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1 Introduction

In recent years the lattice-Boltzmann method (LBM) has proven itself to be a viable way to
introduce hydrodynamic interactions into coarse-grained MD simulations with moderate computa-
tional cost. The success of the GPU LBM implementation in ESPResSo and similar developments
in other software packages created demand for further developments in this area. ESPResSo
features two such algorithms, namely ELECTROHYDRODYNAMICS, and ELECTROKINET-
ICS (EK). Both of these make use of the LBM and extend it to coarse-grain not only the solvent
molecules but also ionic solutes. ELECTROHYDRODYNAMICS does so using a slip layer
coupling for charged particles valid in the thin Debye layer (large salt concentration) limit[1],
while EK explicitly treats the ionic solutes in a continuum fashion and is valid for a wide range
of salt concentrations[2–4].

Tutorial Outline

To make our first steps using ELECTROKINETICS we will work on one of the few systems for
which analytic solutions for the electrokinetic equations exist – the slip pore geometry with a
counterion-only electrolyte. The same slit pore system is also treated in the LBM tutorial, but
there, the ionic species were modeled as explicit particles. For this system, the two approaches
lead to exactly the same results [5]. Differences are only becoming significant for multivalent ions,
very high salt concentrations, and very high surface charge, since then the mean-field approach the
EK is employing, basically solving the Poisson-Nernst-Planck formalism plus the Navier-Stokes
equation on a lattice, gives significantly different results from explicit ion approaches [6–8].

This tutorial is divided into three sections. The first section 2 introduces the electrokinetic
equations and the analytical solution for the slit pore system, while the second section 3 deals
exclusively with the simulation, its setup, and the results.

If you already know about simple diffusion-migration-advection equations, continuum electro-
statics, and Navier-Stokes, then you can skip the first section.
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2 Theoretical Background

2.1 The Electrokinetic Equations

In the following, we will derive the equations modeling the time evolution of the concentrations of
dissolved species as well as the solvent in the standard electrokinetic model. We do so, neglecting
the salt ions’ contribution to the overall mass density, which allows us to treat the dynamics of
the ions and the fluid separately [9]. The solvent fluid will be modeled using the Navier-Stokes
equations while we use a set of diffusion-migration-advection equations for the ionic species.

Ionic Species

The description starts with the ionic species’ concentrations ck(r, t) (number density) and the
associated flux densities jk(r, t), for which mass conservation holds

∂tck = −∇ · jk. (1)

Here r denotes the spatial coordinate and t the time, while k enumerates the ionic species. The
fluxes are caused by diffusion (due to density variations and external forces) and advection.

The advective contribution to the flux is given by

jadv.
k = cku, (2)

where u(r, t) denotes the fluid velocity (advective velocity). Equation (2) models advection as a
simple co-movement of the dissolved ions with the surrounding fluid. All inertial effects of the
ions are neglected.

The diffusive behavior of the ions is best described in a reference frame co-moving with the
local advective velocity u. We assume that the species’ relative fluxes instantaneously relax
to a local equilibrium. This assumption allows us to derive the diffusive fluxes from a local
free-energy density, which we define as

f
(
ck(r)

)
=
∑
k

kBTck(r)
[
log
{

Λ3
kck(r)

}
− 1
]︸ ︷︷ ︸

ideal gas contribution

+ zkeck(r)Φ(r)︸ ︷︷ ︸
electrostatic contribution

, (3)

with the Λk the species’ thermal de Broglie wavelengths, zk their valencies, and Φ(r) the
electrostatic potential. This free-energy density consists of only an ideal-gas and an electrostatic
contribution. The same assumptions form the basis of Poisson-Boltzmann (PB) theory. Hence,
the limitations of this model are the same as those of PB. That means this model applies to
monovalent ions at low to intermediate densities and surface charges [6, 7, 10, 11].

The species’ chemical potentials µk implied by the free-energy density read

µk(r) = δckf(ck
(
r)
)

= kBT log(Λ3
kck(r)) + zkeΦ(r). (4)

This in turn allows us to formulate first-order approximation to the thermodynamic driving force
as the gradient of the chemical potential (4), which we use to define an expression for the diffusive
flux

jdiff
k = ξk (−ck∇µk) = −kBTξk∇ck − ξkzkeck∇Φ

= −Dk∇ck − ξkzkeck∇Φ.
(5)
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Here, ξk and Dk denote the mobility and the diffusion coefficient of species k, which are related
by the Einstein-Smoluchowski relation Dk/ξk = kBT [12, 13].

Finally, the total number density flux combining effects of diffusion and advection reads

jk = jdiff
k + jadv.

k = −Dk∇ck − ξkzkeck∇Φ + cku, (6)

where the first term represents Fick’s law of diffusion in the absence of an external potential, the
second term gives the additional flux due to an external (in this case electrostatic) potential, and
the last term introduces the influence of the motion of the underlying solvent.

Electrostatics

The dynamics of the charged species in a typical micro- or nanofluidic system are slow compared
to the relaxation of the electromagnetic fields. This allows us to use stationary equations to
model electromagnetic effects. We further assume that the modeled species do carry permanent
magnetic dipoles and that electric currents in the system are small. Under these conditions, the
full set of Maxwell’s equations reduces to the Poisson equation

∇2Φ = −1

ε

∑
k

zkeck = −4πlBkBT
∑
k

zkck. (7)

Here ε = ε0εr denotes the product of the vacuum permittivity ε0 with the relative permittivity of
the solvent εr. We have also used the Bjerrum-length

lB =
e2

4πεkBT
. (8)

Finally, we have assumed that the permittivity is spatially homogeneous, since this will allow us
to use efficient spectral methods to solve this equation.

Hydrodynamics

As said before, since the ionic species’ contribute at most a few percent to the overall mass,
we can safely approximate the overall fluid’s mass by the mass of the solvent (typically water)
and model the solvents velocity field u(r, t) using the Navier-Stokes equations for an isotropic,
incompressible Newtonian fluid

ρ
(
∂tu + (u · ∇)u

)
= −∇pH + η∇2u + f , (9)

∇ · u = 0. (10)

where pH denotes the hydrostatic pressure, η the shear viscosity, ρ the density of the fluid, and
f an external body force density. For the assumption of incompressibility to hold, the Mach
number needs to be small – a condition that is fulfilled for micro- and nanofluidic systems with
flow velocities on the order of µm/s.

In section 2.1, we assumed that the ions’ velocity relative to the fluid instantaneously relaxes
to a stationary state and that this stationary velocity is given by the product of their mobility and
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the force exerted on them. For this state to be stationary, all the momentum transferred into the
ions by the external force needs to be dissipated into the fluid immediately. From this we can
conclude that the force density acting on the fluid must read

f =
∑
k

jdiff
k /ξk = −

∑
k

(kBT∇ck + zkeck∇Φ). (11)

Summarizing, the set of electrokinetic equations we solve is given by

jk = −Dk∇ck − ξkzkeck∇Φ + cku, (12)

∂tck = −∇ · jk, (13)

∇2Φ = − 4πlBkBT
∑

k zkck, (14)

ρ
(
∂tu + (u · ∇)u

)
= −∇pH + η∇2u−

∑
k(kBT∇ck + zkeck∇Φ), (15)

∇ · u = 0. (16)

2.2 EOF in the Slit Pore Geometry

The slit pore system depicted in Fig. 1 consists of two like charged parallel plates of infinite
extent, confining a solution of water and the plates’ counterions.
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Figure 1: Slit pore system and coordinate system used for the analytical calculations.

Due to the net neutrality of the system and the translational symmetry in directions parallel to
the plates, the potential outside the two plates must be constant. This means that using periodic
or non-periodic boundary conditions makes no difference. As the system is in equilibrium
in the normal direction, the electrokinetic eqs. (12) to (14) for this dimension reduce to the
Poisson-Boltzmann equation for the electrostatic potential, which reads

∂2
xΦ(x) = −4π kBT lB ze c0 · exp

(
−zeΦ(x)

kBT

)
, (17)

where x denotes the direction normal to the plates. The constant c0 has to be chosen such that
charge neutrality is fulfilled. Multiplying by 2∂xΦ(x) and applying the inverse chain rule further
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reduces the equation to first order. Subsequent separation of variables yields the solution

Φ(x) = −kBT
ze
· log

[
C2

8π kBT lB
· cos−2

(
zeC

2kBT
· x
)]

,

∣∣∣∣ zeC2kBT
· x
∣∣∣∣ < π

2
. (18)

Refer to [5] for details on this calculation. Knowing that the counterion density c resembles a
Boltzmann distribution in the potential zeΦ leads to the expression

c(x) =
C2

8π kBT lB
· cos−2

(
zeC

2kBT
· x
)
. (19)

The constant C is determined by fixing the number of counterions or requiring the E-field to
vanish outside the volume contained by the plates. Both yields

C · tan

(
zed

4kBT
· C
)

= −4π kBT lBσ , (20)

where d denotes the distance between the plates and σ their (constant) surface charge density.
Applying an electrical field along one of the directions parallel to the plates does not influence

the charge distribution in the normal direction, which allows us to write down the hydrodynamic
equations for the parallel direction. After eliminating all terms from the the Navier-Stokes
Eqations (15) which vanish due to symmetry, we are left with

∂2
xvy(x)

∂x2
= − qEC2

8 kBT lB η
· cos−2

(
qC

2kBT
· x
)
, (21)

which yields, by means of simple integration and the application of no-slip boundary conditions

vy(x) =
E

2π lB η ze
· log

cos
(

zeC
2kBT · x

)
cos
(

zeC
2kBT ·

d
2

)
 . (22)

Here x stands for the direction normal to the plates and y for the direction of the E-field and
parallel to the plates.

With this tutorial comes a Python script eof_analytical.py, which evaluates all these
expressions on the same grid as is used in the simulation from section 3.
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3 Simulation using ESPResSo

3.1 Setting up ESPResSo

Electrokinetics is a relatively new feature of ESPResSo and new functionality is still being
added. This is why it is advisable to get a copy of the current ESPResSo master to work
with. If you don’t already have a working copy of the ESPResSo master, follow tutorial
00-building_espresso. Enable the features ELETROKINETICS and EK_BOUNDARIES
during the build process.

3.2 Mapping SI and Simulation Units

ESPResSo does not predefine any unit system. This makes it more flexible but also requires us
to spend some thought on the conversion from SI units to simulation units and back. Since most
first time users have trouble with this, we will go through that process in detail here.

Important to note is that ESPResSo’s unit system is nothing more than a rescaled variant of
the SI system. All physical formulas you are used to in the SI system remain valid and you can
use them to find relations between your units. Lets start by choosing a unit of length. Since we
are going to deal with Debye layers with extensions of nanometers, a sensible choice is

[x] = 1 nm.

The involved energies are of the magnitude of kBT . We will simulate our system at room
temperature (300 K), hence we use as unit of energy

[E] = kB · 300 K ≈ 4.14× 10−21 J.

By default ESPResSo has no concept for particle masses (but the feature can be activated). That
means all particle masses are assumed to be 1 [m], which forces us to use the particle mass as
mass unit. For this simulation we use the mass of sodium ions, which is

[m] = 23 u ≈ 3.82× 10−26 kg.

For the relation

E =
1

2
mv2

to hold, the unit of time has to be defined so that

[E] = [m] · [x]2

[t]2
.

From that we get the missing unit of time

[t] = [x] ·

√
[m]

[E]
= 1 nm ·

√
23 u

kB · 300 K
≈ 3.03760648× 10−12 s ≈ 3.04 ps.
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The last unit we need is the one of charge. We choose it to be the elementary charge

[q] = e ≈ 1.60× 10−19 C.

We now have all the units necessary to convert out simulation parameters.
parameter value (SI units) value (simuation units)
channel width d 50 nm 50 [x]

thermal energy kBT kB · 300 K 1 [E]

Bjerrum length lB 0.7095 nm 0.7095 [x]

counterion charge q 1e 1 [q]

counterion diffusion coefficient D 2.0× 10−9 m2/s 0.006075 [x]2/[t]

solvent density ρ 1.0× 103 kg/m3 26.18 [m]/[x]3

kinematic solvent viscosity η 1.0× 10−3 Pa s 79.53 [m]/([x][t])

external electrical field E 2.585× 106 V/m 0.1 [E]/[q][x]

ESPResSo determines the strength of the electrostatic interactions via the Bjerrum-length lB .
That is the length for which the electrostatic interaction energy of two elementary charges equals
the thermal energy

kBT =
e2

4πε0εr
· 1

lB
.

This yields for water at 300 K, with εr = 78.54, a Bjerrum length of lB ≈ 0.7095 nm.

3.3 Setting up the slip pore system

The script for this simulation comes with this tutorial and is called
eof_electrokinetics.py. All used commands are documented in the User’s
Guide in the section called “Electrokinetics”.

We first set up a periodic simulation box of the desired dimensions. Note that the dimensions
are, of course, given in simulation units.

1 # Initializing espresso modules and the numpy package
2 import sys
3 import numpy as np
4 from espressomd import System, electrokinetics, shapes
5
6 # Set the slit pore geometry where the width is the non-←↩

periodic part of the geometry
7 # the padding is used to ensure that there is no field ←↩

outside the slit since the electrostatics is used with←↩
a 3D periodic FFT solver.

8
9 box_x = 6

10 box_y = 6
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11 width = 50
12
13 padding = 1
14 box_z = width + 2*padding
15
16 system = System(box_l = [box_x, box_y, box_z])

We then store all the parameters we calculated in section 3.2. At this point, these parameters
only reside in Python variables. They will only be used by ESPResSo once they are being passed
to the respective initialization functions.

19 # Set the electrokinetic parameters
20
21 agrid = 1.0
22 dt = 0.2
23 kT = 1.0
24 bjerrum_length = 0.7095
25 D = 0.006075
26 valency = 1.0
27 viscosity_dynamic = 79.53
28 density_water = 26.15
29 sigma = -0.05
30 ext_force_density = 0.1

Before we initialize the actual electrokinetics algorithm, we need to set the time step and some
other parameters that are not actually used, but would otherwise lead to error messages.

32 # Set the simulation parameters
33
34 system.time_step = dt
35 system.cell_system.skin = 0.2
36 system.thermostat.turn_off()
37 integration_length = int(2e5)

We can now set up the electrokinetics algorithm. All functionality pertaining to this algorithm
is available through the electrokinetics submodule of espressomd. Please note that the
fluid viscosity is specified as a kinematic viscosity, which is the dynamic viscosity divided by the
fluid density. The kinematic viscosity is also required if you initialize the pure lattice-Boltzmann
method.

39 # Set up the (LB) electrokinetics fluid
40 viscosity_kinematic = viscosity_dynamic / density_water
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41 ek = electrokinetics.Electrokinetics(agrid = agrid, ←↩
lb_density = density_water, viscosity = ←↩
viscosity_kinematic, friction = 1.0, T = kT, prefactor←↩
= bjerrum_length)

The value of the friction parameter in the previous setup command is irrelevant, since we don’t
include any explicit particles in our simulation, but it’s needed to pass the sanity check of the LB.

Next, we set up the individual ionic species. In this case, we only set up one species of positively
charged counterions. After setting up the species, we have to add it to the electrokinetics instance.

45 # Set up the charged and neutral species
46 density_counterions = -2.0 * sigma / width
47 counterions = electrokinetics.Species(density=←↩

density_counterions, D=D, valency=valency, ←↩
ext_force_density=[ext_force_density, 0, 0])

48
49 ek.add_species(counterions)

The EKBoundary command takes the keyword charge_density and the numerical
charge density in simulation units as arguments. The shape keyword takes an instance of a
shape, which is provided by the shapes submodule and is the same as for the LBBoundary
command. Here we initialize two charged Wall boundaries. To initialize the boundaries, we
have to add them to the ekboundaries instance of the system class. Finally, we initialize the
electrokinetics algorithm with our setup by adding the electrokinetics instance as an actor to the
system.

53 # Set up the walls confining the fluid
54 ek_wall_left = electrokinetics.EKBoundary(charge_density=←↩

sigma/agrid, shape=shapes.Wall(normal=[0, 0, 1], dist=←↩
padding))

55 ek_wall_right = electrokinetics.EKBoundary(charge_density←↩
=sigma/agrid, shape=shapes.Wall(normal=[0, 0, -1], ←↩
dist=-(padding+width)))

56
57 system.ekboundaries.add(ek_wall_left)
58 system.ekboundaries.add(ek_wall_right)
59
60 system.actors.add(ek)

After setting up the system, we integrate a sufficient number of time steps to relax the system
into the stationary state and output the counterion density profile, the velocity profile, and the
shear stress. Since this system has translational symmetry in the x- and y-direction, we iterate
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over a line in the z direction and use the species

node

.quantity command, to output local quantities. You can instead also use the
electrokinetics.print_vtk_quantity command to output the whole field at once
in a Paraview compatible format.

Density and velocity are not the only fields available for output. Please refer to the User’s
Guide for all available options.

66 # Integrate the system
67 for i in range(100):
68 system.integrator.run(integration_length)
69 sys.stdout.write("\rintegration step: %03i"%i)
70 sys.stdout.flush()
71
72 print("Integration finished.")
73
74 # Output
75 position_list = []
76 density_list = []
77 velocity_list = []
78 pressure_xz_list = []
79
80 for i in range(int(box_z/agrid)):
81 if (i*agrid >= padding) and (i*agrid < box_z - ←↩

padding):
82 position = i*agrid - padding - width/2.0 + agrid←↩

/2.0
83 position_list.append(position)
84
85 # density
86 density_list.append(counterions[box_x/(2*agrid), ←↩

box_y/(2*agrid), i].density)
87
88 # velocity
89 velocity_list.append(ek[box_x/(2*agrid), box_y←↩

/(2*agrid), i].velocity[0])
90
91 # xz component pressure tensor
92 pressure_xz_list.append(ek[box_x/(2*agrid), box_y←↩

/(2*agrid), i].pressure[0,2])
93
94 np.savetxt("eof_electrokinetics.dat", np.column_stack((←↩

position_list, density_list, velocity_list, ←↩

12



pressure_xz_list)), header="#position ←↩
calculated_density calculated_velocity ←↩
calculated_pressure_xz")

With this tutorial also came a Python matplotlib script plot.py. If everything went well, run-
ning this script with Python from a folder containing the output files eof_analytical.dat
and eof_electrokinetics.dat should produce the result shown in Figure 2.
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Figure 2: Profiles along the direction perpendicular to the slit pore walls for the counterion density,
fluid velocity, and fluid shear stress. Parameters as chosen in Section 3.2.
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