
Tutorial 8: Visualization∗

How to visualize your ESPResSo simulations while they are running

August 13, 2018

1 Introduction
When you are running a simulation, it is often useful to see what is going on by visualiz-
ing particles in a 3D view or by plotting observables over time. That way, you can easily
determine things like whether your choice of parameters has led to a stable simulation
or whether your system has equilibrated. You may even be able to do your complete
data analysis in real time as the simulation progresses.

Thanks to ESPResSo’s Python interface, we can make use of standard libraries like
Mayavi or OpenGL (for interactive 3D views) and Matplotlib (for line graphs) for this
purpose. We will also use NumPy, which both of these libraries depend on, to store data
and perform some basic analysis.

2 Simulation
First, we need to set up a simulation. We simulate a simple Lennard-Jones liquid in this
tutorial using the script shown below.

∗For ESPResSo 3.4-dev-8834-ge98f3d36d-dirty

1

from __future__ import print_function

from matplotlib import pyplot
from threading import Thread

import espressomd
from espressomd import visualization
import numpy

System parameters
##

10 000 Particles
box_l = 10.7437
density = 0.7

Interaction parameters (repulsive Lennard Jones)
##

lj_eps = 1.0
lj_sig = 1.0
lj_cut = 1.12246
lj_cap = 20

Integration parameters
##
system = espressomd . System (box_l =[box_l , box_l , box_l])
system .seed = system . cell_system . get_state ()[’n_nodes ’] *

[1234]
system . time_step = 0.01
system . cell_system .skin = 0.4
system . thermostat . set_langevin (kT=1.0, gamma =1.0)

warmup integration (with capped LJ potential)
warm_steps = 100
warm_n_times = 30
do the warmup until the particles have at least the distance

min_dist
min_dist = 0.9

integration
int_steps = 1000
int_n_times = 100

##
Setup System
##

2

Interaction setup
##

system . non_bonded_inter [0, 0]. lennard_jones . set_params (
epsilon =lj_eps , sigma =lj_sig ,
cutoff =lj_cut , shift ="auto")

system . force_cap = lj_cap

Particle setup
##

volume = box_l * box_l * box_l
n_part = int(volume * density)

for i in range(n_part):
system .part.add(id=i, pos=numpy. random . random (3) * system .

box_l)

system . analysis . dist_to (0)
act_min_dist = system . analysis . min_dist ()

##
Warmup Integration
##

set LJ cap
lj_cap = 20
system . force_cap = lj_cap

Warmup Integration Loop
i = 0
while (i < warm_n_times and act_min_dist < min_dist):

system . integrator .run(warm_steps)
Warmup criterion
act_min_dist = system . analysis . min_dist ()
i += 1

Increase LJ cap
lj_cap = lj_cap + 10
system . force_cap = lj_cap

##
Integration
##

remove force capping
lj_cap = 0
system . force_cap = lj_cap

3

def main ():
for i in range (0, int_n_times):

print ("run %d at time =%f " % (i, system .time))
system . integrator .run(int_steps)

main ()

terminate program
print ("\ nFinished .")

3 Live plotting
Let’s have a look at the total energy of the simulation. We can determine the individual
energies in the system using

print (system . analysis . energy ())

to get

OrderedDict ([
(’total ’, 1840. 118038871784) ,
(’ideal ’, 1358. 743742464325) ,
(’bonded ’, 0.0),
((’nonBonded ’, 0, 0), 481. 374296407459) ,
(’nonBonded ’, 481. 374296407459) ,
(’coulomb ’, 0.0)])

Write that command right after the call to main() and see if you can get a similar result.
Now we want to store the total energy over time in a NumPy array. To do that, modify
the main function definition to be the following:

energies = numpy.empty ((int_steps ,2))
def main ():

for i in range (0, int_n_times):
print ("run %d at time =%f " % (i, system .time))
system . integrator .run(int_steps)
energies [i] = (system .time , system . analysis . energy ()[’

total ’])

Now we can do some analysis on the stored energies. For example, let us calculate the
time-averaged energy:

print (" Average energy : %.6g" % energies [: ,1].mean ())

We can also plot the energy over time by adding

4

pyplot . xlabel ("time")
pyplot . ylabel (" energy ")
pyplot .plot(energies [:,0], energies [: ,1])
pyplot .show ()

to the end of the script. Of course, this plot only gets shown after the entire simulation
is completed. To get an interactive plot, we update it from within the integration loop.

energies = numpy.empty ((int_steps ,2))
current_time = -1
pyplot . xlabel ("time")
pyplot . ylabel (" energy ")
plot , = pyplot .plot([0] ,[0])
pyplot .show(block=False)
def update_plot ():

if current_time < 0:
return

i = current_time
plot. set_xdata (energies [:i+1 ,0])
plot. set_ydata (energies [:i+1 ,1])
pyplot .xlim (0, energies [i ,0])
pyplot .ylim(energies [:i+1 ,1].min (), energies [:i+1 ,1].max ())
pyplot .draw ()
pyplot .pause (0.01)

def main ():
global current_time
for i in range (0, int_n_times):

print ("run %d at time =%f " % (i, system .time))
system . integrator .run(int_steps)
energies [i] = (system .time , system . analysis . energy ()[’

total ’])
current_time = i
update_plot ()

One shortcoming of this simple method is that one cannot interact with the controls of
the plot window (e.g. resize the window or zoom around in the graph). This will be
resolved using multiple threads when we combine the plotting with the 3D visualization
in the next section.

4 Live visualization

In order to be able to interact with the live visualization, we need to move the main
integration loop into a secondary thread and run the visualization in the main thread
(note that visualization or plotting cannot be run in secondary threads). First, let’s
revert to the main loop without plotting:

5

energies = numpy.empty ((int_steps ,2))
def main ():

for i in range (0, int_n_times):
print ("run %d at time =%f " % (i, system .time))
system . integrator .run(int_steps)
energies [i] = (system .time , system . analysis . energy ()[’

total ’])

Then, add the following line after the particle setup code:

visualizer = visualization . openGLLive (system)

Now, go to the end of the main function definition and add

visualizer . update ()

which sends the current simulation state to the visualizer. Now, go to the line where
main() is called and replace it with the following code, which dispatches the function in
a secondary thread, and then opens the visualizer window:

t = Thread (target =main)
t. daemon = True
t.start ()
visualizer .start ()

To follow the trajectories, try decreasing the integration steps to 1 and the time step
to 0.001. While the simulation is running, you can move and zoom around with your
mouse. Alternatively, you can try mayavi by switching the visualizer to:

visualizer = visualization . mayaviLive (system)

In mayavi, explore the buttons in the toolbar to see how the graphical representation
can be changed

5 Combined live visualization and plotting
Now let’s merge the code from the preceding two sections so we can see the energy
graph while viewing the 3D visualization of the particles. Do do that, we copy the
pyplot-related lines from above:

current_time = -1
pyplot . xlabel ("time")
pyplot . ylabel (" energy ")
plot , = pyplot .plot([0] ,[0])
pyplot .show(block=False)

6

def update_plot ():
if current_time < 0:

return
i = current_time
plot. set_xdata (energies [:i+1 ,0])
plot. set_ydata (energies [:i+1 ,1])
pyplot .xlim (0, energies [i ,0])
pyplot .ylim(energies [:i+1 ,1].min (), energies [:i+1 ,1].max ())
pyplot .draw ()
pyplot .pause (0.01)

Then we merge the main function definitions from both the previous sections.

def main ():
global current_time
for i in range (0, int_n_times):

print ("run %d at time =%f " % (i, system .time))
system . integrator .run(int_steps)
energies [i] = (system .time , system . analysis . energy ()[’

total ’])
current_time = i
visualizer . update ()
update_plot () cannot be called from here

However, as we now have multiple threads, we cannot simply call update_plot() from
the main function definition. Instead, we register it as a callback with the visualizer
before we start up the visualizer GUI:

t = Thread (target =main)
t. daemon = True
t.start ()
visualizer . register_callback (update_plot , interval =500)
visualizer .start ()

6 Customizing the OpenGL visualizer

Visualization of more advanced features of ESPResSo is also possible (e.g. bonds, con-
straints, Lattice Boltzmann) with the OpenGL visualizer. There are a number of optional
keywords that can be used to specify the appearance of the visualization, they are simply
stated after system when creating the visualizer instance. See the following examples:

Enables particle dragging via mouse:
visualizer = visualization . openGLLive (system , drag_enabled =True)

7

Use a white background :
visualizer = visualization . openGLLive (system , background_color =

[1 ,1 ,1])

Use red color for all (uncharged) particles
visualizer = visualization . openGLLive (system ,

particle_type_colors = [[1 ,0 ,0]])

The visualizer options are stored in the dict visualizer.specs, the following snippet
prints out the current configuration nicely:

for k in sorted (visualizer .specs.keys (), key= lambda s: s.lower ()
): print ("{:30} {}". format (k, visualizer .specs[k]))

All keywords are explained in the Online Documentation at http://espressomd.org/
html/doc/visualization.html#opengl-visualizer. Specific visualization examples
for ESPResSo can be found in the samples folder. You may need to recompile ESPResSo
with the required features used in the examples.

8

http://espressomd.org/html/doc/visualization.html#opengl-visualizer
http://espressomd.org/html/doc/visualization.html#opengl-visualizer

	Introduction
	Simulation
	Live plotting
	Live visualization
	Combined live visualization and plotting
	Customizing the OpenGL visualizer

