create_annotation()

certain field options PDF_create_field() and PDF_create_fieldgroup()

Tagged PDF tagged option in PDF_begin_document()

Table 9.2 PDFlib features for PDF 1.5 which are not available in lower compatibility modes

Feature PDFlib API functions and options

certain field options PDF_create_field() and PDF_create_fieldgroup()

page layout PDF_begin/end_document(): option pagelayout=twopageleft/right

certain annotation options PDF_create_annotation()

extended permission settings permissions=plainmetadata in PDF_begin_document(), see Table 9.4

certain CMaps for CJK fonts PDF_load_font(), see Table 4.5

Tagged PDF certain options for PDF_begin_item();
PDF_begin/end_page_ext(): option taborder

198 Chapter 9: Generating various PDF Flavors

PDFlib output features for PDF 1.6 or above. In PDF compatibility modes up to PDF 1.5
the PDFlib features for PDF 1.6 are not available. Trying to use one of these features in
lower PDF modes will result in an exception.

PDF version of documents imported with PDI. In all compatibility modes only PDF
documents with the same or a lower compatibility level can be imported with PDI. If
you must import a PDF with a newer level you must set the compatibility option accord-
ingly (see Section 6.2.3, »Acceptable PDF Documents«, page 132.

Changing the PDF version of a document. If you must create output according to a
particular PDF version, but need to import PDFs which use a higher PDF version you
must convert the documents to the desired lower PDF version before you can import
them with PDI. You can do this with Acrobat; the details depend on the version of Acro-
bat that you are using:

> Acrobat 7/8 Professional: You can save the file in the formats PDF 1.3 - PDF 1.6
(Acrobat 7) or PDF 1.3 - PDF 1.7 (Acrobat 8) using Advanced, PDF Optimizer, Make
compatible with.

> Acrobat 6 and Acrobat 7 Standard: You can save the file as PDF 1.3 - PDF 1.5 using File,
Reduce File Size... .

> Acrobat 5: For converting the document to PDF 1.3 use an additional plugin by callas
software called pdfSaveAs1.3. Fully functional demo versions are available on the cal-
las web site1. This conversion plugin is especially useful when dealing with blocks
and PDF/X, since some versions of PDF/X require PDF 1.3 (see »Using Blocks with
PDF/X«, page 234, and Section 9.4.2, »Generating PDF/X-conforming Output«, page
204).

Layers PDF_define_layer(), PDF_begin_layer(), PDF_end_layer(), PDF_layer_
dependency()

JPEG2000 images imagetype=jpeg2000 in PDF_load_image()

Table 9.3 PDFlib features for PDF 1.6 which are not available in lower compatibility modes

Feature PDFlib API functions and options

user units PDF_begin/end_document(): option userunit

print scaling PDF_begin/end_document(): suboption printscaling for viewerpreferences
option

document open mode PDF_begin/end_document(): option openmode=attachments

AES encryption PDF_begin_document(): AES encryption will automatically be used with
compatibility=1.6 or above when the masterpassword, userpassword,
attachmentpassword, or permissions option is supplied

encrypt file attachments only PDF_begin/end_document(): option attachmentpassword

attachment description PDF_begin/end_document(): suboption description for option attachments

embed U3D models PDF_load_3ddata(), PDF_create_3dview(); PDF_create_annotation(): type=3D

1. See www.callassoftware.com

Table 9.2 PDFlib features for PDF 1.5 which are not available in lower compatibility modes

Feature PDFlib API functions and options

http://www.callassoftware.com

9.2 Encrypted PDF 199

9.2 Encrypted PDF
9.2.1 Strengths and Weaknesses of PDF Security

PDF supports various security features which aid in protecting document contents.
They are based on Acrobat’s standard encryption handler which uses symmetric en-
cryption. Both Acrobat Reader and the full Acrobat product support the following secu-
rity features:

> Permissions restrict certain actions for the PDF document, such as printing or ex-
tracting text.

> The user password is required to open the file.
> The master password is required to change any security settings, i.e. permissions,

user or master password. Files with user and master passwords can be opened for
reading or printing with either password.

> (PDF 1.6) Attachments can be encrypted even in otherwise unprotected documents.

If a file has a user or master password or any permission restrictions set, it will be en-
crypted.

Cracking protected PDF documents. The length of the encryption keys used for pro-
tecting documents depends on the PDF compatibility level:

> For PDF versions up to and including 1.3 (i.e., Acrobat 4) the key length is 40 bits.
> For PDF version 1.4 and above the key length is 128 bits. This requires Acrobat 5 or

above. For PDF 1.5 the key length will also be 128 bits, but a slightly different encryp-
tion method will be used, which requires Acrobat 6.

> PDF 1.6 supports AES (Advanced Encryption Standard) with 128-bit keys. This re-
quires Acrobat 7 or above.

It is widely known that a key length of 40 bits for symmetrical encryption (as used in
PDF) is not secure. Actually, using commercially available cracking software it is possi-
ble to disable 40-bit PDF security settings with a brute-force attack within days or
weeks, depending on the length and quality of the password. For maximum security we
recommend the following:

> Use 128-bit encryption (i.e., PDF 1.4 compatibility setting) if at all possible. This re-
quires Acrobat 5 or above for all users of the document.

> Use AES encryption unless your users work with older versions than Acrobat 7.
> Documents which have only a master password, but no user password, can always be

cracked. You should therefore consider applying a user password (but of course the
user password must be available to legitimate users of the document).

> Passwords should be at least six characters long and should contain non-alphabetic
characters. Passwords should definitely not resemble your spouse’s or pet’s name,
your birthday etc. in order to prevent so-called dictionary attacks or password guess-
ing. It is important to mention that even with 128-bit encryption short passwords
can be cracked within minutes.

Access permissions. Setting some access restriction, such as printing prohibited will dis-
able the respective function in Acrobat. However, this not necessarily holds true for
third-party PDF viewers or other software. It is up to the developer of PDF tools whether
or not access permissions will be honored. Indeed, several PDF tools are known to ignore
permission settings altogether; commercially available PDF cracking tools can be used

200 Chapter 9: Generating various PDF Flavors

to disable any access restrictions. This has nothing to do with cracking the encryption;
there is simply no way that a PDF file can make sure it won’t be printed while it still re-
mains viewable. This is actually documented in Adobe’s own PDF reference:

There is nothing inherent in PDF encryption that enforces the document permissions speci-
fied in the encryption dictionary. It is up to the implementors of PDF viewers to respect the in-
tent of the document creator by restricting user access to an encrypted PDF file according to
the permissions contained in the file.

9.2.2 Protecting Documents with PDFlib

Encryption algorithm and key length. When creating protected documents PDFlib will
choose the strongest possible encryption and key length which are possible with the
PDF compatibility level chosen by the client:

> For PDF 1.3 (Acrobat 4) RC4 with 40-bit keys is used.
> For PDF 1.4 (Acrobat 5) RC4 with 128-bit keys is used. This requires Acrobat 5 or above.
> For PDF 1.5 (Acrobat 6) RC4 with 128-bit keys is used. This is the same key length as

with PDF 1.4, but a slightly different encryption method will be used which requires
Acrobat 6.

> For PDF 1.6 (Acrobat 7) and above the Advanced Encryption Standard (AES) with 128-
bit keys will be used.

Passwords. Passwords can be set with the userpassword and masterpassword options in
PDF_begin_document(). PDFlib interacts with the client-supplied passwords in the fol-
lowing ways:

> If a user password or permissions (see below), but no master password has been sup-
plied, a regular user would be able to change the security settings. For this reason
PDFlib considers this situation as an error.

> If user and master password are the same, a distinction between user and owner of
the file would no longer be possible, again defeating effective protection. PDFlib con-
siders this situation as an error.

> For both user and master passwords up to 32 characters are accepted. Empty pass-
words are not allowed.

The supplied passwords will be used for all subsequently generated documents.

Good and bad passwords. The strength of PDF encryption is not only determined by
the length of the encryption key, but also by the length and quality of the password. It is
widely known that names, plain words, etc. should not be used as passwords since these
can easily be guessed or systematically tried using a so-called dictionary attack. Surveys
have shown that a significant number of passwords are chosen to be the spouse’s or
pet’s name, the user’s birthday, the children’s nickname etc., and can therefore easily be
guessed.

While PDF encryption internally works with 40- or 128-bit keys, on the user level
passwords of up to 32 characters are used. The internal key which is used to encrypt the
PDF document is derived from the user-supplied password by applying some compli-
cated calculations. If the password is weak, the resulting protection will be weak as well,
regardless of the key length. Even 128-bit keys and AES encryption are not very secure if
short passwords are used.

9.2 Encrypted PDF 201

Non-ASCII characters in passwords. Attention must be paid when characters outside
the range 0x20-0x7E are used in passwords, i.e. characters which are not in the tradi-
tional ASCII character set. As an example, let’s take a look at the use of the character Ä
within a password. On the Mac this character has code 0x80, while on Windows it is en-
coded as 0xC4. Since users expect the file to be opened when using the password Ä on
either platform, Acrobat converts the supplied password to an internal encoding (called
PDFDocEncoding) before applying the password. Characters which are not available in
this encoding will be mapped to the space character. PDFDocEncoding contains all char-
acters of the Mac and Windows platforms, but requires several characters to be convert-
ed. In the example above, when the user encrypts the file with password Ä on the Mac,
PDI would be unable to decrypt the file if the code for Ä would be used directly. PDI
therefore applies the same password conversion as Acrobat in order to make sure that
files encrypted with Mac or Windows versions of Acrobat can successfully be decrypted.
Upon decryption PDI will automatically detect the required conversion:

> WinAnsi to PDFDocEncoding conversion if the document was encrypted with Acro-
bat on Windows or with PDFlib PLOP 2.1 or above;

> MacRoman to PDFDocEncoding conversion if the document was encrypted with Ac-
robat on the Mac;

> No conversion if the document was encrypted with some other software, including
PDFlib PLOP 2.0 (but not any newer versions).

When encrypting files, PDFlib will act like Acrobat on Windows and interpret the sup-
plied passwords in WinAnsi encoding, i.e., it will apply a WinAnsi to PDFDocEncoding
conversion to the supplied user and master passwords; on EBCDIC platforms it will ap-
ply EBCDIC to WinAnsi conversion prior to that.

Permissions. Access restrictions can be set with the permissions option in PDF_begin_
document(). It contains one or more access restriction keywords. When setting the
permissions option the masterpassword option must also be set, because otherwise Acro-
bat users could easily remove the permission settings. By default, all actions are al-
lowed. Specifying an access restriction will disable the respective feature in Acrobat. Ac-
cess restrictions can be applied without any user password. Multiple restriction
keywords can be specified as in the following example:

p.begin_document(filename, "masterpassword=abc123 permissions={noprint nocopy}");

Table 9.4 lists all supported access restriction keywords. As detailed in the table, some
keywords require PDF 1.4 or higher compatibility. They will be rejected if the PDF output
version is too low.

Table 9.4 Access restriction keywords for the permissions option in PDF_begin_document()

keyword explanation

noprint Acrobat will prevent printing the file.

nomodify Acrobat will prevent editing or cropping pages and creating or changing form fields.

nocopy Acrobat will prevent copying and extracting text or graphics; the accessibility interface will be controlled
by noaccessible.

noannots Acrobat will prevent creating or changing annotations and form fields.

noforms (PDF 1.4; implies nomodify and noannots) Acrobat will prevent form field filling.

202 Chapter 9: Generating various PDF Flavors

Note When serving PDFs over the Web, clients can always produce a local copy of the document with
their browser. There is no way for a PDF to prevent users from saving a local copy.

Encrypted file attachments. In PDF 1.6 and above file attachments can be encrypted
even in otherwise unprotected documents. This can be achieved by supplying the
attachmentpassword option to PDF_begin_document().

noaccessible (PDF 1.4) Acrobat will prevent extracting text or graphics for accessibility purposes (such as a screenreader
program).

noassemble (PDF 1.4; implies nomodify) Acrobat will prevent inserting, deleting, or rotating pages and creating
bookmarks and thumbnails.

nohiresprint (PDF 1.4) Acrobat will prevent high-resolution printing. If noprint isn’t set, printing is restricted to the
»print as image« feature which prints a low-resolution rendition of the page.

plainmeta-
data

(PDF 1.5) Keep XMP document metadata unencrypted even for encrypted documents.

Table 9.4 Access restriction keywords for the permissions option in PDF_begin_document()

keyword explanation

9.3 Web-Optimized (Linearized) PDF 203

9.3 Web-Optimized (Linearized) PDF
PDFlib can apply a process called linearization to PDF documents (linearized PDF is
called Optimized in Acrobat 4, and Fast Web View in Acrobat 5 and above). Linearization
reorganizes the objects within a PDF file and adds supplemental information which can
be used for faster access.

While non-linearized PDFs must be fully transferred to the client, a Web server can
transfer linearized PDF documents one page at a time using a process called byte-
serving. It allows Acrobat (running as a browser plugin) to retrieve individual parts of a
PDF document separately. The result is that the first page of the document will be pre-
sented to the user without having to wait for the full document to download from the
server. This provides enhanced user experience.

Note that the Web server streams PDF data to the browser, not PDFlib. Instead, PDFlib
prepares the PDF files for byteserving. All of the following requirements must be met in
order to take advantage of byteserving PDFs:

> The PDF document must be linearized, which can be achieved with the linearize op-
tion in PDF_begin_document(). In Acrobat you can check whether a file is linearized
by looking at its document properties (»Fast Web View: yes«).

> The Web server must support byteserving. The underlying byterange protocol is part
of HTTP 1.1 and therefore implemented in all current Web servers. In particular, the
following Web servers support byteserving:

Microsoft Internet Information Server (IIS) 3.0 and above
Apache 1.2.1 and above; however, Apache 1.3.14 (but not other versions) has a bug
which prevents byteserving

> The user must use Acrobat as a Browser plugin, and have page-at-a-time download
enabled in Acrobat (Acrobat 6/7: Edit, Preferences, [General...,] Internet, Allow fast web
view; Acrobat 5: Edit, Preferences, General..., Options, Allow Fast Web view). Note that this
is enabled by default.

The larger a PDF file (measured in pages or MB), the more it will benefit from lineariza-
tion when delivered over the Web.

Note Linearizing a PDF document generally slightly increases its file size due to the additional linear-
ization information.

Temporary storage requirements for linearization. PDFlib must create the full docu-
ment before it can be linearized; the linearization process will be applied in a separate
step after the document has been created. For this reason PDFlib has additional storage
requirements for linearization. Temporary storage will be required which has roughly
the same size as the generated document (without linearization). Subject to the
inmemory option in PDF_begin_document() PDFlib will place the linearization data either
in memory or on a temporary disk file.

204 Chapter 9: Generating various PDF Flavors

9.4 PDF/X for Print Production
9.4.1 The PDF/X Family of Standards

The PDF/X formats specified in the ISO 15930 standards family strive to provide a con-
sistent and robust subset of PDF which can be used to deliver data suitable for commer-
cial printing1. PDFlib can generate output and process input conforming to the PDF/X
flavors described below.

PDF/X-1a:2001 as defined in ISO 15930-1. This standard for »blind exchange« (ex-
change of print data without the requirement for any prior technical discussions) are
based on PDF 1.3 and supports CMYK and spot color data. RGB and device-independent
colors (ICC-based, Lab) are explicitly prohibited. PDF/X-1a:2001 is widely used (especially
in North America) for the exchange of publication ads and other applications.

PDF/X-1a:2003 as defined in ISO 15930-4. This standard is the successor to PDF/X-
1a:2001. It is based on PDF 1.4, with some features (e.g. transparency) prohibited. PDF/X-
1a:2003 is a strict subset of PDF/X-3:2003, and supports CMYK and spot color, and CMYK
output devices.

Note PANTONE® colors are not supported in PDF/X-1a mode.

PDF/X-2:2003 as defined in ISO 15930-5. This standard is targeted at »partial ex-
change« which requires more discussion between supplier and receiver of a file. PDF
documents according to this standard can reference external entities (point to other
PDF pages external to the current document). PDF/X-2:2003 is based on PDF 1.4. As a su-
perset of PDF/X-3:2003 it supports device independent colors.

PDF/X-3:2002 as defined in ISO 15930-3. This standard is based on PDF 1.3, and sup-
ports modern workflows based on device-independent color in addition to grayscale,
CMYK, and spot colors. It is especially popular in European countries. Output devices
can be monochrome, RGB, or CMYK.

PDF/X-3:2003 as defined in ISO 15930-6. This standard is the successor to PDF/X-
3:2002. It is based on PDF 1.4, with some features (e.g. transparency) prohibited.

When one of the PDF/X standards is referenced below without any standardization
year, all versions of the respective standard are meant. For example, PDF/X-3 means
PDF/X-3:2002 and PDF-X/3:2003.

9.4.2 Generating PDF/X-conforming Output
Creating PDF/X-conforming output with PDFlib is achieved by the following means:

> PDFlib will automatically take care of several formal settings for PDF/X, such as PDF
version number and PDF/X conformance keys.

> The PDFlib client must explicitly use certain function calls or options as detailed in
Table 9.5.

> The PDFlib client must refrain from using certain function calls and options as de-
tailed in Table 9.6.

1. It is highly recommended to read the PDF/X FAQ at www.globalgraphics.com/products/pdfx/index.html

http://www.globalgraphics.com/products/pdfx/index.html

9.4 PDF/X for Print Production 205

> Additional rules apply when importing pages from existing PDF/X-conforming doc-
uments (see Section 9.4.3, »Importing PDF/X Documents with PDI«, page 207).

Required operations. Table 9.5 lists all operations required to generate PDF/X-con-
forming output. The items apply to all PDF/X conformance levels unless otherwise not-
ed. Not calling one of the required functions while in PDF/X mode will trigger an excep-
tion.

Prohibited operations. Table 9.6 lists all operations which are prohibited when gener-
ating PDF/X-conforming output. The items apply to all PDF/X conformance levels un-
less otherwise noted. Calling one of the prohibited functions while in PDF/X mode will
trigger an exception. Similarly, if an imported PDF page doesn’t match the current PDF/
X conformance level, the corresponding PDI call will fail

Table 9.5 Operations which must be applied for PDF/X compatibility

item PDFlib function and option requirements for PDF/X compatibility

conformance level The pdfx option in PDF_begin_document() must be set to the desired PDF/X conformance level.

output condition
(output intent)

PDF_load_iccprofile() with usage=outputintent or PDF_process_pdi() with action=copy-
outputintent (but not both methods) must be called immediately after PDF_begin_document().
If HKS or Pantone spot colors, ICC-based colors, or Lab colors are used, an output device ICC profile
must be embedded; using a standard output condition is not allowed in this case.
PDF/X-1a: the output device must be a monochrome or CMYK device;
PDF/X-3: the output device must be a monochrome, RGB, or CMYK device.

font embedding Set the embedding option of PDF_load_font() (and other functions which accept this option) to
true to enable font embedding. Note that embedding is also required for the PDF core fonts.

page sizes The page boxes, which are settable via the cropbox, bleedbox, trimbox, and artbox options,
must satisfy all of the following requirements:
> The TrimBox or ArtBox must be set, but not both of these box entries. If both TrimBox and Art-

Box are missing PDFlib will take the CropBox (if present) as the TrimBox, and the MediaBox if
the CropBox is also missing.

> The BleedBox, if present, must fully contain the ArtBox and TrimBox.
> The CropBox, if present, must fully contain the ArtBox and TrimBox.

grayscale color PDF/X-3: the defaultgray option in PDF_begin_page_ext() must be set if grayscale images are
used or PDF_setcolor() is used with a gray color space, and the PDF/X output condition is not a
CMYK or grayscale device.

RGB color PDF/X-3: the defaultrgb option in PDF_begin_page_ext() must be set if RGB images are used or
PDF_setcolor() is used with an RGB color space, and the PDF/X output condition is not an RGB de-
vice.

CMYK color PDF/X-3: the defaultcmyk option in PDF_begin_page_ext() must be set if CMYK images are used
or PDF_setcolor() is used with a CMYK color space, and the PDF/X output condition is not a CMYK
device.

document info keys The Creator and Title info keys must be set with PDF_set_info().

Table 9.6 Operations which must be avoided or are restricted to achieve PDF/X compatibility

item Prohibited or restricted PDFlib functions and options for PDF/X compatibility

grayscale color PDF/X-1a: the defaultgray option in PDF_begin_page_ext() must be avoided.

RGB color PDF/X-1a: RGB images and the defaultrgb option in PDF_begin_page_ext() must be avoided.

206 Chapter 9: Generating various PDF Flavors

Standard output conditions. The output condition defines the intended target device,
which is mainly useful for reliable proofing. The output intent can either be specified
by an ICC profile or by supplying the name of a standard output intent. The standard
output intents are known internally to PDFlib (see PDFlib Reference for a complete list
of the names and the corresponding printing conditions). Standard output intents can
be referenced as follows:

p.load_iccprofile("CGATS TR 001", "usage=outputintent");

When creating PDF/X-3 output and using any of HKS, PANTONE, ICC-based, or Lab colors
the use of standard output intents is not allowed, but an ICC profile of the output device
must be embedded instead.

Additional standard output intents can be defined using the StandardOutputIntent
resource category (see Section 3.1.3, »Resource Configuration and File Searching«, page
48). It is the user’s responsibility to add only those names as standard output intents
which can be recognized by PDF/X-processing software.

CMYK color PDF/X-1a: the defaultcmyk option in PDF_begin_page_ext() must be avoided.

ICC-based color PDF/X-1a: the iccbasedgray/rgb/cmyk color space in PDF_setcolor() and the setcolor:icc-
profilegray/rgb/cmyk parameters must be avoided.

Lab color PDF/X-1a: the Lab color space in PDF_setcolor() must be avoided.

annotations and
form fields

Annotations inside the BleedBox (or TrimBox/ArtBox if no BleedBox is present) must be avoided:
PDF_create_annotation(), PDF_create_field() and related deprecated functions.

actions and
JavaScript

All actions including JavaScript must be avoided: PDF_create_action(), and related deprecated
functions

images PDF/X-1a: images with RGB, ICC-based, YCbCr, or Lab color must be avoided. For colorized images
the alternate color of the spot color used must satisfy the same conditions.
The OPI-1.3 and OPI-2.0 options in PDF_load_image() must be avoided.

transparency Soft masks for images must be avoided: the masked option for PDF_load_image() must be avoid-
ed unless the mask refers to a 1-bit image.
The opacityfill and opacitystroke options for PDF_create_gstate() must be avoided unless
they have a value of 1.

viewer preferences /
view and print areas

When the viewarea, viewclip, printarea, and printclip keys are used for PDF_set_parameter()
values other than media or bleed are not allowed.

document info keys Trapped info key values other than True or False for PDF_set_info() must be avoided.

security PDF/X-1a and PDF/X-3: userpassword, masterpassword, and permissions options in PDF_begin_
document() must be avoided.

PDF version /
compatibility

PDF/X-1a:2001 and PDF/X-3:2002 are based on PDF 1.3. Operations that require PDF 1.4 or above
(such as transparency or soft masks) must be avoided.
PDF/X-1a:2003, PDF/X-2:2003, and PDF/X-3:2003 are based on PDF 1.4. Operations that require
PDF 1.5 (such as layers) must be avoided.

PDF import (PDI) Imported documents must conform to a compatible PDF/X level according to Table 9.8, and must
have been prepared according to the same output intent.

Table 9.6 Operations which must be avoided or are restricted to achieve PDF/X compatibility

item Prohibited or restricted PDFlib functions and options for PDF/X compatibility

9.4 PDF/X for Print Production 207

Selecting a suitable PDF/X output intent. The PDF/X output intent is usually selected
as a result of discussions between you and your print service provider who will take care
of print production. If your printer cannot provide any information regarding the
choice of output intent, you can use the standard output intents listed in Table 9.7 as a
starting point (taken from the PDF/X FAQ).

9.4.3 Importing PDF/X Documents with PDI
Special rules apply when pages from an existing PDF document will be imported into a
PDF/X-conforming output document (see Section 6.2, »Importing PDF Pages with PDI
(PDF Import Library)«, page 130, for details on the PDF import library PDI). All imported
documents must conform to an acceptable PDF/X conformance level according to Table
9.8. As a general rule, input documents conforming to the same PDF/X conformance
level as the generated output document, or to an older version of the same level, are ac-
ceptable. In addition, certain other combinations are acceptable. If a certain PDF/X con-
formance level is configured in PDFlib and the imported documents adhere to one of
the acceptable levels, the generated output is guaranteed to comply with the selected
PDF/X conformance level. Imported documents which do not adhere to one of the ac-
ceptable PDF/X levels will be rejected.

If multiple PDF/X documents are imported, they must all have been prepared for the
same output condition. While PDFlib can correct certain items, it is not intended to

Table 9.7 Suitable PDF/X output intents for common printing situations

Europe North America

Magazine ads FOGRA28 CGATS TR 001 (SWOP)

Newsprint ads IFRA26 IFRA30

Sheet-fed offset Dependent on paper stock:
Types 1 & 2 (coated): FOGRA27
Type 3 (LWC): FOGRA28
Type 4 (uncoated): FOGRA29

Dependent on paper stock:
Grades 1 and 2 (premium coated): FOGRA27
Grade 5: CGATS TR 001 (SWOP)
Uncoated: FOGRA29

Web-fed offset Dependent on paper stock:
Type 1 & 2 (coated): FOGRA28
Type 4 (uncoated, white): FOGRA29
Type 5 (uncoated, yellowish): FOGRA30

Dependent on paper stock:
Grade 5: CGATS TR 001 (SWOP)
Uncoated (white): FOGRA29
Uncoated (yellowish): FOGRA30

Table 9.8 Acceptable PDF/X input levels for various PDF/X output levels

PDF/X level of the imported document

PDF/X output level PDF/X-1a:2001 PDF/X-1a:2003 PDF/X-2:2003 PDF/X-3:2002 PDF/X-3:2003

PDF/X-1a:2001 allowed

PDF/X-1a:2003 allowed allowed

PDF/X-2:2003 allowed allowed allowed allowed allowed

PDF/X-3:2002 allowed allowed

PDF/X-3:2003 allowed allowed allowed allowed

208 Chapter 9: Generating various PDF Flavors

work as a full PDF/X validator or to enforce full PDF/X compatibility for imported docu-
ments. For example, PDFlib will not embed fonts which are missing from imported PDF
pages, and does not apply any color correction to imported pages.

If you want to combine imported pages such that the resulting PDF output docu-
ment conforms to the same PDF/X conformance level and output condition as the in-
put document(s), you can query the PDF/X status of the imported PDF as follows:

pdfxlevel = p.pcos_get_string(doc, "pdfx");

This statement will retrieve a string designating the PDF/X conformance level of the im-
ported document if it conforms to an ISO PDF/X level, or none otherwise. The returned
string can be used to set the PDF/X conformance level of the output document appro-
priately, using the pdfx option in PDF_begin_document().

Copying the PDF/X output intent from an imported document. In addition to query-
ing the PDF/X conformance level you can also copy the output intent from an imported
document:

ret = p.process_pdi(doc, -1, "action=copyoutputintent");

This can be used as an alternative to setting the output intent via PDF_load_iccprofile(),
and will copy the imported document’s output intent to the generated output docu-
ment, regardless of whether it is defined by a standard name or an ICC profile. Copying
the output intent works for imported PDF/A and PDF/X documents.

The output intent of the generated output document must be set exactly once, ei-
ther by copying an imported document’s output intent, or by setting it explicitly using
PDF_load_iccprofile() with usage=outputintent.

9.5 PDF/A for Archiving 209

9.5 PDF/A for Archiving
9.5.1 The PDF/A Standards

The PDF/A formats specified in the ISO 19005 standard strive to provide a consistent
and robust subset of PDF which can safely be archived over a long period of time, or
used for reliable data exchange in enterprise and government environments.

PDF/A-1a:2005 and PDF/A-1b:2005 as defined in ISO 19005-1. PDF/A is targeted at reli-
able long-time preservation of digital documents. The standard is based on PDF 1.4, and
imposes some restrictions regarding the use of color, fonts, annotations, and other ele-
ments. There are two flavors of PDF/A-1, both of which can be created and processed
with PDFlib:

> ISO 19005-1 Level B conformance (PDF/A-1b) ensures that the visual appearance of a
document is preservable over the long term. Simply put, PDF/A-1b ensures that the
document will look the same when it is processed some time in the future.

> ISO 19005-1 Level A conformance (PDF/A-1a) is based on level B, but adds properties
which are known from the »Tagged PDF« flavor: it adds structure information and
reliable text semantics in order to preserve the document's logical structure and nat-
ural reading order. Simply put, PDF/A-1a not only ensures that the document will
look the same when it is processed some time in the future, but also that its contents
(semantics) can be reliably interpreted and will be accessible to physically impaired
users. PDFlib’s support for PDF/A-1a is based on the features for producing Tagged
PDF (see Section 9.6, »Tagged PDF«, page 216).

PDFlib’s PDF/A implementation is based on the ISO 19005-1 standard plus the Technical
Corrigendum (SC2 N397-19005), which is expected to be published by ISO in 2007. When
PDF/A (without any conformance level) is mentioned below, both conformance levels
are meant.

PDF/A Competence Center. PDFlib GmbH is a founding
member of the PDF/A Competence Center. The aim of this
organization is to promote the exchange of information
and experience in the area of long-term archiving in ac-
cordance with ISO 19005. The members of the PDF/A Com-
petence Center actively exchange information related to the PDF/A standard and its im-
plementations, and conducts seminars and conference on the subject. For more
information refer to the PDF/A Competence Center web site1.

9.5.2 Generating PDF/A-conforming Output
Creating PDF/A-conforming output with PDFlib is achieved by the following means:

> PDFlib will automatically take care of several formal settings for PDF/A, such as PDF
version number and PDF/A conformance keys.

> The PDFlib client program must explicitly use certain function calls and options as
detailed in Table 9.9.

> The PDFlib client program must refrain from using certain function calls and option
settings as detailed in Table 9.10.

1. See www.pdfa.org

PDF/A
Competence Center

http://www.pdfa.org

210 Chapter 9: Generating various PDF Flavors

> Additional rules apply when importing pages from existing PDF/A-conforming doc-
uments (see Section 9.5.3, »Importing PDF/A Documents with PDI«, page 212).

If the PDFlib client program obeys to these rules, valid PDF/A output is guaranteed. If
PDFlib detects a violation of the PDF/A creation rules it will throw an exception which
must be handled by the application. No PDF output will be created in case of an error.

Required operations for PDF/A-1b. Table 9.9 lists all operations required to generate
PDF/A-conforming output. The items apply to both PDF/A conformance levels unless
otherwise noted. Not calling one of the required functions while in PDF/A mode will
trigger an exception.

Prohibited and restricted operations. Table 9.10 lists all operations which are prohibit-
ed when generating PDF/A-conforming output. The items apply to both PDF/A con-
formance levels unless otherwise noted. Calling one of the prohibited functions while
in PDF/A mode will trigger an exception. Similarly, if an imported PDF document does
not comform to the current PDF/A output level, the corresponding PDI call will fail.

Table 9.9 Operations which must be applied for PDF/A-1 level A and B compatibility

item PDFlib function and option requirements for PDF/A compatibility

conformance level The pdfa option in PDF_begin_document() must be set to the required PDF/A conformance level,
i.e. one of PDF/A-1a:2005 or PDF/A-1b:2005.

output condition
(output intent)

PDF_load_iccprofile() with usage=outputintent or PDF_process_pdi() with action=copy-
outputintent (but not both methods) must be called immediately after PDF_begin_document()
if any of the device-dependent colors spaces Gray, RGB, or CMYK is used in the document. Unlike
PDF/X, standard output conditions are not sufficient; an output device ICC profile must always be
embedded (use the embedprofile option of PDF_load_iccprofile() to embed a profile for a stan-
dard output condition).

fonts The embedding option of PDF_load_font() (and other functions which accept this option) must be
true. Note that embedding is also required for the PDF core fonts.

grayscale color A gray, RGB, or CMYK ICC profile must be set as PDF/A output condition if grayscale color is used in
the document.

RGB color An RGB ICC profile must be set as PDF/A output condition if RGB color is used in the document.

CMYK color A CMYK ICC profile must be set as PDF/A output condition if CMYK color is used in the document.

metadata The Creator and Title keys must be set with PDF_set_info(), or the corresponding elements
must be supplied as XMP to the metadata option of PDF_begin/end_document(). If PDF_set_
info() is used, PDFlib will automatically create the required XMP entries.

Table 9.10 Operations which must be avoided or are restricted to achieve PDF/A compatibility

item Prohibited or restricted PDFlib functions and options for PDF/A compatibility

annotations PDF_create_annotation(): annotations with type=FileAttachment must be avoided; the zoom
and rotate options must not be set to true. The annotcolor and interiorcolor options must
only be used if an RGB output intent has been specified. The fillcolor option must only be used
if an RGB or CMYK output intent has been specified, and a corresponding rgb or cmyk color space
must be used.

form fields PDF_create_field() and PDF_create_fieldgroup() for creating form fields must be avoided.

9.5 PDF/A for Archiving 211

Additional requirements and restrictions for PDF/A-1a. When creating PDF/A-1a, all re-
quirements for creating Tagged PDF output as discussed in Section 9.6, »Tagged PDF«,
page 216, must be met. In addition, some operations are not allowed or restricted as de-
tailed in Table 9.11.

The user is responsible for creating suitable structure information; PDFlib does nei-
ther check nor enforce any semantic restrictions. A document which contains all of its
text in a single structure element is technically correct PDF/A-1a, but violates the goal of
faithful semantic reproduction, and therefore the spirit of PDF/A-1a.

actions and
JavaScript

PDF_create_action(): actions with type=Hide, Launch, ResetForm, ImportData, JavaScript must
be avoided; for type=name only NextPage, PrevPage, FirstPage, and LastPage are allowed.

images The OPI-1.3 and OPI-2.0 options and interpolate=true option in PDF_load_image() must be
avoided.

ICC profiles ICC profiles loaded with PDF_load_iccprofile() must comply to ICC specification ICC.1:1998-09
and its addendum ICC.1A:1999-04 (internal profile version up to 2.2.0).

templates The OPI-1.3 and OPI-2.0 options in PDF_begin_template_ext() must be avoided.

transparency Soft masks for images must be avoided: the masked option for PDF_load_image() must be avoid-
ed unless the mask refers to a 1-bit image.
The opacityfill and opacitystroke options for PDF_create_gstate() must be avoided unless
they have a value of 1; if blendmode is used it must be Normal.
The opacity option in PDF_create_annotation() must be avoided.

security The userpassword, masterpassword, and permissions options in PDF_begin_document() must
be avoided.

PDF version /
compatibility

PDF/A is based on PDF 1.4. Operations that require PDF 1.5 or above (such as layers) must be avoid-
ed.

PDF import (PDI) Imported documents must conform to a PDF/A level which is compatible to the output docu-
ment, and must have been prepared according to a compatible output intent (see Table 9.13).

metadata All predefined XMP schemas (see PDFlib Reference) can be used. Other schemas must be included
using the PDF/A extension schema container schema.

Table 9.11 Additional requirements for PDF/A-1a compatibility

item PDFlib function and option equirements for PDF/A-1a compatibility

Tagged PDF All requirements for Tagged PDF must be met (see Section 9.6, »Tagged PDF«, page 216).
The following are strongly recommended:
> The Lang option should be specified properly in PDF_begin_item() for all content items which

differ from the default document language.
> Non-textual content items, e.g. images, should supply an alternate text description using the
Alt option of PDF_begin_item().

> Non-Unicode text, e.g. logos and symbols should have appropriate replacement text specified
in the ActualText option of PDF_begin_item() for the enclosing content item.

> Abbreviations and acronyms should have appropriate expansion text specified in the E option
of PDF_begin_item() for the enclosing content item.

annotations PDF_create_annotation(): a non-empty string must be supplied for the contents option

Table 9.10 Operations which must be avoided or are restricted to achieve PDF/A compatibility

item Prohibited or restricted PDFlib functions and options for PDF/A compatibility

212 Chapter 9: Generating various PDF Flavors

Output intents. The output condition defines the intended target device, which is im-
portant for consistent color rendering. Unlike PDF/X, which strictly requires an output
intent, PDF/A allows the specification of an output intent, but does not require it. An
output intent is only required if device-dependent colors are used in the document. The
output intent can be specified with an ICC profile. Output intents can be specified as
follows:

icc = p.load_iccprofile("sRGB", "usage=outputintent");

As an alternative to loading an ICC profile, the output intent can also be copied from an
imported PDF/A document using PDF_process_pdi() with the option action=copyoutput-
intent.

Creating PDF/A and PDF/X at the same time. A PDF/A document can at the same time
conform to PDF/X-1a:2003 or PDF/X-3:2003. In order to achieve such a combo file supply
appropriate values for the pdfa and pdfx options of PDF_begin_document(), e.g.:

ret = p.begin_document("combo.pdf", "pdfx=PDF/X-3:2003 pdfa=PDF/A-1b:2005");

The output intent must be the same for PDF/A and PDF/X, and must be specified as an
output device ICC profile. PDF/X standard output conditions can only be used in combi-
nation with the embedprofile option.

9.5.3 Importing PDF/A Documents with PDI
Special rules apply when pages from an existing PDF document will be imported into a
PDF/A-conforming output document (see Section 6.2, »Importing PDF Pages with PDI
(PDF Import Library)«, page 130, for details on PDI). All imported documents must con-
form to a PDF/A conformance level which is compatible to the current PDF/A mode ac-
cording to Table 9.13.

Note PDFlib does not validate PDF documents for PDF/A compliance, nor can it convert valid PDF/A
from arbitrary input PDFs. If you have a need for these features we recommend the product
pdfaPilot from callas software GmbH1.

If a certain PDF/A conformance level is configured in PDFlib and the imported docu-
ments adhere to a compatible level, the generated output is guaranteed to comply with
the selected PDF/A conformance level. Documents which are incompatible to the cur-
rent PDF/A level will be rejected in PDF_open_pdi_document().

Table 9.12 Additional operations must be avoided or are restricted for PDF/A-1a compatibility

item Prohibited or restricted PDFlib functions and options or PDF/A-1a compatibility

fonts The monospace option, unicodemap=false, and autocidfont=false in PDF_load_font() (and
other functions which accept these options) must be avoided.

PDF import (PDI) Imported documents must conform to a PDF/A level which is compatible to the output document
(see Table 9.13), and must have been prepared according to the same output intent.

1. See www.callassoftware.com

http://www.callassoftware.com

9.5 PDF/A for Archiving 213

If multiple PDF/A documents are imported, they must all have been prepared for a com-
patible output condition according to Table 9.14. The output intents in all imported doc-
uments must be identical or compatible; it is the user’s responsibility to make sure that
this condition is met.

While PDFlib can correct certain items, it is not intended to work as a full PDF/A valida-
tor or to enforce full PDF/A compatibility for imported documents. For example, PDFlib
will not embed fonts which are missing from imported PDF pages.

If you want to combine imported pages such that the resulting PDF output docu-
ment conforms to the same PDF/A conformance level and output condition as the in-
put document(s), you can query the PDF/A status of the imported PDF as follows:

pdfalevel = p.pcos_get_string(doc, "pdfa");

This statement will retrieve a string designating the PDF/A conformance level of the im-
ported document if it conforms to a PDF/A level, or none otherwise. The returned string
can be used to set the PDF/A conformance level of the output document appropriately,
using the pdfa option in PDF_begin_document().

Copying the PDF/A output intent from an imported document. In addition to query-
ing the PDF/A conformance level you can also copy the PDF/A output intent from an
imported document. Since PDF/A documents do not necessarily contain any output in-
tent (unlike PDF/X which requires an output intent) you must first use pCOS to check
for the existence of an output intent before attempting to copy it:

res = p.pcos_get_string(doc, "type:/Root/OutputIntents");
if (res.equals("array"))
{

ret = p.process_pdi(doc, -1, "action=copyoutputintent");
...

}

Table 9.13 Compatible PDF/A input levels for various PDF/A output levels

PDF/A level of the imported document

PDF/A output level PDF/A-1a:2005 PDF/A-1b:2005

PDF/A-1a:2005 – allowed

PDF/A-1b:2005 – allowed

Table 9.14 Output intent compatibility when importing PDF/A documents

output intent of imported document

output intent of generated document none Grayscale RGB CMYK

none yes – – –

Grayscale ICC profile yes yes1

1. Output intent of the imported document and output intent of the generated document must be identical

– –

RGB ICC profile yes – yes1 –

CMYK ICC profile yes – – yes1

214 Chapter 9: Generating various PDF Flavors

This can be used as an alternative to setting the output intent via PDF_load_iccprofile(),
and will copy the imported document’s output intent to the generated output docu-
ment. Copying the output intent works for imported PDF/A and PDF/X documents.

The output intent of the generated output document must be set exactly once, ei-
ther by copying an imported document’s output intent, or by setting it explicitly using
PDF_load_iccprofile() with the usage option set to outputintent. The output intent should
be set immediately after PDF_begin_document().

9.5.4 Color Strategies for creating PDF/A
The PDF/A requirements related to color handling may be confusing. The summary of
color strategies in Table 9.15 can be helpful for planning PDF/A applications. The easiest
approach which will work in many situations is to use the sRGB output intent profile,
since it supports most common color spaces except CMYK. In addition, sRGB is known to
PDFlib internally and thus doesn’t require any external profile data or configuration.
Color spaces may come from the following sources:

> Images loaded with PDF_load_image()
> Explicit color specifications using PDF_setcolor()
> Color specifications through option lists, e.g. in Textflows
> Interactive elements may specify border colors

In order to create black text output without the need for any output intent profile the
CIELab color space can be used. The Lab color value (0, 0, 0) specifies pure black in a de-
vice-independent manner, and is PDF/A-conforming without any output intent profile
(unlike DeviceGray, which requires an output intent profile). PDFlib will automatically
initialize the current color to black at the beginning of each page. Depending on wheth-
er or not an ICC output intent has been specified, it will use the DeviceGray or Lab color
space for selecting black. Use the following call to manually set Lab black color:

p.setcolor("fillstroke", "lab", 0, 0, 0, 0);

In addition to the color spaces listed in Table 9.15, spot colors can be used subject to the
corresponding alternate color space. Since PDFlib uses CIELab as the alternate color
space for the builtin HKS and PANTONE spot colors, these can always be used with PDF/
A. For custom spot colors the alternate color space must be chosen so that it is compati-
ble with the PDF/A output intent.

Table 9.15 PDF/A color strategies

output intent
color spaces which can be used in the document

CIELab1

1. LZW-compressed TIFF images with CIELab color will be converted to RGB.

ICCBased Grayscale2

2. Device color space without any ICC profile

RGB2 CMYK2

none yes yes – – –

Grayscale ICC profile yes yes yes – –

RGB ICC profile, e.g. sRGB yes yes yes yes –

CMYK ICC profile yes yes yes – yes

9.5 PDF/A for Archiving 215

Note More information on PDF/A and color space can be found in Technical Note 0001 of the PDF/A
Competence Center at www.pdfa.org.

9.5.5 PDF/A Validation

Acrobat 8. The Preflight tool in Acrobat 8 includes validation profiles for PDF/A-1a and
PDF/A-1b, and validates according to the final ISO standard (including the 2007 corri-
gendum). PDFlib GmbH regards Acrobat 8 Preflight as reference tool for PDF/A valida-
tion. According to our testing, PDFlib’s PDF/A output is fully compliant to PDF/A accord-
ing to Acrobat 8 Preflight.

Acrobat 7. The Preflight tool in Acrobat 7.07 and 7.08 includes a validation profile for
PDF/A-1b (Acrobat 7.0 supports only an earlier draft version of PDF/A, but not the final
ISO standard, and should therefore not be used for validation). However, there are a few
items where it differs from the PDF/A standard, and issues inappropriate warnings.
While we implemented workarounds for some of those problems, you cannot prevent
some inappropriate warnings from being issued when validating PDFlib-generated out-
put with the PDF/A-1b profile. We discussed these items with the developers of the Pre-
flight plugin and verified that the output created by PDFlib fully conforms to the PDF/A
standard despite those warnings:

> All PDFlib-generated documents raise a warning »PDF/A label missing« because Ac-
robat 7.07 and 7.08 expects (and creates) a wrong PDF/A namespace URI in the XMP
metadata containing the PDF/A signature.

> Combined PDF/A and PDF/X files raise a warning »OutputIntent for PDF/X missing«
in the Preflight test for PDF/X-3:2003 (but not in the Preflight test for PDF/A-1) even
though an output intent is present.

Other PDF/A validation tools. Several third-party products are available for PDF/A val-
idation. We identified a number of problems with some of those tools, and are actively
working with the respective software developers in order to obtain a common under-
standing of the PDF/A standard. Please contact us if you have questions regarding vali-
dating PDFlib’s PDF/A output with specific tools.

http://www.pdfa.org

216 Chapter 9: Generating various PDF Flavors

9.6 Tagged PDF
Tagged PDF is a certain kind of enhanced PDF which enables additional features in PDF
viewers, such as accessibility support, text reflow, reliable text extraction and conver-
sion to other document formats such as RTF or XML.

PDFlib supports Tagged PDF generation. However, Tagged PDF can only be created if
the client provides information about the document’s internal structure, and obeys cer-
tain rules when generating PDF output.

Note PDFlib doesn’t support custom structure element types (i.e. only standard structure types as de-
fined by PDF can be used), role maps, and structure element attributes.

9.6.1 Generating Tagged PDF with PDFlib

Required operations. Table 9.16 lists all operations required to generate Tagged PDF
output. Not calling one of the required functions while in Tagged PDF mode will trigger
an exception.

Unicode-compatible text output. When generating Tagged PDF, all text output must
use fonts which are Unicode-compatible as detailed in Section 5.4.4, »Unicode-compati-
ble Fonts«, page 111. This means that all used fonts must provide a mapping to Unicode.
Non Unicode-compatible fonts are only allowed if alternate text is provided for the con-
tent via the ActualText or Alt options in PDF_begin_item(). PDFlib will throw an exception
if text without proper Unicode mapping is used while generating Tagged PDF.

Note In some cases PDFlib will not be able to detect problems with wrongly encoded fonts, for exam-
ple symbol fonts encoded as text fonts. Also, due to historical problems PostScript fonts with
certain typographical variations (e.g., expert fonts) are likely to result in inaccessible output.

Page content ordering. The ordering of text, graphics, and image operators which de-
fine the contents of the page is referred to as the content stream ordering; the content
ordering defined by the logical structure tree is referred to as logical ordering. Tagged
PDF generation requires that the client obeys certain rules regarding content ordering.

The natural and recommended method is to sequentially generate all constituent
parts of a structure element, and then move on to the next element. In technical terms,
the structure tree should be created during a single depth-first traversal.

A different method which should be avoided is to output parts of the first element,
switch to parts of the next element, return to the first, etc. In this method the structure
tree is created in multiple traversals, where each traversal generates only parts of an el-
ement.

Table 9.16 Operations which must be applied for generating Tagged PDF

item PDFlib function and option requirements for Tagged PDF compatibility

Tagged PDF output The tagged option in PDF_begin_document() must be set to true.

document language The lang option in PDF_begin_document() must be set to specify the natural language of the
document. It must initially be set for the document as a whole, but can later be overridden for in-
dividual items on an arbitrary structure level.

structure
information

Structure information and artifacts must be identified as such. All content-generating API func-
tions should be enclosed by PDF_begin_item() / PDF_end_item() pairs.

9.6 Tagged PDF 217

Importing Pages with PDI. Pages from Tagged PDF documents or other PDF docu-
ments containing structure information cannot be imported in Tagged PDF mode since
the imported document structure would interfere with the generated structure.

Pages from unstructured documents can be imported, however. Note that they will
be treated »as is« by Acrobat’s accessibility features unless they are tagged with appro-
priate ActualText.

Artifacts. Graphic or text objects which are not part of the author’s original content
are called artifacts. Artifacts should be identified as such using the Artifact pseudo tag,
and classified according to one of the following categories:

> Pagination: features such as running heads and page numbers
> Layout: typographic or design elements such as rules and table shadings
> Page: production aids, such as trim marks and color bars.

Although artifact identification is not strictly required, it is strongly recommended to
aid text reflow and accessibility.

Inline items. PDF defines block-level structure elements (BLSE) and inline-level struc-
ture elements (ILSE) (see the PDFlib Reference for a precise definition). BLSEs may contain
other BLSEs or actual content, while ILSEs always directly contain content. In addition,
PDFlib makes the following distinction:

The regular vs. inline decision for ASpan items is under client control via the inline op-
tion of PDF_begin_item(). Forcing an accessibility span to be regular (inline=false) is rec-
ommended, for example, when a paragraph which is split across several pages contains
multiple languages. Alternatively, the item could be closed, and a new item started on
the next page. Inline items must be closed on the page where they have been opened.

Recommended operations. Table 9.18 lists all operations which are optional, but rec-
ommended when generating Tagged PDF output. These features are not strictly re-
quired, but will enhance the quality of the generated Tagged PDF output and are there-
fore recommended.

Table 9.17 Regular and inline items

regular items inline items

affected items all grouping elements and
BLSEs

all ILSEs and non-structural
tags (pseudo tags)

regular/inline status can be changed no only for ASpan items

part of the document’s structure tree yes no

can cross page boundaries yes no

can be interrupted by other items yes no

can be suspended and activated yes no

can be nested to an arbitrary depth yes only with other inline items

218 Chapter 9: Generating various PDF Flavors

Prohibited operations. Table 9.19 lists all operations which are prohibited when gener-
ating Tagged PDF output. Calling one of the prohibited functions while in Tagged PDF
mode will trigger an exception.

9.6.2 Creating Tagged PDF with direct Text Output and Textflows

Minimal Tagged PDF sample. The following sample code creates a very simplistic
Tagged PDF document. Its structure tree contains only a single P element. The code uses
the autospace feature to automatically generate space characters between fragments of
text:

if (p.begin_document("hello-tagged.pdf", "tagged=true lang=en") == -1)
throw new Exception("Error: " + p.get_errmsg());

/* automatically create spaces between chunks of text */
p.set_parameter("autospace", "true");

/* open the first structure element as a child of the document structure root (=0) */
id = p.begin_item("P", "Title={Simple Paragraph}");

p.begin_page_ext(0, 0, "width=a4.width height=a4.height");
font = p.load_font("Helvetica-Bold", "unicode", "");

p.setfont(font, 24);
p.show_xy("Hello, Tagged PDF!", 50, 700);
p.continue_text("This PDF has a very simple");
p.continue_text("document structure.");

Table 9.18 Operations which are recommended for generating Tagged PDF

item Recommended PDFlib functions and options for Tagged PDF compatibility

hyphenation Word breaks (separating words in two parts at the end of a line) should be presented using a soft
hyphen character (U+00A0) as opposed to a hard hyphen (U+002D)

word boundaries Words should be separated by space characters (U+0020) even if this would not strictly be re-
quired for positioning. The autospace parameter can be used for automatically generating space
characters after each call to one of the show functions.

artifacts In order to distinguish real content from page artifacts, artifacts should be identified as such us-
ing PDF_begin_item() with tag=Artifact.

Type 3 font
properties

The familyname, stretch, and weight options of PDF_begin_font() should be supplied with rea-
sonable values for all Type 3 fonts used in a Tagged PDF document.

interactive elements Interactive elements, e.g. links, should be included in the document structure and made accessible
if required, e.g. by supplying alternate text. The tab order for interactive elements can be speci-
fied with the taborder option of PDF_begin/end_document() (this is not necessary if the interac-
tive elements are properly included in the document structure).

Table 9.19 Operations which must be avoided when generating Tagged PDF

item PDFlib operations to be avoided for Tagged PDF compatibility

non-Unicode
compatible fonts

Fonts which are not Unicode-compatible according to Section 5.4.4, »Unicode-compatible Fonts«,
page 111, must be avoided.

PDF import Pages from PDF documents which contain structure information (in particular: Tagged PDF docu-
ments) must not be imported.

9.6 Tagged PDF 219

p.end_page_ext("");
p.end_item(id);
p.end_document("");

Generating Tagged PDF with Textflow. The Textflow feature (see Section 7.2, »Multi-
Line Textflows«, page 140) offers powerful features for text formatting. Since individual
text fragments are no longer under client control, but will be formatted automatically
by PDFlib, special care must be taken when generating Tagged PDF with textflows:

> Textflows can not contain individual structure elements, but the complete contents
of a single Textflow fitbox can be contained in a structure element.

> All parts of a Textflow (all calls to PDF_fit_textflow() with a specific Textflow handle)
should be contained in a single structure element.

> Since the parts of a Textflow could be spread over several pages which could contain
other structure items, attention should be paid to choosing the proper parent item
(rather than using a parent parameter of -1, which may point to the wrong parent el-
ement).

> If you use the matchbox feature for creating links or other annotations in a Textflow
it is difficult to maintain control over the annotation’s position in the structure tree.

9.6.3 Activating Items for complex Layouts
In order to facilitate the creation of structure information with complex non-linear
page layouts PDFlib supports a feature called item activation. It can be used to activate a
previously created structure element in situations where the developer must keep track
of multiple structure branches, where each branch could span one or more pages. Typi-
cal situations which will benefit from this technique are the following:

> multiple columns on a page
> insertions which interrupt the main text, such as summaries or inserts
> tables and illustrations which are placed between columns.

The activation feature allows an improved method of generating page content in such
situations by switching back and forth between logical branches. This is much more ef-
ficient than completing each branch one after the other. Let’s illustrate the activation
feature using the page layout shown in Figure 9.1. It contains two main text columns,
interrupted by a table and an inserted annotation in a box (with dark background) as
well as header and footer.

Generating page contents in logical order. From the logical structure point of view the
page content should be created in the following order: left column, right column (on the
lower right part of the page), table, insert, header and footer. The following pseudo code
implements this ordering:

/* create page layout in logical structure order */

id_art = p.begin_item("Art", "Title=Article");

id_sect1 = p.begin_item("Sect", "Title={First Section}");
/* 1 create top part of left column */
p.set_text_pos(x1_left, y1_left_top);
...
/* 2 create bottom part of left column */

220 Chapter 9: Generating various PDF Flavors

p.set_text_pos(x1_left, y1_left_bottom);
...
/* 3 create top part of right column */
p.set_text_pos(x1_right, y1_right_top);
...

p.end_item(id_sect1);

id_sect2 = p.begin_item("Sect", "Title={Second Section}");
/* 4 create bottom part of right column */
p.set_text_pos(x2_right, y2_right);
...
/* second section may be continued on next page(s) */

p.end_item(id_sect2);

String optlist = "Title=Table parent=" + id_art;
id_table = p.begin_item("Table", optlist);

/* 5 create table structure and content */
p.set_text_pos(x_start_table, y_start_table);
...

p.end_item(id_table);

optlist = "Title=Insert parent=" + id_art;
id_insert = p.begin_item("P", optlist);

/* 6 create insert structure and content */
p.set_text_pos(x_start_table, y_start_table);
...

p.end_item(id_insert);

id_artifact = p.begin_item("Artifact", "");
/* 7+8 create header and footer */
p.set_text_pos(x_header, y_header);
...
p.set_text_pos(x_footer, y_footer);
...

p.end_item(id_artifact);

/* article may be continued on next page(s) */
...
p.end_item(id_art);

9.6 Tagged PDF 221

Generating page contents in visual order. The »logical order« approach forces the cre-
ator to construct the page contents in logical order even if it might be easier to create it
in visual order: header, left column upper part, table, left column lower part, insert,
right column, footer. Using PDF_activate_item() this ordering can be implemented as
follows:

/* create page layout in visual order */

id_header = p.begin_item("Artifact", "");
/* 1 create header */
p.set_text_pos(x_header, y_header);
...

p.end_item(id_header);

id_art = p.begin_item("Art", "Title=Article");

id_sect1 = p.begin_item("Sect", "Title = {First Section}");
/* 2 create top part of left column */
p.set_text_pos(x1_left, y1_left_top);
...

String optlist = "Title=Table parent=" + id_art;
id_table = p.begin_item("Table", optlist);

/* 3 create table structure and content */
p.set_text_pos(x_start_table, y_start_table);
...

p.end_item(id_table);

/* continue with first section */
p.activate_item(id_sect1);

/* 4 create bottom part of left column */
p.set_text_pos(x1_left, y1_left_bottom);
...

Fig. 9.1
Creating a complex

page layout in logical
structure order (left)

and in visual order
(right). The right vari-
ant uses item activa-
tion for the first sec-

tion before continuing
fragments 4 and 6.

1

2 3
4

5
6

7

2

4 6
7

3
5

1

88

222 Chapter 9: Generating various PDF Flavors

optlist = "Title=Insert parent=" + id_art;
id_insert = p.begin_item("P", optlist);

/* 5 create insert structure and content */
p.set_text_pos(x_start_table, y_start_table);
...

p.end_item(id_insert);

/* still more contents for the first section */
p.activate_item(id_sect1);

/* 6 create top part of right column */
p.set_text_pos(x1_right, y1_right_top);
...

p.end_item(id_sect1);

id_sect2 = p.begin_item("Sect", "Title={Second Section}");
/* 7 create bottom part of right column */
p.set_text_pos(x2_right, y2_right);
...
/* second section may be continued on next page(s) */

p.end_item(id_sect2);

id_footer = p.begin_item("Artifact", "");
/* 8 create footer */
p.set_text_pos(x_footer, y_footer);
...

p.end_item(id_footer);

/* article may be continued on next page(s) */
...
p.end_item(id_art);

With this ordering of structure elements the main text (which spans one and a half col-
umns) is interrupted twice for the table and the insert. Therefore it must also be activat-
ed twice using PDF_activate_item().

The same technique can be applied if the content spans multiple pages. For example,
the header or other inserts could be created first, and then the main page content ele-
ment is activated again.

9.6.4 Using Tagged PDF in Acrobat
This section mentions observations which we made while testing Tagged PDF output in
Adobe Acrobat. Unless mentioned otherwise the observations below apply to Acrobat 6
and 7. They are mostly related to bugs or inconsistent behavior in Acrobat. A work-
around is provided in cases where we found one.

Acrobat’s Reflow Feature. Acrobat allows Tagged PDF documents to reflow, i.e. to ad-
just the page contents to the current window size. While testing Tagged PDF we made
several observations regarding the reflow feature in Acrobat:

> The order of content on the page should follow the desired reflow order.
> Symbol (non-Unicode fonts) can cause Acrobat’s reflow feature to crash. For this rea-

son it is recommended to put the text in a Figure element.
> BLSEs may contain both structure children and direct content elements. In order for

the reflow feature (as well as Accessibility checker and Read Aloud) to work it is rec-
ommended to put the direct elements before the first child elements.

9.6 Tagged PDF 223

> The BBox option should be provided for tables and illustrations. The BBox should be
exact; however, for tables only the lower left corner has to be set exactly. As an alter-
native to supplying a BBox entry, graphics could also be created within a BLSE tag,
such as P, H, etc. However, vector graphics will not be displayed when Reflow is active.
If the client does not provide the BBox option (and relies on automatic BBox genera-
tion instead) all table graphics, such as cell borders, should be drawn outside the ta-
ble element.

> Table elements should only contain table-related elements (TR, TD, TH, THead, TBody,
etc.) as child elements, but not any others. For example, using a Caption element
within a table could result in reflow problems, although it would be correct Tagged
PDF.

> Content covered by the Private tag will not be exported to other formats. However,
they are subject to reflow and Read Aloud, and illustrations within the Private tag
must therefore have alternate text.

> Reflow seems to have problems with PDF documents generated with the topdown
option.

> Structure items with mixed types of children (i.e., both page content sequences and
non-inline structure elements) should be avoided since otherwise Reflow could fail.

> If an activated item contains only content, but no structure children, Reflow could
fail, especially if the item is activated on another page. This problem can be avoided
by wrapping the activated item with a non-inline Span tag.

> Acrobat 6 can reflow pages with form fields, but will omit the form fields. Acrobat 7
and 8 cannot reflow pages containing form fields, and will display a warning in this
case.

Acrobat’s Accessibility Checker. Acrobat’s accessibility checker can be used to deter-
mine the suitability of Tagged PDF documents for consumption with assisting technol-
ogy such as a screenreader. Some hints:

> In order to make form fields accessible, use the tooltip option of PDF_create_field()
and PDF_create_fieldgroup().

> If the Lbl tag is set within the TOCI tag (as actually described in Adobe’s PDF reference)
the Accessibility Checker in Acrobat 7 will warn that the Lbl tag is not set within an LI
tag. This has been fixed in Acrobat 8.

> Acrobat 6: Elements containing an imported image should use the Alt property. The
ActualText property could cause the accessibility checker to crash. Another reason to
prefer Alt over ActualText is that the Read Aloud feature will catch the real text.

> Acrobat 6: If a Form tag covering an imported PDF page is the very first item on the
page it can cause problems with the accessibility checker.

> If a page contains annotations, Acrobat 7 and 8 report that »tab order may be incon-
sistent with the structure order«.

Export to other formats with Acrobat. Tagged PDF can significantly improve the re-
sult of saving PDF documents in formats such as XML or RTF with Acrobat.

> If an imported PDF page has the Form tag, the text provided with the ActualText op-
tion will be exported to other formats in Acrobat, while the text provided with the
Alt tag will be ignored. However, the Read Aloud feature works for both options.

> The content of a NonStruct tag will not be exported to HTML 4.01 CSS 1.0 (but it will be
used for HTML 3.2 export).

224 Chapter 9: Generating various PDF Flavors

> Alternate text should be supplied for ILSEs (such as Code, Quote, or Reference). If the
Alt option is used, Read Aloud will read the provided text, but the real content will be
exported to other formats. If the ActualText option is used, the provided text will be
used both for reading and exporting.

> Acrobat 6: Elements containing an imported image should use the Alt property in-
stead of ActualText so that the Export feature will catch the real text.

Acrobat’s Read Aloud Feature. Tagged PDF will enhance Acrobat’s capability to read
text aloud.

> When supplying Alt or ActualText it is useful to include a space character at the begin-
ning. This allows the Read Aloud feature to distinguish the text from the preceding
sentence. For the same reason, including a ’.’ character at the end may also be useful.
Otherwise Read Aloud will try to read the last word of the preceding sentence in
combination with the first word of the alternate text.

10.1 Installing the PDFlib Block Plugin 225

10 Variable Data and Blocks
PDFlib supports a template-driven PDF workflow for variable data processing. Using the
concept of blocks, imported pages can be populated with variable amounts of single- or
multi-line text, images, or PDF graphics which can be pulled from an external source.
This can be used to easily implement applications which require customized PDF docu-
ments, for example:

> mail merge
> flexible direct mailings
> transactional and statement processing
> business card personalization

Note Block processing requires the PDFlib Personalization Server (PPS). Although PPS is contained in
all commercial PDFlib packages, you must purchase a license key for PPS; a PDFlib or
PDFlib+PDI license key is not sufficient. The PDFlib Block plugin for Adobe Acrobat is required
for creating blocks in PDF templates interactively.

10.1 Installing the PDFlib Block Plugin
The Block plugin and its sibling, the PDF form field conversion plugin, work with Acro-
bat 5, Acrobat 6/7/8 Standard and Professional on Windows and Mac. The plugins don’t
work with Acrobat Elements or any version of Acrobat Reader/Adobe Reader.

Note The plugins contain multiple language versions of the user interface, and will automatically
use the same interface language as the Acrobat application if possible. If the plugin does not
support the native Acrobat language the English user interface will be used instead.

Installing the PDFlib Block plugins for Acrobat 5/6/7/8 on Windows. To install the
PDFlib Block plugin and the PDF form field conversion plugin in Acrobat 5, 6, 7, or 8, the
plugin files must be copied to a subdirectory of the Acrobat plugin folder. This is done
automatically by the plugin installer, but can also be done manually. The plugin files
are called Block.api and AcroFormConversion.api. A typical location of the plugin folder
looks as follows:

C:\Program Files\Adobe\Acrobat 7.0\Acrobat\plug_ins\PDFlib Block Plugin

Installing the PDFlib Block plugins for Acrobat 6/7/8 on the Mac. With Acrobat 6/7/8
the plugin folder will not be visible in the Finder. Instead of dragging the plugin files to
the plugin folder use the following steps (make sure that Acrobat is not running):

> Extract the plugin files to a folder by double-clicking the disk image.
> Locate the Acrobat application icon in the Finder. It is usually located in a folder

which has a name similar to the following:

/Applications/Adobe Acrobat 7.0 Professional

> Single-click on the Acrobat application icon and select File, Get Info.
> In the window that pops up click the triangle next to Plug-ins.
> Click Add... and select the PDFlib Block Plugin Acro X folder (where X designates your

Acrobat version) from the folder which has been created in the first step. Note that

226 Chapter 10: Variable Data and Blocks

after installation this folder will not immediately show up in the list of plugins, but
only when you open the info window next time.

Installing the PDFlib Block plugins for Acrobat 5 on the Mac. To install the plugins for
Acrobat 5, start by double-clicking the disk image. Drag the folder PDFlib Block Plugin
Acro 5-6 to the Acrobat 5 plugin folder. A typical plugin folder name is as follows:

/Applications/Adobe Acrobat 5.0/Plug-Ins

Trouble-shooting. If the PDFlib Block plugin doesn’t seem to work check the following:
> Make sure that in Edit, Preferences, [General...], General (Acrobat 8)/Startup (Acrobat

6/7)/Options (Acrobat 5) the box Use only certified plug-ins is unchecked. The plugins
will not be loaded if Acrobat is running in Certified Mode.

> Some PDF forms created with Adobe Designer may prevent the Block plugin as well
as other Acrobat plugins from working properly since they interfere with PDF’s in-
ternal security model. For this reason we suggest to avoid Designer’s static PDF
forms, and only use dynamic PDF forms as input for the Block plugin.

10.2 Overview of the PDFlib Block Concept 227

10.2 Overview of the PDFlib Block Concept
10.2.1 Complete Separation of Document Design and Program Code

PDFlib data blocks make it easy to place variable text, images, or graphics on imported
pages. In contrast to simple PDF pages, pages containing data blocks intrinsically carry
information about the required processing which will be performed later on the server
side. The PDFlib block concept completely separates the following tasks:

> A designer creates the page layout, and specifies the location of variable text and im-
age elements along with relevant properties such as font size, color, or image scaling.
After creating the layout as a PDF document, the designer uses the PDFlib Block plug-
in for Acrobat to specify variable data blocks and their associated properties.

> A programmer writes code to connect the information contained in PDFlib blocks on
imported PDF pages with dynamic information, e.g., database fields. The program-
mer doesn’t need to know any details about a block (whether it contains a name or a
ZIP code, the exact location on the page, its formatting, etc.) and is therefore inde-
pendent from any layout changes. PDFlib will take care of all block-related details
based on the block properties found in the file.

In other words, the code written by the programmer is »data-blind« – it is generic and
does not depend on the particulars of any block. For example, the designer may decide
to use the first name of the addressee in a mailing instead of the last name. The generic
block handling code doesn’t need to be changed, and will generate correct output once
the designer changed the block properties with the Acrobat plugin to use the first name
instead of the last name.

Example: adding variable text to a template. Adding dynamic text to a PDF template
is a very common task. The following code fragment will open a page in an input PDF
document (the template), place it on the output page, and fill some variable text into a
text block called firstname:

doc = p.open_pdi_document(filename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

page = p.open_pdi_page(doc, pageno, "");
if (page == -1)

throw new Exception("Error: " + p.get_errmsg());

p.begin_page_ext(width, height, "");
p.fit_pdi_page(page, 0.0, 0.0, "");
p.fill_textblock(page, "firstname", "Serge", "encoding=winansi");
p.close_pdi_page(page);
p.end_page_ext("");
p.close_pdi_document(doc);

Controlling the display order of imported page and blocks. The imported page must
have been placed on the output page before using any of the block filling functions.
This means that the original page will usually be placed below the block contents. How-
ever, in some situations it may be desirable to place the original page on top of the filled
blocks. This can be achieved with the blind option of PDF_fit_pdi_page():

228 Chapter 10: Variable Data and Blocks

/* Place the page in blind mode to prepare the blocks, without the page being visible */
p.fit_pdi_page(page, 0.0, 0.0, "blind");
p.fill_textblock(page, "firstname", "Serge", "encoding=winansi");
/* ... fill more blocks ... */

/* Place the page again, this time visible */
p.fit_pdi_page(page, 0.0, 0.0, "");

10.2.2 Block Properties
The behavior of blocks can be controlled with block properties. The properties are as-
signed to a block with the PDFlib Block plugin for Acrobat.

Standard block properties. PDFlib blocks are defined as rectangles on the page which
are assigned a name, a type, and an open set of properties which will later be processed
on the server side. The name is an arbitrary string which identifies the block, such as
firstname, lastname, or zipcode. PDFlib supports the following kinds of blocks:

> Type Text means that the block will hold one or more lines of textual data. Multi-line
text will be formatted with the Textflow feature. Textflow blocks can be linked so
that one block holds the overflow text of the previous block (see Section 10.2.3, »Link-
ing multiple Textflow Blocks«, page 229).

> Type Image means that the block will hold a raster image. This is similar to importing
a TIFF or JPEG file in a DTP application.

> Type PDF means that the block will hold arbitrary PDF graphics imported from a page
in another PDF document. This is similar to importing an EPS graphic in a DTP appli-
cation.

A block may carry a number of standard properties depending on its type. For example,
a text block may specify the font and size of the text, an image or PDF block may specify
the scaling factor or rotation. For each type of block the PDFlib API offers a dedicated
function for processing the block. These functions search an imported PDF page for a
block by its name, analyze its properties, and place some client-supplied data (text, ras-
ter image, or PDF page) on the new page according to the corresponding block proper-
ties.

Custom block properties. Standard block properties make it possible to quickly imple-
ment variable data processing applications, but these are limited to the set of properties
which are internally known to PDFlib and can automatically be processed. In order to
provide more flexibility, the designer may also assign custom properties to a block.
These can be used to extend the block concept in order to match the requirements of
the most demanding variable data processing applications.

There are no rules for custom properties since PDFlib will not process custom prop-
erties in any way, except making them available to the client. The client code can exam-
ine the custom properties and act in whatever way it deems appropriate. Based on some
custom property of a block the code may make layout-related or data-gathering deci-
sions. For example, a custom property for a scientific application could specify the
number of digits for numerical output, or a database field name may be defined as a
custom block property for retrieving the data corresponding to this block.

10.2 Overview of the PDFlib Block Concept 229

Overriding block properties. In certain situations the programmer would like to use
only some of the properties provided in a block definition, but override other properties
with custom values. This can be useful in various situations:

> The scaling factor for an image or PDF page will be calculated instead of taken from
the block definition.

> Change the block coordinates programmatically, for example when generating an
invoice with a variable number of data items.

> Individual spot color names could be supplied in order to match the requirements of
individual customers in a print shop application.

Property overrides can be achieved by supplying property names and the correspond-
ing values in the option list of all PDF_fill_*block() functions as follows:

p.fill_textblock(page, "firstname", "Serge", "fontsize=12");

This will override the block’s internal fontsize property with the supplied value 12. Al-
most all names of general properties can be used as options, as well as those specific to a
particular block type. For example, the underline option is only allowed for PDF_fill_
textblock(), while the scale option is allowed for both PDF_fill_imageblock() and PDF_fill_
pdfblock() since scale is a valid property for both image and PDF blocks.

Property overrides apply only to the respective function calls; they will not be stored
in the block definition.

Coordinate systems. The coordinates describing a block reference the PDF default co-
ordinate system. When the page containing the block is placed on the output page, sev-
eral positioning and scaling options may be supplied to PDF_fit_pdi_page(). These pa-
rameters are taken into account when the block is being processed. This makes it
possible to place a template page on the output page multiply, every time filling its
blocks with data. For example, a business card template may be placed four times on an
imposition sheet. The block functions will take care of the coordinate system transfor-
mations, and correctly place the text for all blocks in all invocations of the page. The
only requirement is that the client must place the page and then process all blocks on
the placed page. Then the page can be placed again at a different location on the output
page, followed by more block processing operations referring to the new position, and
so on.

Note The Block plugin will display the block coordinates differently from what is stored in the PDF
file. The plugin uses Acrobat’s convention which has the coordinate origin in the upper left cor-
ner of the page, while the internal coordinates (those stored in the block) use PDF’s convention
of having the origin at the lower left corner of the page.

10.2.3 Linking multiple Textflow Blocks
Textflow blocks can be linked so that one block holds the overflow text from a previous
block. For example, if you have long variable text which may need to be continued on
another page you can link two blocks and fill the text which is still available after filling
the first block into the second block.

PPS internally creates a Textflow from the text provided to PDF_fill_textblock() and
the block properties. For unlinked blocks this Textflow will be placed in the block and
the corresponding Textflow handle will be deleted at the end of the call; overflow text
will be lost.

230 Chapter 10: Variable Data and Blocks

With linked Textflow blocks the overflow text which remains after filling the first
block can be filled into the next block. The remainder of the Textflow will be used as
block contents instead of creating a new Textflow. Linking Textflow blocks works as fol-
lows:

> In the first call to PDF_fill_textblock() within a chain of linked blocks a value of -1 (in
PHP: 0) must be supplied for the textflowhandle option. The Textflow handle created
internally will be returned by PDF_fill_textblock(), and must be stored by the user.

> In the next call the Textflow handle returned in the previous step can be supplied to
the textflowhandle option (the text supplied in the text parameter will be ignored in
this case, and should be empty). The block will be filled with the remainder of the
Textflow.

> This process can be repeated with more Textflow blocks.
> The returned Textflow handle can be supplied to PDF_info_textflow() in order to de-

termine the results of block filling, e.g. the end condition or the end position of the
text.

Note that the fitmethod property should be set to clip (this is the default anyway if text-
flowhandle is supplied). The basic code skeleton for linking Textflow blocks looks as fol-
lows:

p.fit_pdi_page(page, 0.0, 0.0, "");
tf = -1;

for (i = 0; i < blockcount; i++)
{

String optlist = "encoding=winansi textflowhandle=" + tf;
tf = p.fill_textblock(page, blocknames[i], text, optlist);
text = null;

if (tf == -1)
break;

/* check result of most recent call to fit_textflow() */
reason = (int) p.info_textflow(tf, "returnreason");
result = p.get_parameter("string", (float) reason);

/* end loop if all text was placed */
if (result.equals("_stop"))
{

p.delete_textflow(tf);
break;

}
}

10.2.4 Why not use PDF Form Fields?
Experienced Acrobat users may ask why we implemented a new block concept for
PDFlib, instead of relying on the established form field scheme available in PDF. The pri-
mary distinction is that PDF form fields are optimized for interactive filling, while
PDFlib blocks are targeted at automated filling. Applications which need both interac-
tive and automated filling can easily achieve this by using a feature which automatical-
ly converts form fields to blocks (see Section 10.3.4, »Converting PDF Form Fields to
PDFlib Blocks«, page 237).

10.2 Overview of the PDFlib Block Concept 231

Although there are many parallels between both concepts, PDFlib blocks offer sever-
al advantages over PDF form fields as detailed in Table 10.1.

Table 10.1 Comparison of PDF form fields and PDFlib blocks

feature PDF form fields PDFlib blocks

design objective for interactive use for automated filling

typographic features (beyond
choice of font and font size)

– kerning, word and character spacing, underline/
overline/strikeout

font control font embedding font embedding and subsetting, encoding

text formatting controls left-, center-, right-aligned left-, center-, right-aligned, justified; various for-
matting algorithms and controls; inline options
can be used to control the appearance of text

change font or other text attributes
within text

– yes

merged result is integral part of PDF
page description

– yes

users can edit merged field contents yes no

extensible set of properties – yes (custom block properties)

use image files for filling – BMP, CCITT, GIF, PNG, JPEG, JPEG 2000, TIFF

color support RGB grayscale, RGB, CMYK, Lab, spot color (HKS and Pan-
tone spot colors integrated in the Block plugin)

PDF/X- and PDF/A-conforming PDF/X: no; PDF/A: restricted yes (both template with blocks and merged results)

graphics and text properties can be
overridden upon filling

– yes

Text blocks can be linked – yes

232 Chapter 10: Variable Data and Blocks

10.3 Creating PDFlib Blocks
10.3.1 Creating Blocks interactively with the PDFlib Block Plugin

Activating the PDFlib Block tool. The PDFlib Block plugin for creating PDFlib blocks is
similar to the form tool in Acrobat. All blocks on the page will be visible when the block
tool is active. When another Acrobat tool is selected the blocks will be hidden, but they
are still present. You can activate the block tool in several ways:

> by clicking the block icon in Acrobat’s Advanced Editing toolbar (in Acrobat 5:
Editing toolbar);

> via the menu item PDFlib Blocks, PDFlib Block Tool;
> by using the keyboard shortcut P; make sure to enable Edit, Preferences, [General...],

General, Use single key accelerators to access tools, which is disabled by default (not re-
quired in Acrobat 5)

Creating and modifying blocks. Once you activated the block tool you can simply drag
the cross-hair pointer to create a block at the desired position on the page and the de-
sired size. Blocks will always be rectangular with edges parallel to the page edges. When
you create a new block the block properties dialog appears where you can edit various
properties of the block (see Section 10.3.2, »Editing Block Properties«, page 234). The
block tool will automatically create a block name which can be changed in the proper-
ties dialog. Block names must be unique within a page. You can change the block type in
the top area to one of Text, Image, or PDF. The General and Custom tabs will always be
available, while only one of the Text, Image, and PDF tabs will be active at a time depend-
ing on the chosen block type. The Textflow tab will only be present for blocks of type text
if the textflow property is true. Another tab labelled Tabs (tabulator positions) will only
be available if the hortabmethod property in the Textflow tab has been set to ruler.

Note After you added blocks or made changes to existing blocks in a PDF, use Acrobat’s »Save as...«
Command (as opposed to »Save«) to achieve smaller file sizes.

Note When using the Acrobat plugin Enfocus PitStop to edit documents which contain PDFlib blocks
you may see the message »This document contains PieceInfo from PDFlib. Press OK to continue
editing or Cancel to abort.« This message can be ignored; it is safe to click OK in this situation.

Selecting blocks. Several block operations, such as copying or moving, work with se-
lected blocks. You can select one or more blocks with the block tool as follows:

> To select a single block simply click on it with the mouse.
> Hold down the Shift key while clicking on another block to extend the selection.
> Press Ctrl-A (on Windows) or Cmd-A (on the Mac) or Edit, Select All to select all blocks

on a page.

The context menu. When one or more blocks are selected you can open the context
menu to quickly access block-related functions (which are also available in the PDFlib
Blocks menu). To open the context menu, click on the selected block(s) with the right
mouse button on Windows, or Ctrl-click the block(s) on the Mac.

For example, to delete a block, select it with the block tool and press the Delete key, or
use Edit, Delete in the context menu.

10.3 Creating PDFlib Blocks 233

Fine-tuning block size and position. Using the block tool you can move one or more
selected blocks to a different position. Hold down the Shift key while dragging a block to
restrain the positioning to horizontal and vertical movements. This may be useful for
exactly aligning blocks. When the pointer is located near a block corner, the pointer will
change to an arrow and you can resize the block. To adjust the position or size of multi-
ple blocks, select two or more blocks and use the Align, Center, Distribute, or Size com-
mands from the PDFlib Blocks menu or the context menu. The position of one or more
blocks can also be changed by using the arrow keys.

Alternatively, you can enter numerical block coordinates in the properties dialog.
The origin of the coordinate system is in the upper left corner of the page. The coordi-
nates will be displayed in the unit which is currently selected in Acrobat. To change the
display units proceed as follows:

> In Acrobat 6/7 go to Edit, Preferences, [General...], Units & Guides [or Unit, Page Units in
Acrobat 7 Standard] and choose one of Points, Inches, Millimeters, Picas, Centime-
ters. You can also go to View, Navigation Tabs, Info and select a unit from the Options
menu.

> In Acrobat 5 go to Edit, Preferences, General..., Display, Page Units and choose one of
Points, Inches, Millimeters. You can also go to Window, Info and select a unit from the
Info menu.

Note that the chosen unit will only affect the Rect property, but not any other numerical
properties.

Creating blocks by selecting an image or graphic. As an alternative to manually drag-
ging block rectangles you can use existing page contents to define the block size. First,
make sure that the menu item PDFlib Blocks, Click Object to define Block is enabled. Now
you can use the block tool to click on an image on the page in order to create a block
with the size of the image. You can also click on other graphical objects, and the block
tool will try to select the surrounding graphic (e.g., a logo). The Click Object feature is in-
tended as an aid for defining blocks. If you want to reposition or resize the block you can

Fig. 10.1
Editing block properties: the Textflow

panel is only visible if textflow=true;
the Tabs panel is only visible if

hortabmethod=ruler

234 Chapter 10: Variable Data and Blocks

do so afterwards without any restriction. The block will not be locked to the image or
graphics object which was used as a positioning and sizing aid.

The Click Object feature will try to recognize which vector graphics and images form a
logical element on the page. When some page content is clicked, its bounding box (the
surrounding rectangle) will be selected unless the object is white or very large. In the
next step other objects which are partially contained in the detected rectangle will be
added to the selected area, and so on. The final area will be used as the basis for the gen-
erated block rectangle. The end result is that the Click Object feature will try to select
complete graphics, and not only individual lines.

The Click Object feature isn’t perfect: it will not always select what you want, depend-
ing on the nature of the page content. Keep in mind that this feature is only intended as
a positioning aid for quickly creating block rectangles.

Automatically detecting font properties. The PDFlib Block plugin can analyze the un-
derlying font which is present at the location where a block is positioned, and can auto-
matically fill in the corresponding properties of the block:

fontname, fontsize, fillcolor, charspacing, horizscaling, wordspacing,
textrendering, textrise

Since automatic detection of font properties can result in undesired behavior when the
background shall be ignored, it can be activated or deactivated using PDFlib Blocks, Detect
underlying font and color. By default this feature is turned off.

Locking blocks. Blocks can be locked to protect them against accidentally moving, re-
sizing, or deleting them. With the block tool active, select the block and choose Lock
from its context menu. While a block is locked you cannot move, resize, or delete it, nor
display its properties dialog.

Using Blocks with PDF/X. Unlike PDF form fields, PDFlib blocks conform to PDF/X.
Both the input document containing blocks as well as the generated output PDF can be
made PDF/X-conforming. However, in preparing block files for a PDF/X workflow you
may run into the following problem:

> PDF/X-1:2001, PDF/X-1a:2001, and PDF/X-3:2002 are based on Acrobat 4/PDF 1.3, and
do not support Acrobat 5 files;

> The PDFlib Block plugin requires Acrobat 5 or above.

You can solve this problem by using Acrobat to convert the files to the required PDF ver-
sion. See »Changing the PDF version of a document«, page 198, for details.

10.3.2 Editing Block Properties
When you create a new block, double-click an existing one, or choose Properties from a
block’s context menu, the properties dialog will appear where you can edit all settings
related to the selected block (see Figure 10.1). As detailed in Section 10.4, »Standard Prop-
erties for Automated Processing«, page 240, there are several types of properties:

> Name, type, description, and the properties in the General tab apply to all blocks.
> Properties in the Text, Image, and PDF tabs apply only to the respective block type.

Only the tab corresponding to the block’s type will be active, while the other tabs are
inactive.

10.3 Creating PDFlib Blocks 235

> If a block of type Text has the textflow property set to true, another tab called Textflow
will appear with Textflow-related settings.

> If a block of type Text has the textflow property set to true, and the hortabmethod
property in the Textflow tab is set to ruler, still another panel called Tabs will appear
where you can edit tabulator settings.

> Properties in the Custom tab can be defined by the user, and apply to any block type.

To change a property’s value enter the desired number or string in the property’s input
area (e.g. linewidth), choose a value from a drop-down list (e.g. fontname, fitmethod), or
select a color value or file name by clicking the »...« button at the right-hand side of the
dialog (e.g. backgroundcolor). For the fontname property you can either choose from the
list of fonts installed on the system, or type a custom font name. Regardless of the
method for entering a font name, the font must be available on the system where the
blocks will be filled with the PDFlib Personalization Server.

When you are done editing properties, click OK to close the properties dialog. The
properties just defined will be stored in the PDF file as part of the block definition.

Stacked blocks. Overlapping blocks can be difficult to select since clicking an area with
the mouse will always select the topmost block. In such a situation the Choose Block en-
try in the context menu can be used to select one of the blocks by name. As soon as a
block has been selected the next action (e.g. double-click) within its area will not affect
other blocks, but only the selected one. This way block properties can easily be edited
even for blocks which are partially or completely covered by other blocks.

Using and restoring default properties. In order to save some amount of typing and
clicking, the block tool will remember the property values which have been entered into
the previous block’s properties dialog. These values will be reused when you create a
new block. Of course you can override these values with different ones at any time.

Pressing the Reset All button in the properties dialog will reset most block properties
to their respective defaults. However, the following items will remain unmodified:

> the Name, Type, Rect, and Description properties
> all custom properties.

Shared properties. By holding the Shift key and using the block tool to select multiple
blocks you can select an arbitrary number of blocks on a page. Double-clicking one of
the selected blocks or pressing the Enter key will display the properties dialog which
now applies to all selected blocks. However, since not all properties can be shared
among multiple blocks, only a subset of all properties will be available for editing. Sec-
tion 10.4, »Standard Properties for Automated Processing«, page 240, details which
properties can be shared among multiple blocks. Custom properties cannot be shared.

10.3.3 Copying Blocks between Pages and Documents
The Block plugin offers several methods for moving and copying blocks within the cur-
rent page, the current document, or other documents:

> move or copy blocks by dragging them with the mouse, or pasting blocks to another
page or open document

> duplicate blocks on one or more pages of the same document
> export blocks to a new file (with empty pages) or to an existing document (apply the

blocks to existing pages)

236 Chapter 10: Variable Data and Blocks

> import blocks from other documents

In order to update the page contents while maintaining block definitions you can re-
place the underlying page(s) while keeping the blocks. Use Document, Replace Pages... (Ac-
robat 5 and 7) or Document, Pages, Replace (Acrobat 6).

Moving and copying blocks. You can relocate blocks or create copies of blocks by se-
lecting one or more blocks and dragging them to a new location while pressing the Ctrl
key (on Windows) or Alt key (on the Mac). The mouse cursor will change while the key is
pressed. A copied block will have the same properties as the original block, with the ex-
ception of its name and position which will automatically be changed.

You can also use copy/paste to copy blocks to another location on the same page, to
another page in the same document, or to another document which is currently open in
Acrobat:

> Activate the block tool and select the blocks you want to copy.
> Use Ctrl-C (on Windows) or Cmd-C (on the Mac) or Edit, Copy to copy the selected

blocks to the clipboard.
> Use Ctrl-V (on Windows) or Cmd-V (on the Mac) or Edit, Paste to paste the blocks

which are currently in the clipboard.

Duplicating blocks on other pages. You can create duplicates of one or more blocks on
an arbitrary number of pages in the current document simultaneously:

> Activate the block tool and select the blocks you want to duplicate.
> Choose Import and Export, Duplicate... from the PDFlib Blocks menu or the context

menu.
> Choose which blocks to duplicate (selected blocks or all on the page) and the range of

target pages where you want duplicates of the blocks.

Exporting and importing blocks. Using the export/import feature for blocks it is possi-
ble to share the block definitions on a single page or all blocks in a document among
multiple PDF files. This is useful for updating the page contents while maintaining ex-
isting block definitions. To export block definitions to a separate file proceed as follows:

> Activate the block tool and Select the blocks you want to export.
> Choose Import and Export, Export... from the PDFlib Blocks menu or the context menu.

Enter the page range and a file name for the file containing the block definitions.

You can import block definitions via PDFlib Blocks, Import and Export, Import... . Upon im-
porting blocks you can choose whether to apply the imported blocks to all pages in the
document, or only to a page range. If more than one page is selected the block defini-
tions will be copied unmodified to the pages. If there are more pages in the target range
than in the imported block definition file you can use the Repeate Template checkbox. If
it is enabled the sequence of blocks in the imported file will be repeated in the current
document until the end of the document is reached.

Copying blocks to another document upon export. When exporting blocks you can
immediately apply them to the pages in another document, thereby propagating the
blocks from one document to another. In order to do so choose an existing document to
export the blocks to. If you activate the checkbox Delete existing blocks all blocks which
may be present in the target document will be deleted before copying the new blocks
into the document.

10.3 Creating PDFlib Blocks 237

10.3.4 Converting PDF Form Fields to PDFlib Blocks
As an alternative to creating PDFlib blocks manually you can automatically convert PDF
form fields to blocks. This is especially convenient if you have complicated PDF forms
which you want to fill automatically with the PDFlib Personalization Server, or need to
convert a large number of existing PDF forms for automated filling. In order to convert
all form fields on a page to PDFlib blocks choose PDFlib Blocks, Convert Form Fields, Current
Page. To convert all form fields in a document choose All Pages instead. Finally, you can
convert only selected form fields (choose Acrobat’s Form Tool or the Select Object Tool
to select form fields) with Selected Form Fields.

Form field conversion details. Automatic form field conversion will convert form
fields of the types selected in the PDFlib Blocks, Convert Form Fields, Conversion Options...
dialog to blocks of type Text. By default all form field types will be converted. Attributes
of the converted fields will be transformed to the corresponding block properties ac-
cording to Table 10.2.

Table 10.2 Conversion of PDF form fields to PDFlib blocks

PDF form field attribute... ...will be converted to the PDFlib block property

all fields

Position General, Rect

Name General, Name

Tooltip General, Description

Appearance, Text, Font Text, fontname

Appearance, Text, Font Size Text, fontsize; auto font size will be converted to a fixed font size of 2/3 of the
block height, and the fitmethod will be set to auto. For multi-line fields/blocks
this combination will automatically result in a suitable font size which may be
smaller than the initial value of 2/3 of the block height.

Appearance, Text, Text Color Text, strokecolor; Text, fillcolor

Appearance, Border, Border Color General, bordercolor

Appearance, Border, Fill Color General, backgroundcolor

Appearance, Border, Line Thickness General, linewidth: Thin=1, Medium=2, Thick=3

General, Common Properties, Form
Field

General, Status: Visible=active, Hidden=ignore, Visible but doesn’t print=ignore,
Hidden but printable=active

General, Common Properties, Orien-
tation

General, orientate: 0=north, 90=west, 180=south, 270=east

text fields

Options, Default Value Text, defaulttext

Options, Alignment General, position: Left={left center}, Center={center center}, Right={right center}

Options, Multi-line Text, textflow: checked=true, unchecked=false

radio buttons and check boxes

If »Check box/Button is checked by
default« is selected: Options, Check
Box Style or Options, Button Style

Text, defaulttext: Check=4, Circle=l, Cross=8, Diamond=u, Square=n, Star=H
(these characters represent the respective symbols in the ZapfDingbats font)

238 Chapter 10: Variable Data and Blocks

Multiple form fields with the same name. Multiple form fields on the same page are
allowed to have the same name, while block names must be unique on a page. When
converting form fields to blocks a numerical suffix will therefore be added to the name
of generated blocks in order to create unique block names (see also »Associating form
fields with corresponding blocks«, page 238).

Note that due to a problem in Acrobat the field attributes of form fields with the
same names are not reported correctly. If multiple fields have the same name, but dif-
ferent attributes these differences will not be reflected in the generated blocks. The Con-
version process will issue a warning in this case and provide the names of affected form
fields. In this case you should carefully check the properties in the generated blocks.

Associating form fields with corresponding blocks. Since the form field names will be
modified when converting multiple fields with the same name (e.g. radio buttons) it is
difficult to reliably identify the block which corresponds to a particular form field. This
is especially important when using an FDF or XFDF file as the source for filling blocks
such that the final result resembles the filled form.

In order to solve this problem the AcroFormConversion plugin will record details
about the original form field as custom properties when creating the corresponding
block. Table 10.3 details the custom properties which can be used to reliably identify the
blocks; all properties have type string.

Binding blocks to the corresponding form fields. In order to keep PDF form fields and
the generated PDFlib blocks synchronized, the generated blocks can be bound to the cor-
responding form fields. This means that the block tool will internally maintain the rela-
tionship of form fields and blocks. When the conversion process is activated again,
bound blocks will be updated to reflect the attributes of the corresponding PDF form
fields. Bound blocks are useful to avoid duplicate work: when a form is updated for in-
teractive use, the corresponding blocks can automatically be updated, too.

If you do not want to keep the converted form fields after blocks have been generat-
ed you can choose the option Delete converted Form Fields in the PDFlib Blocks, Convert

list boxes and combo boxes

Options, Selected (default) item Text, defaulttext

buttons

Options, Icon and Label, Label Text, defaulttext

Table 10.3 Custom properties for identifying the original form field corresponding to the block

custom property meaning

PDFlib:field:name Fully qualified name of the form field

PDFlib:field:pagenumber Page number (as a string) in the original document where the form field was located

PDFlib:field:type Type of the form field; one of pushbutton, checkbox, radiobutton, listbox, combobox,
textfield, signature

PDFlib:field:value (Only for type=checkbox) Export value of the form field

Table 10.2 Conversion of PDF form fields to PDFlib blocks

PDF form field attribute... ...will be converted to the PDFlib block property

10.3 Creating PDFlib Blocks 239

Form Fields, Conversion Options... dialog. This option will permanently remove the form
fields after the conversion process. Any actions (e.g., JavaScript) associated with the af-
fected fields will also be removed from the document.

Batch conversion. If you have many PDF documents with form fields that you want to
convert to PDFlib blocks you can automatically process an arbitrary number of docu-
ments using the batch conversion feature. The batch processing dialog is available via
PDFlib Blocks, Convert Form Fields, Batch conversion...:

> The input files can be selected individually; alternatively the full contents of a folder
can be processed.

> The output files can be written to the same folder where the input files are, or to a
different folder. The output files can receive a prefix to their name in order to distin-
guish them from the input files.

> When processing a large number of documents it is recommended to specify a log
file. After the conversion it will contain a full list of processed files as well as details
regarding the result of each conversion along with possible error messages.

During the conversion process the converted PDF documents will be visible in Acrobat,
but you cannot use any of Acrobat’s menu functions or tools.

240 Chapter 10: Variable Data and Blocks

10.4 Standard Properties for Automated Processing
PDFlib supports general properties which can be assigned to any type of block. In addi-
tion there are properties which are specific to the block types Text, Image, and PDF. Some
properties are shared, which means that they can be assigned to multiple blocks at once
using the Block plugin.

Properties support the same data types as option lists except handles and action
lists.

Many block properties have the same name as options for PDF_fit_image() (e.g.,
fitmethod) and other functions, or as PDFlib parameters (e.g., charspacing). In these cases
the behavior is exactly the same as the one documented for the respective option or pa-
rameter.

Property processing in PDFlib. The PDFlib Block functions PDF_fill_*block() will process
block properties in the following order:

> If the backgroundcolor property is present and contains a color space keyword differ-
ent from None, the block rectangle will be filled with the specified color.

> All other properties except bordercolor and linewidth will be processed.
> If the bordercolor property is present and contains a color space keyword different

from None, the block rectangle will be stroked with the specified color and linewidth.
> Text blocks: if neither text nor default text has been supplied, there won’t be any

output at all, not even background color or block border.

There will be no clipping; if you want to make sure that the block contents do not ex-
ceed the block rectangle avoid fitmethod nofit.

To use a separation (spot) color in a block property you can click the »...« button
which will present a list of all HKS and PANTONE spot colors. These color names are built
into PDFlib (see Section 3.3.2, »Spot Colors«, page 59) and can be used without further
preparations. For custom spot colors an alternate color can be defined in the Block plu-
gin. If no alternate color is specified in the Block properties, the custom spot color must
have been defined earlier in the PDFlib application using PDF_makespotcolor(). Other-
wise the block functions will fail.

10.4.1 General Properties
General properties apply to all kinds of blocks (Text, Image, PDF). They are required for
block administration, describe the appearance of the block rectangle itself, and manage
how the contents will be placed within the block. Required entries will automatically be
generated by the PDFlib Block Plugin. Table 10.4 lists the general properties.

Table 10.4 General block properties

keyword possible values and explanation

Block administration

Name (String; required) Name of the block. Block names must be unique within a page, but not within a docu-
ment. The three characters [] / are not allowed in block names. Block names are restricted to a maxi-
mum of 125 characters.

Description (String) Human-readable description of the block’s function, coded in PDFDocEncoding or Unicode (in the
latter case starting with a BOM). This property is for user information only, and will be ignored when pro-
cessing the block.

10.4 Standard Properties for Automated Processing 241

Locked (Boolean; shareable) If true, the block and its properties can not be edited with the Block plugin. This
property will be ignored when processing the block. Default: false.

Rect (Rectangle; required) The block coordinates. The origin of the coordinate system is in the lower left corner
of the page. However, the Block plugin will display the coordinates in Acrobat’s notation, i.e., with the or-
igin in the upper left corner of the page. The coordinates will be displayed in the unit which is currently
selected in Acrobat, but will always be stored in points in the PDF file.

Status (Keyword) Describes how the block will be processed. Default: active.
active The block will be fully processed according to its properties.
ignore The block will be ignored.
static No variable contents will be placed; instead, the block’s default text, image, or PDF contents

will be used if available.

Subtype (Keyword; required) Depending on the block type, one of Text, Image, or PDF

Type (Keyword; required) Always Block

Block appearance

background-
color

(Color; shareable) If this property is present and contains a color space keyword different from None, a
rectangle will be drawn and filled with the supplied color. This may be useful to cover existing page con-
tents. Default: None

bordercolor (Color; shareable) If this property is present and contains a color space keyword different from None, a
rectangle will be drawn and stroked with the supplied color. Default: None

linewidth (Float; shareable; must be greater than 0) Stroke width of the line used to draw the block rectangle; only
used if bordercolor is set. Default: 1

Content placing

fitmethod (Keyword; shareable) Strategy to use if the supplied content doesn’t fit into the box. Possible values are
auto, nofit, clip, meet1, slice1, and entire1. For simple text blocks, image, and PDF blocks this property
will be interpreted according to the standard interpretation. Default: auto. For Textflow blocks where the
block is too small for the text the interpretation is as follows:
auto fontsize and leading will be decreased until the text fits.
nofit Text will run beyond the bottom margin of the block.
clip Text will be clipped at the block margin.

orientate (Keyword; shareable) Specifies the desired orientation of the content when it is placed. Possible values are
north, east, south, west. Default: north

position1 (Float list; shareable) One or two values specifying the position of the reference point within the content.
The position is specified as a percentage within the block. Default: {0 0}, i.e. the lower left corner

rotate (Float; shareable) Rotation angle in degrees by which the block will be rotated counter-clockwise before
processing begins. The reference point is center of the rotation. Default: 0

1. This keyword or property is not supported for Textflow blocks (text blocks with textflow=true).

Table 10.4 General block properties

keyword possible values and explanation

242 Chapter 10: Variable Data and Blocks

10.4.2 Text Properties
Text-related properties apply to blocks of type Text (in addition to general properties).
All text-related properties can be shared.

Properties for all text blocks. Text blocks can contain a single line or multiple lines,
depending on the textflow property. Table 10.5 lists the text-related properties which ap-
ply to both types.

Table 10.5 Text block properties

keyword possible values and explanation

alignchar (Unichar or keyword) If the specified character is found in the text, its lower left corner will be aligned at
the reference point. For horizontal text with orientate=north or south the first value supplied in the
position option defines the position. For horizontal text with orientate=west or east the second value
supplied in the position option defines the position. This option will be ignored if the specified align-
ment character is not present in the text. The value 0 and the keyword none suppress alignment charac-
ters. The specified fitmethod will be applied, although the text cannot be placed within the fitbox be-
cause of the forced positioning of alignchar. Default: none

charspacing (Float or percentage) Character spacing. Percentages are based on fontsize. Default: 0

defaulttext (String) Text which will be used if no substitution text is supplied by the client1

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in content strings, hypertext strings, and name
strings. Default: the global escapesequence parameter

fillcolor (Color) Fill color of the text. Default: gray 0 (=black)

fontname2 (String) Name of the font as required by PDF_load_font(). The PDFlib Block plugin will present a list of
system-installed fonts. However, these font names may not be portable between Mac, Windows, and
Unix systems.
The encoding for the text must be specified as an option for PDF_fill_textblock() when filling the block
unless the font option has been supplied.

fontsize2 (Float) Size of the font in points

fontstyle (Keyword) Font style, must be one of normal, bold, italic, or bolditalic

horizscaling (Float or percentage) Horizontal text scaling. Default: 100%

italicangle (Float) Italic angle of text in degrees. Default: 0

kerning (Boolean) Kerning behavior. Default: false

margin (Float list) One or two float values describing additional horizontal and vertical extensions of the text
box. Default: 0

monospace (Integer: 1...2048) Forces the same width for all characters in the font. Default: absent (metrics from the
font will be used)

overline (Boolean) Overline mode. Default: false

stamp (Keyword; will be ignored if boxsize is not specified) This option can be used to create a diagonal stamp
within the box specified in the boxsize option. The text comprising the stamp will be as large as possible.
The options position, fitmethod, and orientate (only north and south) will be honored when placing
the stamp text in the box. Default: none.
ll2ur The stamp will run diagonally from the lower left corner to the upper right corner.
ul2lr The stamp will run diagonally from the upper left corner to the lower right corner.
none No stamp will be created.

strikeout (Boolean) Strikeout mode. Default: false

10.4 Standard Properties for Automated Processing 243

Properties for Textflow blocks. Textflow-related properties apply to blocks of type Text
where the textflow property is true. The text-related properties will be used to construct
the initial option list for processing the Textflow (corresponding to the optlist parame-
ter of PDF_create_textflow()). Inline option lists can not be specified with the plugin, but
they can be supplied on the server as part of the text contents when filling the block
with PDF_fill_textblock(). All Textflow-related properties can be shared. Table 10.6 lists
the Textflow-related properties.

strokecolor (Color) Stroke color of the text. Default: gray 0 (=black)

textflow (Boolean) Controls single- or multiline processing (Default: false):
false Text can span a single line and will be processed with PDF_fit_textline().
true Text can span multiple lines and will be processed with PDF_fit_textflow(). The general

property position will be ignored. In addition to the standard text properties all Textflow-
related properties can be specified (see Table 10.6).

textrendering (Integer) Text rendering mode. Default: 0

textrise (Float pr percentage) Text rise parameter. Percentages are based on fontsize. Default: 0

underline (Boolean) Underline mode. Default: false

underline-
position

(Float, percentage, or keyword) Position of the stroked line for underlined text relative to the baseline.
Percentages are based on fontsize. Default: auto

underline-
width

(Float, percentage, or keyword) Line width for underlined text. Percentages are based on fontsize. De-
fault: auto

wordspacing (Float or percentage) Word spacing. Percentages are based on fontsize. Default: 0

1. The text will be interpreted in winansi encoding or Unicode.
2. This property is required in a text block; it will automatically be enforced by the PDFlib Block plugin.

Table 10.6 Textflow block properties

keyword possible values and explanation

property for text semantics

tabalignchar (Integer) Unicode value of the character at which decimal tabs will be aligned. Default: the ’.’ character
(U+002E)

properties for controlling the text layout

alignment (Keyword) Specifies formatting for lines in a paragraph. Default: left.
left left-aligned, starting at leftindent
center centered between leftindent and rightindent
right right-aligned, ending at rightindent
justify left- and right-aligned

Table 10.5 Text block properties

keyword possible values and explanation

244 Chapter 10: Variable Data and Blocks

firstlinedist (Float, percentage, or keyword) The distance between the top of the fitbox and the baseline for the first
line of text, specified in user coordinates, as a percentage of the relevant font size (the first font size in the
line if fixedleading=true, and the maximum of all font sizes in the line otherwise), or as a keyword. De-
fault: leading.
leading The leading value determined for the first line; typical diacritical characters such as À will

touch the top of the fitbox.
ascender The ascender value determined for the first line; typical characters with larger ascenders, such

as d and h will touch the top of the fitbox.
capheight The capheight value determined for the first line; typical capital uppercase characters such as

H will touch the top of the fitbox.
xheight The xheight value determined for the first line; typical lowercase characters such as x will

touch the top of the fitbox.
If fixedleading=false the maximum of all leading, ascender, xheight, or capheight values found in
the first line will be used.

fixedleading (Boolean) If true, the first leading value found in each line will be used. Otherwise the maximum of all
leading values in the line will be used. Default: false

hortabsize (Float or percentage) Width of a horizontal tab1. The interpretation depends on the hortabmethod op-
tion. Default: 7.5%

hortab-
method

(Keyword) Treatment of horizontal tabs in the text. If the calculated position is to the left of the current
text position, the tab will be ignored. Default: relative.
relative The position will be advanced by the amount specified in hortabsize.
typewriter The position will be advanced to the next multiple of hortabsize.
ruler The position will be advanced to the n-th tab value in the ruler option, where n is the number

of tabs found in the line so far. If n is larger than the number of tab positions the relative
method will be applied.

lastalignment (Keyword) Formatting for the last line in a paragraph. All keywords of the alignment option are support-
ed, plus the following. Default: auto.
auto Use the value of the alignment option unless it is justify. In the latter case left will be used.

lastlinedist (Float, percentage, or keyword) Will be ignored for fitmethod=nofit) The minimum distance between
the baseline for the last line of text and the bottom of the fitbox, specified in user coordinates, as a per-
centage of the font size (the first font size in the line if fixedleading= true, and the maximum of all
font sizes in the line otherwise), or as a keyword. Default: 0, i.e. the bottom of the fitbox will be used as
baseline, and typical descenders will extend below the fitbox.
descender The descender value determined for the last line; typical characters with descenders, such as g

and j will touch the bottom of the fitbox.
If fixedleading=false the maximum of all descender values found in the last line will be used.

leading (Float or percentage) Distance between adjacent text baselines in user coordinates, or as a percentage of
the font size. Default: 100%

parindent (Float or percentage) Left indent of the first line of a paragraph1. The amount will be added to
leftindent. Specifying this option within a line will act like a tab. Default: 0

rightindent
leftindent

(Float or percentage) Right or left indent of all text lines1. If leftindent is specified within a line and the
determined position is to the left of the current text position, this option will be ignored for the current
line. Default: 0

rotate (Float) Rotate the coordinate system, using the lower left corner of the fitbox as center and the specified
value as rotation angle in degrees. This results in the box and the text being rotated. The rotation will be
reset when the text has been placed. Default: 0

Table 10.6 Textflow block properties

keyword possible values and explanation

10.4 Standard Properties for Automated Processing 245

ruler2 (List of floats or percentages) List of absolute tab positions for hortabmethod=ruler1. The list may con-
tain up to 32 non-negative entries in ascending order. Default: integer multiples of hortabsize

tabalignment (List of keywords) Alignment for tab stops. Each entry in the list defines the alignment for the correspond-
ing entry in the ruler option. Default: left.
center Text will be centered at the tab position.
decimal The first instance of tabalignchar will be left-aligned at the tab position. If no tabalignchar

is found, right alignment will be used instead.
left Text will be left-aligned at the tab position.
right Text will be right-aligned at the tab position.

verticalalign (Keyword) Vertical alignment of the text in the fitbox. Default: top.
top Formatting will start at the first line, and continue downwards. If the text doesn’t fill the

fitbox there may be whitespace below the text.
center The text will be vertically centered in the fitbox. If the text doesn’t fill the fitbox there may be

whitespace both above and below the text.
bottom Formatting will start at the last line, and continue upwards. If the text doesn’t fill the fitbox

there may be whitespace above the text.
justify The text will be aligned with top and bottom of the fitbox. In order to achieve this the leading

will be increased up to the limit specified by linespreadlimit. The height of the first line will
only be increased if firstlinedist=leading.

properties for controlling the line-breaking algorithm

adjust-
method

(Keyword) Method used to adjust a line when a text portion doesn’t fit into a line after compressing or
expanding the distance between words subject to the limits specified by the minspacing and maxspacing
options. Default: auto.
auto The following methods are applied in order: shrink, spread, nofit, split.
clip Same as nofit, except that the long part at the right edge of the fit box (taking into account

the rightindent option) will be clipped.
nofit The last word will be moved to the next line provided the remaining (short) line will not be

shorter than the percentage specified in the nofitlimit option. Even justified paragraphs
may look slightly ragged.

shrink If a word doesn’t fit in the line the text will be compressed subject to shrinklimit. If it still
doesn’t fit the nofit method will be applied.

split The last word will not be moved to the next line, but will forcefully be hyphenated. For text
fonts a hyphen character will be inserted, but not for symbol fonts.

spread The last word will be moved to the next line and the remaining (short) line will be justified by
increasing the distance between characters in a word, subject to spreadlimit. If justification
still cannot be achieved the nofit method will be applied.

linespread-
limit

(Float or percentage; only for verticalalign=justify) Maximum amount in user coordinates or as per-
centage of the leading for increasing the leading for vertical justification. Default: 200%

maxlines (Integer or keyword) The maximum number of lines in the fitbox, or the keyword auto which means that
as many lines as possible will be placed in the fitbox. When the maximum number of lines has been
placed PDF_fit_textflow() will return the string _boxfull.

maxspacing
minspacing

(Float or percentage) The maximum or minimum distance between words (in user coordinates, or as a
percentage of the width of the space character). The calculated word spacing is limited by the provided
values (but the wordspacing option will still be added). Defaults: minspacing=50%, maxspacing=500%

nofitlimit (Float or percentage) Lower limit for the length of a line with the nofit method (in user coordinates or as
a percentage of the width of the fitbox). Default: 75%.

Table 10.6 Textflow block properties

keyword possible values and explanation

246 Chapter 10: Variable Data and Blocks

10.4.3 Image Properties
Image-related properties apply to blocks of type Image (in addition to general proper-
ties). All image-related properties can be shared. Table 10.7 lists image-related proper-
ties.

10.4.4 PDF Properties
PDF-related properties apply to blocks of type PDF (in addition to general properties). All
PDF-related properties can be shared. Table 10.8 lists PDF-related properties.

shrinklimit (Percentage) Lower limit for compressing text with the shrink method; the calculated shrinking factor is
limited by the provided value, but will be multiplied with the value of the horizscaling option. Default:
85%

spreadlimit (Float or percentage) Upper limit for the distance between two characters for the spread method (in user
coordinates or as a percentage of the font size); the calculated character distance will be added to the
value of the charspacing option. Default: 0

1. In user coordinates, or as a percentage of the width of the fit box
2. Rulers can be edited in the »Tabs« section of the Block properties dialog.

Table 10.7 Image block properties

keyword possible values and explanation

defaultimage (String) Path name of an image which will be used if no substitution image is supplied by the client. It is
recommended to use file names without absolute paths, and use the SearchPath feature in the PPS client
application. This will make block processing independent from platform and file system details.

dpi (Float list) One or two values specifying the desired image resolution in pixels per inch in horizontal and
vertical direction. With the value o the image’s internal resolution will be used if available, or 72 dpi oth-
erwise. This property will be ignored if the fitmethod property has been supplied with one of the key-
words auto, meet, slice, or entire. Default: 0

scale (Float list) One or two values specifying the desired scaling factor(s) in horizontal and vertical direction.
This option will be ignored if the fitmethod property has been supplied with one of the keywords auto,
meet, slice, or entire. Default: 1

Table 10.8 PDF block properties

keyword possible values and explanation

defaultpdf (String) Path name of a PDF document which will be used if no substitution PDF is supplied by the client.
It is recommended to use file names without absolute paths, and use the SearchPath feature in the PPS
client application. This will make block processing independent from platform and file system details.

default-
pdfpage

(Integer) Page number of the page in the default PDF document. Default: 1

scale (Float list) One or two values specifying the desired scaling factor(s) in horizontal and vertical direction.
This option will be ignored if the fitmethod property has been supplied with one of the keywords auto,
meet, slice, or entire. Default: 1

pdiusebox (Keyword; possible values: media, crop, bleed, trim, art) Use the placed page’s MediaBox, CropBox,
BleedBox, TrimBox, or ArtBox for determining its size. Default: crop

Table 10.6 Textflow block properties

keyword possible values and explanation

10.4 Standard Properties for Automated Processing 247

10.4.5 Custom Properties
Custom properties apply to blocks of any type of block (in addition to general and type-
specific properties). Custom properties are optional, and can not be shared. Table 10.9
lists the naming rules for custom properties.

Table 10.9 Custom block properties

keyword possible values and explanation

any name not containing
the three characters [] /

(String, name, float, or float list) The interpretation of the values corresponding to custom
properties is completely up to the client application.

248 Chapter 10: Variable Data and Blocks

10.5 Querying Block Names and Properties with pCOS
In addition to automatic block processing with PPS, the integrated pCOS facility can be
used to enumerate block names and query standard or custom properties.

Finding the numbers and names of blocks. The client code must not even know the
names or numbers of the blocks on an imported page since these can also be queried.
The following statement returns the number of blocks on page with number pagenum:

blockcount = (int) p.pcos_get_number(doc,
"length:pages[" + pagenum + "]/PieceInfo/PDFlib/Private/Blocks");

The following statement returns the name of block number blocknum on page pagenum
(block and page counting start at 0):

blockname = p.pcos_get_string(doc,
"pages[" + pagenum + "]/PieceInfo/PDFlib/Private/Blocks[" + blocknum + "]/Name");

The returned block name can subsequently be used to query the block’s properties or
populate the block with text, image, or PDF content. If the specified block doesn’t exist
an exception will be thrown. You can avoid this by using the length prefix to determine
the number of blocks and therefore the maximum index in the Blocks array (remember
that the block count will be 1 higher than the highest possible index since array index-
ing starts at 0).

In the path syntax for addressing block properties the following expressions are
equivalent, assuming that the block with the sequential <number> has its Name proper-
ty set to <blockname>:

pages[...]/PieceInfo/PDFlib/Private/Blocks[<number>]
pages[...]/PieceInfo/PDFlib/Private/Blocks/<blockname>

Finding block coordinates. The two coordinate pairs (llx, lly) and (urx, ury) describing
the lower left and upper right corner of a block named foo can be queried as follows:

llx = p.pcos_get_number(doc,
"pages[" + pagenum + "]/PieceInfo/PDFlib/Private/Blocks/foo/Rect[0]");

lly = p.pcos_get_number(doc,
"pages[" + pagenum + "]/PieceInfo/PDFlib/Private/Blocks/foo/Rect[1]");

urxx = p.pcos_get_number(doc,
"pages[" + pagenum + "]/PieceInfo/PDFlib/Private/Blocks/foo/Rect[2]");

ury = p.pcos_get_number(doc,
"pages[" + pagenum + "]/PieceInfo/PDFlib/Private/Blocks/foo/Rect[3]");

Note that these coordinates are provided in the default user coordinate system (with
the origin in the bottom left corner, possibly modified by the page’s CropBox), while the
Block plugin displays the coordinates according to Acrobat’s user interface coordinate
system with an origin in the upper left corner of the page. Since the Rect option for over-
riding block coordinates does not take into account any modifications applied by the
CropBox entry, the coordinates queried from the original block cannot be directly used
as new coordinates if a CropBox is present. As a workaround you can use the refpoint
and boxsize options.

Also note that the topdown parameter is not taken into account when querying block
coordinates.

10.5 Querying Block Names and Properties with pCOS 249

Querying custom properties. Custom properties can be queried as in the following ex-
ample, where the property zipcode is queried from a block named b1 on page pagenum:

zip = p.pcos_get_string(doc,
"pages[" + pagenum + "]/PieceInfo/PDFlib/Private/Blocks/b1/Custom/zipcode");

If you don’t know which custom properties are actually present in a block, you can de-
termine the names at runtime. In order to find the name of the first custom property in
a block named b1 use the following:

propname = p.pcos_get_string(doc,
"pages[" + pagenum + "]/PieceInfo/PDFlib/Private/Blocks/b1/Custom[0].key");

Use increasing indexes instead of 0 in order to determine the names of all custom prop-
erties. Use the length prefix to determine the number of custom properties.

Non-existing block properties and default values. Use the type prefix to determine
whether a block or property is actually present. If the type for a path is 0 or null the re-
spective object is not present in the PDF document. Note that for standard properties
this means that the default value of the property will be used.

Name space for custom properties. In order to avoid confusion when PDF documents
from different sources are exchanged, it is recommended to use an Internet domain
name as a company-specific prefix in all custom property names, followed by a colon ’:’
and the actual property name. For example, ACME corporation would use the following
property names:

acme.com:digits
acme.com:refnumber

Since standard and custom properties are stored differently in the block, standard
PDFlib property names (as defined in Section 10.4, »Standard Properties for Automated
Processing«, page 240) will never conflict with custom property names.

250 Chapter 10: Variable Data and Blocks

10.6 PDFlib Block Specification
The PDFlib Block syntax is fully compliant with the PDF Reference, which specifies an
extension mechanism that allows applications to store private data attached to the data
structures comprising a PDF page. A detailed description of the PDFlib block syntax is
provided here for the benefit of users who wish to create PDFlib blocks by other means
than the PDFlib block plugin. Plugin users can safely skip this section.

10.6.1 PDF Object Structure for PDFlib Blocks
The page dictionary contains a /PieceInfo entry, which has another dictionary as value.
This dictionary contains the key /PDFlib with an application data dictionary as value.
The application data dictionary contains two standard keys listed in Table 10.10.

A Block list is a dictionary containing general information about block processing, plus
a list of all blocks on the page. Table 10.11 lists the keys in a block list dictionary.

Data types for block properties. Properties support the same data types as option lists
except handles and action lists. Table 10.12 details how these types are mapped to PDF
data types.

Table 10.10 Entries in a PDFlib application data dictionary

key value

LastModified (Data string; required) The date and time when the blocks on the page were created or most recently
modified.

Private (Dictionary; required) A block list (see Table 10.11)

Table 10.11 Entries in a block list dictionary

key value

Version (Number; required) The version number of the block specification to which the file complies. This docu-
ment describes version 7 of the block specification.

Blocks (Dictionary; required) Each key is a name object containing the name of a block; the corresponding value
is the block dictionary for this block (see Table 10.13). The /Name key in the block dictionary must be identi-
cal to the block’s name in this dictionary.

PluginVersion (String; required unless the pdfmark key is present1) A string containing a version identification of the
PDFlib Block plugin which has been used to create the blocks.

1. Exactly one of the PluginVersion and pdfmark keys must be present.

pdfmark (Boolean; required unless the PluginVersion key is present1) Must be true if the block list has been gen-
erated by use of pdfmarks.

Table 10.12 Data types for block properties

block type PDF type and remarks

boolean (Boolean)

string (String)

keyword (Name) It is an error to provide keywords outside the list of keywords supported by a particular property.

10.6 PDFlib Block Specification 251

Block dictionary keys. Block dictionaries may contain the keys in Table 10.13. Only
keys from one of the Text, Image or PDF groups may be present depending on the /
Subtype key in the General group (see Table 10.4).

Example. The following fragment shows the PDF code for two blocks, a text block
called job_title and an image block called logo. The text block contains a custom property
called format:

float, integer (Number) While option lists support both point and comma as decimal separators, PDF numbers support
only point.

percentage (Array with two elements) The first element in the array is the number, the second element is a string con-
taining a percent character.

color (Array with two or three elements) The first element in the array specifies a color space, and the second el-
ement specifies a color value as follows. The following entries are supported for the first element in the
array:
/DeviceGray

The second element is a single gray value.
/DeviceRGB

The second element is an array of three RGB values.
/DeviceCMYK

The second element is an array of four CMYK values.
[/Separation/spotname]

The first element is an array containing the keyword /Separation and a spot color name. The
second element is a tint value.
The optional third element in the array specifies an alternate color for the spot color, which is
itself a color array in one of the /DeviceGray, /DeviceRGB, /DeviceCMYK, or /Lab color spaces.
If the alternate color is missing, the spot color name must either refer to a color which is
known internally to PDFlib, or which has been defined by the application at runtime.

[/Lab] The first element is an array containing the keyword /Lab. The second element is an array of
three Lab values.

To specify the absence of color the respective property must be omitted.

unichar (Text string) Unicode strings in utf16be format, starting with the U+FEFF BOM

Table 10.13 Entries in a block dictionary

key value

general properties (Some keys are required) General properties according to Table 10.4

text properties (Optional) Text and Textflow properties according to Table 10.5 and Table 10.6

image properties (Optional) Image properties according to Table 10.7

PDF properties (Optional) PDF properties according to Table 10.8

Custom (Dictionary; optional) A dictionary containing key/value pairs for custom properties according to
Table 10.9.

Internal (Dictionary; optional) This key is reserved for private use, and applications should not depend on
its presence or specific behavior. Currently it is used for maintaining the relationship between
converted form fields and corresponding blocks.

Table 10.12 Data types for block properties

block type PDF type and remarks

252 Chapter 10: Variable Data and Blocks

<<
/Contents 12 0 R
/Type /Page
/Parent 1 0 R
/MediaBox [0 0 595 842]
/PieceInfo << /PDFlib 13 0 R >>

>>

13 0 obj
<<

/Private <<
/Blocks <<

/job_title 14 0 R
/logo 15 0 R

>>
/Version 7
/PluginVersion (3.0)

>>
/LastModified (D:20060813200730)

>>
endobj

14 0 obj
<<

/Type /Block
/Rect [70 740 200 800]
/Name /job_title
/Subtype /Text
/fitmethod /auto
/fontname (Helvetica)
/fontsize 12
/Custom << /format 5 >>

>>
endobj

15 0 obj
<<

/Type /Block
/Rect [250 700 400 800]
/Name /logo
/Subtype /Image
/fitmethod /auto

>>

10.6.2 Generating PDFlib Blocks with pdfmarks
As an alternative to creating PDFlib blocks with the plugin, blocks can be created by in-
serting appropriate pdfmark commands into a PostScript stream, and distilling it to PDF.
Details of the pdfmark operator are discussed in the Acrobat documentation. The follow-
ing fragment shows pdfmark operators which can be used to generate the block defini-
tion in the preceding section:

% ---------- Setup for the blocks on a page ----------
[/_objdef {B1} /type /dict /OBJ pdfmark % Blocks dict

[{ThisPage} <<
/PieceInfo <<

/PDFlib <<

10.6 PDFlib Block Specification 253

/LastModified (D:20060813200730)
/Private <<

/Version 7
/pdfmark true
/Blocks {B1}

>>
>>

>>
>> /PUT pdfmark

% ---------- text block ----------
[{B1} <<

/job_title <<
/Type /Block
/Name /job_title
/Subtype /Text
/Rect [70 740 200 800]
/fitmethod /auto
/fontsize 12
/fontname (Helvetica)
/Custom << /format 5 >>

>>
>> /PUT pdfmark

% ---------- image block ----------
[{B1} <<

/logo <<
/Type /Block
/Name /logo
/Subtype /Image
/Rect [250 700 400 800]
/fitmethod /auto

>>
>> /PUT pdfmark

A Revision History 255

A Revision History
Date Changes

August 08, 2007 > Various updates and corrections for PDFlib 7.0.2

February 19, 2007 > Various updates and corrections for PDFlib 7.0.1

October 03, 2006 > Updates and restructuring for PDFlib 7.0.0

February 21, 2006 > Various updates and corrections for PDFlib 6.0.3; added Ruby section

August 09, 2005 > Various updates and corrections for PDFlib 6.0.2

November 17, 2004 > Minor updates and corrections for PDFlib 6.0.1
> introduced new format for language-specific function prototypes in chapter 8
> added hypertext examples in chapter 3

June 18, 2004 > Major changes for PDFlib 6

January 21, 2004 > Minor additions and corrections for PDFlib 5.0.3

September 15, 2003 > Minor additions and corrections for PDFlib 5.0.2; added block specification

May 26, 2003 > Minor updates and corrections for PDFlib 5.0.1

March 26, 2003 > Major changes and rewrite for PDFlib 5.0.0

June 14, 2002 > Minor changes for PDFlib 4.0.3 and extensions for the .NET binding

January 26, 2002 > Minor changes for PDFlib 4.0.2 and extensions for the IBM eServer edition

May 17, 2001 > Minor changes for PDFlib 4.0.1

April 1, 2001 > Documents PDI and other features of PDFlib 4.0.0

February 5, 2001 > Documents the template and CMYK features in PDFlib 3.5.0

December 22, 2000 > ColdFusion documentation and additions for PDFlib 3.03; separate COM edition of the manual

August 8, 2000 > Delphi documentation and minor additions for PDFlib 3.02

July 1, 2000 > Additions and clarifications for PDFlib 3.01

Feb. 20, 2000 > Changes for PDFlib 3.0

Aug. 2, 1999 > Minor changes and additions for PDFlib 2.01

June 29, 1999 > Separate sections for the individual language bindings
> Extensions for PDFlib 2.0

Feb. 1, 1999 > Minor changes for PDFlib 1.0 (not publicly released)

Aug. 10, 1998 > Extensions for PDFlib 0.7 (only for a single customer)

July 8, 1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6

Feb. 25, 1998 > Slightly expanded the manual to cover PDFlib 0.5

Sept. 22, 1997 > First public release of PDFlib 0.4 and this manual

Index 257

Index

A
Acrobat plugin for creating blocks 225
Adobe Font Metrics (AFM) 98
AES (Advanced Encryption Standard) 199
AFM (Adobe Font Metrics) 98
alpha channel 125
ArtBox 57
artificial font styles 114
AS/400 52
ascender 112
asciifile parameter 53
auto: see hypertextformat
autocidfont parameter 107
autosubsetting parameter 106

B
baseline compression 122
Big Five 87
bindings 23
BleedBox 57
blocks 225

plugin 225
properties 228

BMP 124
builtin encoding 109
Byte Order Mark (BOM) 75, 78
bytes: see hypertextformat
byteserving 203

C
C binding 25
C++ binding 28
capheight 112
categories of resources 48
CCITT 124
CCSID 83
CFF (Compact Font Format) 95
character metrics 112
character names 99
character references 88, 89
characters and glyphs 74
characters per inch 113
Chinese 86, 87, 116
CIE L*a*b* color space 62
CJK (Chinese, Japanese, Korean)

configuration 85
custom fonts 117
standard fonts 85
Windows code pages 87

clip 57
CMaps 85, 86
Cobol binding 23
code page: Microsoft Windows 1250-1258 82
COM (Component Object Model) binding 24
commercial license 11
content strings 76
content strings in non-Unicode capable

languages 77
coordinate system 54

metric 54
top-down 55

copyoutputintent option 208, 213
core fonts 102
CPI (characters per inch) 113
CropBox 57
current point 57
currentx and currenty parameter 112
custom encoding 83

D
default coordinate system 54
defaultgray/rgb/cmyk parameters 65
descender 112
downsampling 121
dpi calculations 121

E
EBCDIC 52
ebcdic encoding 82
ebcdicutf8: see hypertextformat
EJB (Enterprise Java Beans) 30
embedding fonts 105
encoding

CJK 85
custom 83
fetching from the system 83

encrypted PDF documents 195
encryption 199
environment variable PDFLIBRESOURCE 50
error handling 45
errorpolicy parameter 132
escape sequences 88
eServer zSeries and iSeries 52
EUDC (end-user defined characters) 99, 119
Euro character 110
exceptions 45
explicit transparency 126

258 Index

F
features of PDFlib 19
fill 57
font metrics 112
font style names for Windows 104
font styles 114
fontmaxcode parameter 110
fonts

AFM files 98
embedding 105
glyph names 99
legal aspects of embedding 106
monospaced 113
OpenType 95
PDF core set 102
PFA files 98
PFB files 98
PFM files 98
PostScript 95, 98
resource configuration 48
subsetting 106
TrueType 95
Type 1 98
Type 3 (user-defined) fonts 99
Type 3 100
user-defined (Type 3) 99

FontSpecific encoding 109
form fields: converting to blocks 237
form XObjects 58

G
gaiji characters 95
GBK 87
GIF 123
glyph availability 92
glyph id addressing 110
glyph name references 89
glyph replacement 92
glyphs 74
gradients 59
grid.pdf 54

H
HKS colors 61
horizontal writing mode 116, 117
host encoding 81
host fonts 103
HTML character references 88
hypertext strings 76

in non-Unicode capable languages 77
hypertextformat parameter 78

I
IBM eServer 52
ignoremask 127
image data, re-using 121

image file formats 122
image mask 125, 126
image scaling 121
image:iccprofile parameter 64
implicit transparency 125
inch 54
in-core PDF generation 51
inline images 122
iSeries 52
ISO 10646 73
ISO 15930 204
ISO 19005 209
ISO 8859-2 to -15 82

J
Japanese 86, 87, 116
Java application servers 30
Java binding 29

EJB 30
javadoc 29
servlet 30

JFIF 123
Johab 87
JPEG 122
JPEG2000 123

K
kerning 113
Korean 86, 87, 116

L
language bindings: see bindings
layers and PDI 132
leading 112
line spacing 112
linearized PDF 203
LWFN (LaserWriter Font) 98

M
macroman encoding 81, 82
macroman_apple encoding 110
makepsres utility 48
mask 126
masked 126
masking images 125
masterpassword 200
MediaBox 57
memory, generating PDF documents in 51
metric coordinates 54
metrics 112
millimeters 54
monospaced fonts 113
multi-page image files 128

Index 259

N
name strings 76

in non-Unicode capable languages 77
nesting exceptions 26
.NET binding 32

O
OpenType fonts 95
optimized PDF 203
output intent for PDF/A 210
output intent for PDF/X 205
overline parameter 115

P
page 128
page descriptions 54
page formats 56
page size 183

limitations in Acrobat 56
page-at-a-time download 203
PANTONE colors 60
passwords 199

good and bad 200
path 57
patterns 59
pCOS 183

data types 185
encryption 195
path syntax 187
pseudo objects 189

PDF import library (PDI) 130
PDF Reference Manual 183
PDF/A 209
PDF/X 204
PDF_get_buffer() 52
PDFlib features 19
PDFlib Personalization Server 225
pdflib.upr 51
PDFLIBRESOURCE environment variable 50
PDI 130
pdiusebox 132
Perl binding 33
permissions 199, 201
PFA (Printer Font ASCII) 98
PFB (Printer Font Binary) 98
PFM (Printer Font Metrics) 98
PHP binding 35
PLOP_EXIT_TRY() 26
plugin for creating blocks 225
PNG 122, 126
PostScript fonts 95, 98
PPS (PDFlib Personalization Server) 225
print_glyphs.ps 99
Printer Font ASCII (PFA) 98
Printer Font Binary (PFB) 98
Printer Font Metrics (PFM) 98

Python binding 37

R
raw image data 124
REALbasic binding 38
rendering intents 62
renderingintent option 62
resource category 48
resourcefile parameter 51
rotating objects 55
RPG binding 39
Ruby binding 42

S
S/390 52
scaling images 121
SearchPath parameter 49
security 199
servlet 30
setcolor:iccprofilegray/rgb/cmyk parameters 64
shadings 59
Shift-JIS 87
smooth blends 59
soft mask 125
SPIFF 123
spot color (separation color space) 59
sRGB color space 64
standard output conditions

for PDF/A 212
for PDF/X 206

strikeout parameter 115
strings in option lists 79
stroke 57
style names for Windows 104
subpath 57
subscript 113
subsetminsize parameter 107
subsetting 106
superscript 113
Symbol font 109
system encoding support 83

T
Tcl binding 43
templates 58
temporary disk space requirements 203
text metrics 112
text position 112
text variations 112
textformat parameter 78
textlen for Symbol fonts in Textflow 150
textrendering parameter 115
textx and texty parameter 112
TIFF 123
top-down coordinates 55
transparency 125

260 Index

TrimBox 57
TrueType fonts 95
TTC (TrueType Collection) 99, 117, 118
TTF (TrueType font) 95
Type 1 fonts 98
Type 3 (user-defined) fonts 99

U
UHC 87
underline parameter 115
units 54
UPR (Unix PostScript Resource) 48

file format 49
file searching 50

usehypertextencoding parameter 78
user space 54
usercoordinates parameter 54
user-defined (Type 3) fonts 99
userpassword 200
UTF formats 74
utf16: see hypertextformat
utf16be: see hypertextformat

utf16le: see hypertextformat
utf8: see hypertextformat

V
Variable Data Processing with blocks 225
vertical writing mode 116, 117

W
web-optimized PDF 203
winansi encoding 82
writing modes 116, 117

X
xheight 112
XObjects 58

Z
ZapfDingbats font 109
zSeries 52

	Contents
	0 Applying the PDFlib License Key
	1 Introduction
	1.1 Roadmap to Documentation and Samples
	1.2 PDFlib Programming
	1.3 What’s new in PDFlib 7?
	1.4 Features in PDFlib/PDFlib+PDI/PPS 7
	1.5 Availability of Features in different Products

	2 PDFlib Language Bindings
	2.1 Cobol Binding
	2.2 COM Binding
	2.3 C Binding
	2.4 C++ Binding
	2.5 Java Binding
	2.6 .NET Binding
	2.7 Perl Binding
	2.8 PHP Binding
	2.9 Python Binding
	2.10 REALbasic Binding
	2.11 RPG Binding
	2.12 Ruby Binding
	2.13 Tcl Binding

	3 PDFlib Programming
	3.1 General Programming
	3.1.1 Exception Handling
	3.1.2 The PDFlib Virtual File System (PVF)
	3.1.3 Resource Configuration and File Searching
	3.1.4 Generating PDF Documents in Memory
	3.1.5 Using PDFlib on EBCDIC-based Platforms
	3.1.6 Large File Support

	3.2 Page Descriptions
	3.2.1 Coordinate Systems
	3.2.2 Page Size
	3.2.3 Paths
	3.2.4 Templates

	3.3 Working with Color
	3.3.1 Patterns and Smooth Shadings
	3.3.2 Spot Colors
	3.3.3 Color Management and ICC Profiles

	3.4 Interactive Elements
	3.4.1 Examples for Creating Interactive Elements
	3.4.2 Formatting Options for Text Fields

	4 Unicode and Legacy Encodings
	4.1 Overview
	4.2 Important Unicode Concepts
	4.3 Strings in PDFlib
	4.3.1 String Types in PDFlib
	4.3.2 Strings in Unicode-aware Language Bindings
	4.3.3 Strings in non-Unicode-aware Language Bindings

	4.4 8-Bit Encodings
	4.5 Encodings for Chinese, Japanese, and Korean Text
	4.6 Addressing Characters and Glyphs
	4.6.1 Escape Sequences
	4.6.2 Character References and Glyph Name References
	4.6.3 Glyph Checking and Substitution
	4.6.4 Checking Glyph Availability

	5 Font Handling
	5.1 Overview of Fonts and Encodings
	5.1.1 Supported Font Formats
	5.1.2 Font Encodings

	5.2 Font Format Details
	5.2.1 PostScript Type 1 Fonts
	5.2.2 TrueType and OpenType Fonts
	5.2.3 User-Defined (Type 3) Fonts

	5.3 Locating, Embedding and Subsetting Fonts
	5.3.1 Searching for Fonts
	5.3.2 Host Fonts on Windows and Mac
	5.3.3 Font Embedding
	5.3.4 Font Subsetting

	5.4 Miscellaneous Topics
	5.4.1 Symbol Fonts and Font-specific Encodings
	5.4.2 Glyph ID Addressing for TrueType and OpenType Fonts
	5.4.3 The Euro Glyph
	5.4.4 Unicode-compatible Fonts

	5.5 Font Metrics and Text Variations
	5.5.1 Font and Glyph Metrics
	5.5.2 Kerning
	5.5.3 Text Variations

	5.6 Chinese, Japanese, and Korean Fonts
	5.6.1 Standard CJK Fonts
	5.6.2 Custom CJK Fonts

	6 Importing Images and PDF Pages
	6.1 Importing Raster Images
	6.1.1 Basic Image Handling
	6.1.2 Supported Image File Formats
	6.1.3 Clipping Paths
	6.1.4 Image Masks and Transparency
	6.1.5 Colorizing Images
	6.1.6 Multi-Page Image Files
	6.1.7 OPI Support

	6.2 Importing PDF Pages with PDI (PDF Import Library)
	6.2.1 PDI Features and Applications
	6.2.2 Using PDI Functions with PDFlib
	6.2.3 Acceptable PDF Documents

	7 Formatting Features
	7.1 Placing and Fitting Single-Line Text
	7.1.1 Simple Text Placement
	7.1.2 Positioning Text in a Box
	7.1.3 Fitting Text into a Box
	7.1.4 Aligning Text at a Character
	7.1.5 Placing a Stamp
	7.1.6 Using Leaders

	7.2 Multi-Line Textflows
	7.2.1 Placing Textflows in the Fitbox
	7.2.2 Paragraph Formatting Options
	7.2.3 Inline Option Lists and Macros
	7.2.4 Tab Stops
	7.2.5 Numbered Lists and Paragraph Spacing
	7.2.6 Control Characters, Character Mapping, and Symbol Fonts
	7.2.7 Hyphenation
	7.2.8 Controlling the Linebreak Algorithm
	7.2.9 Wrapping Text

	7.3 Placing Images and Imported PDF Pages
	7.3.1 Simple Object Placement
	7.3.2 Positioning an Object in a Box
	7.3.3 Fitting an Object into a Box
	7.3.4 Orientating an Object
	7.3.5 Rotating an Object
	7.3.6 Adjusting the Page Size

	7.4 Table Formatting
	7.4.1 Placing a Simple Table
	7.4.2 Contents of a Table Cell
	7.4.3 Table and Column Widths
	7.4.4 Large Table Example
	7.4.5 Table Instances

	7.5 Matchboxes
	7.5.1 Decorating a Text Line
	7.5.2 Using Matchboxes in a Textflow
	7.5.3 Matchboxes and Images

	8 The pCOS Interface
	8.1 Simple pCOS Examples
	8.2 Handling Basic PDF Data Types
	8.3 Composite Data Structures and IDs
	8.4 Path Syntax
	8.5 Pseudo Objects
	8.6 Encrypted PDF Documents

	9 Generating various PDF Flavors
	9.1 Acrobat and PDF Versions
	9.2 Encrypted PDF
	9.2.1 Strengths and Weaknesses of PDF Security
	9.2.2 Protecting Documents with PDFlib

	9.3 Web-Optimized (Linearized) PDF
	9.4 PDF/X for Print Production
	9.4.1 The PDF/X Family of Standards
	9.4.2 Generating PDF/X-conforming Output
	9.4.3 Importing PDF/X Documents with PDI

	9.5 PDF/A for Archiving
	9.5.1 The PDF/A Standards
	9.5.2 Generating PDF/A-conforming Output
	9.5.3 Importing PDF/A Documents with PDI
	9.5.4 Color Strategies for creating PDF/A
	9.5.5 PDF/A Validation

	9.6 Tagged PDF
	9.6.1 Generating Tagged PDF with PDFlib
	9.6.2 Creating Tagged PDF with direct Text Output and Textflows
	9.6.3 Activating Items for complex Layouts
	9.6.4 Using Tagged PDF in Acrobat

	10 Variable Data and Blocks
	10.1 Installing the PDFlib Block Plugin
	10.2 Overview of the PDFlib Block Concept
	10.2.1 Complete Separation of Document Design and Program Code
	10.2.2 Block Properties
	10.2.3 Linking multiple Textflow Blocks
	10.2.4 Why not use PDF Form Fields?

	10.3 Creating PDFlib Blocks
	10.3.1 Creating Blocks interactively with the PDFlib Block Plugin
	10.3.2 Editing Block Properties
	10.3.3 Copying Blocks between Pages and Documents
	10.3.4 Converting PDF Form Fields to PDFlib Blocks

	10.4 Standard Properties for Automated Processing
	10.4.1 General Properties
	10.4.2 Text Properties
	10.4.3 Image Properties
	10.4.4 PDF Properties
	10.4.5 Custom Properties

	10.5 Querying Block Names and Properties with pCOS
	10.6 PDFlib Block Specification
	10.6.1 PDF Object Structure for PDFlib Blocks
	10.6.2 Generating PDFlib Blocks with pdfmarks

	A Revision History
	Index

